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COVERING MANIFOLDS WITH CELLS

R. P. OSBORNE and J. L. STERN

In attempting to triangulate a topological manifold, one
would like to be able to cover a manifold with closed cells
whose intersections are nice. This paper is a study of minimal
coverings of manifolds by open cells and a method of improving
the intersections as the connectivity allows. The principal
theorem is the following.

Theorem 1: If Mn is a A -connected topological ^-manifold
(without boundary) and q is the minimum of k and n — 3, then
Mn can be covered by p open cells if p{q + 1) > n. Futhermore,
these cells may be chosen so that the intersection of any col-
lection of these cells is (q — l)-connected.

As a consequence of this theorem it is shown that a
contractible open w-manif old (n ̂  5) is the union of two open
cells whose intersection is a contractible open manifold. One
might note for instance that a 3-connected 10-manifold can be
covered by 3 open cells whose intersections are 2-connected.

l Definitions and notation* An ^-manifold is a connected
separable locally Euclidean metric space. Superscripts will denote
dimension. If Kr is an abstract simplicial complex, we denote its
carrier by \Kr\. The s-skeleton of Kr will be denoted by Ks. The
complementary skeleton (sometimes called the dual skeleton) of Ks

is defined to be the union of all simplexes in the first barycentric
subdivision of Kr whose carriers do not intersect \KS\. We denote
the complementary skeleton of Ks by K% and note that the dimension
of Kί is r — s — 1. If ¥ is a homeomorphism of the unit ball in En

into a manifold, then we denote by | Ψ | the image of ¥ and by | ¥ \a,
0 S & 2s 1 the image under ¥ of the ball of radius a.

2. Covering by cells* In what follows we shall rely heavily on
the topological engulfing of Newman [3].

THEOREM 2.1. Let X be a locally tame closed set of dimension
k ^ n — 3 in a k-connected topological n-manifόld Mn, and let U be a
(k — l)-connected open set in Mn such that X ~ U is compact. Then
there is a homeomorphism h:Mn—>—>Mn such that Xah(U) and
h is the identity on the complement of a compact set in Mn.

Using this engulfing we shall prove

THEOREM 2.2. Let Mn be a k-connected topological n-manifold
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and let q be the minimum of k and n — 3, then Mn can be covered
by p open n-cells if p(q + 1) > n.

This theorem is proven by induction using the following lemmas.

LEMMA 2.3. Let Kr be a finite subcomplex of a triangulation T
of En, let U, U' and U" be open sets in En such that Ua Ue c U", no
simplex in \T\ intersects both U and En ~ V, no simplex in \T\
intersects both TJr and En ~ 17", and Ks c U". Suppose VaEn is
an open set containing |2SΓJ|. Then there is a homeomorphism h:
E* ->->£"> such that (i) Kr c K(U") U V, (ii) h \ (U U | Ks | U | Ki |) = 1
and (iii) there is a compact set AaEn such that h\En ~A = 1.

LEMMA 2.4. Let Mn be a k-connected n-manifold and let q be
the minimum of k and n — 2>. Let \ φ \ be a cell in Mn, 0 ^ a <; 1 and
\Kr\ an r-dimensional polyhedron in \φ\. Let \ Ψλ \, | Ψ2 \, , | Ψ"m

be n-cells in Mn where m(q + 1) > r, then there exist homeomorphisms
ht, h2, -",hm of Mn onto itself such that

and I ^ U c M l ^ l

Sketch of the proof of Lemma 2.3. There exists a homeomorphism
g of Kr onto itself such that g{U" Π I Kr |) U ( 7 ί l I Kr |) = | Kr \ and
g\(\Kr\ n U') = 1. (To get g push out linearly from K%. See ([6],
p. 570) for more details on this push.) We extend g by coneing to
get a homeomorphism h of En onto itself so that h is the identity
on the complement of the union of all %-simplexes in En having a
face in \Kr\ that does not lie in U'. h is the desired homeomorphism.

Proof of Lemma 2.4. Let T be a triangulation of | φ \ such that
Kr is a subcomplex of T. We proceed by induction on 5 = [r/(q + 1)].
If 6 = 0 then r ^ q. Applying the method of Connell [3] we stretch
I ^ J i over | ^ | [ ( α + 1 ) / 2 ] U | i ί r | keeping \Wx\a fixed. Assume now that
the theorem is true for every rf such that [r'j{q + 1)] < b and suppose
[r/(q + 1)] = b and m(q + 1) > r. Let Tx be a subdivision of T such
that no simplex of Tx meets Bd | Ψm |[(α+1)/2] and Bd | Ψm \γ or Bd | Ψm \a

and Bd I ?Γm | [ ( α + 1 ) / 2 ]. Let \K[\ be the complex \Kr\ after subdivision.
Assume | Ψ11, | Ψ21, , | Ψm \ are given ^-cells. As in the case 6 = 0
we can stretch | Ψm \x by hm over | ψm | [ ( α + 1 ) / 2 ] U | K\ \ keeping | Ψm \ίla+im

fixed.
By the inductive hypothesis there are homeomorphisms h^h21 ,

hm^ such that I ISΓf I c UΓ+? ^(1 ?, I) and h, \ \ Ψ€ | [ ( β + 1 ) / 2 ] = 1, i = 1,2, ,
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m - 1. We apply Lemma 2.3

I Ψ» lr(«+D/2] Π I ̂ °|. J7" = I # m |x Π
desired homeomorphism hm.

to | K\ | with
^ I and 7 = UΓ

U = \ Ψm | Π | Φ |, U' =
ΐ1 Ml ^ li), so get the

Proof of Theorem 2.2. Let ( φx |, | φ21, be a collection of cells
in Λf% such that | & |α, \φ2\a, covers Λf % for some α, 0 < a < 1.
(In case Mn is compact, a finite sequence of cells would suffice.)
Choose a sequence (a^ of real numbers so that a < ax < α2 < 1.
Using Lemma 2.4 we stretch
/&1>]L hp>1 so that I φi \a c Λίfl (| ^
stretch Uf=i Wl Φi Ut)

 o v e r I 2̂>+21
tinuing indictively we get |

φp
ai, over by

ai) for each i = 1,1, , p. Next we
U b y h l t 2 , h2>2, ' - * , h p > 2 a s b e f o r e . Con-
c h i t l I φi \ai c hί>2hi}1(\ φi \az) w h i c h i s

a monotone union of open %-cells. By [1] this union is an open cell
for each i. Thus we have covered Mn by open cells.

Note that if Mn were compact, it could be covered by p closed
cells with bicollared boundaries.

3* Improving the intersections of the covering cells* The
following lemmas will enable us to improve the connectivity of the
intersections of the covering cells. In referring to the homotopy
groups we omit reference to the fixed base point even though we do
not assume the sets to be path connected.

LEMMA 3.1. If Ad En is compact, U is a neighborhood of A and
i*: 77k(A) —»Πk(U) is the map induced by inclusion, then i*(Πk(A)) is
finitely generated.

Proof. Let I iΓ I be a finite polyhedron in En such that A a | K\ c U.
Then Πk{\K\) is finitely generated for each fc, so factoring the map
ΐ* through Πk{\K\) we see that i*(Πk{A)) is finitely generated.

LEMMA 3.2. Let Mn be a q-connected n manifold (q ^ n — 3) and
let I Ψ11 and \Ψ2\ be n-cells in M and let 0 < a < β < 1. Then there
exists a homeomorphism h: Mn —> Mn such that fe||?Γ1|α = l and if

i: Ψ2 \a) — h(\ Ψ2 \β) is the inclusion then

ύ: Πk(\ WΛaΠl W2 \a) - Πk{h{\ Ψι\βC\\ ¥2 \β))

is trivial for k — 1, 2, , q — 1.

o o

Proof. Note t h a t | Ψί \Ua+β)i2i ΓΊ I ̂ 2 \κa+β)/2] is a neighborhood of the
o

compact set | ?Mα (Ί I ϊMα in \Ψ\β so, by Lemma 3.1 the image of
Π.dΨ.UnlWzU) in /7 f c( |y i | [ ( β + i ί ) / a ]n|?r 2 | [( β^,, 2 ]) is finitely generated.
Note that the generators can be assumed to be piecewise linear in
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I Ψ2 \β. Since \Ψ2\β is contractible each of these generators bounds a
singular polyhedral cell. Corresponding to the groups

Λ\(I w, \a n I w2 U), π2(\ w, \a n I Ψ, U), , /z^d ^ u n I r 2 |α)

and the groupoid /70(| 3PΊ |α f] | ̂ 2 U) we get a finite collection of polyhedral
singular cells in \Ψ2\β of dimension less than or equal to q. Let Ps

be the union of all these polyhedral singular cells. Using the topological
engulfing we get a homeomorphism g: M—> M such t h a t g \ \ Ψx |[(α+/s)/2] = 1
and Ps c g(\ Ψ1 \β). I t is easy to see t h a t

i*: Πr(g(\ ^ \a) Π I Ψ* I) - Πr(g(\ VΊ \β) Π I ̂ I , )

is trivial for r = 0, 1, 2, •, q — 1.
Using exactly the idea of the proof of the previous lemma, one

can prove the following generalization.

LEMMA 3.3. Let Mn be a q-connected n-manifold (q ^ n — 3), let
0 < a < β < 1 and let | Ψλ \, | ^ w | he n-cells in Mn. Then there exist
homeomorphisms gλ, , gm_γ of Mn onto itself such that gt \ \ Ψ{ \a = 1
and for any subset ku k2, , kr of distinct integers between 1 and
m the map i*: Πk(Γ\Li (I Ψk. |α)) — /7*(Πί=i ^ ( 1 ^ i i^ ί s trivial, where
i* is induced by the inclusion map.

Proof of Theorem 1. Our proof is essentially a refinement of the
proof of Lemma 2.3 interlacing the steps of the proof of 2.3 with
the improvements of the intersection given by Lemma 3.3. Let

1 & U & I > I 031, ••• be a collection of cells in Mn such that UΠ=i|0tU
covers Mn for some a, 0 < a < 1. Let (α )̂ and (ft) be sequences of
real numbers such that a < aγ < ft < a2 < /52 < and α^ < 1 for
each i. As in the proof of Lemma 2.3 we stretch U?=i I Φi U over
\]ΦP+I U by λ lf l, h2tl, Λp>1 so that hitl \ \ Φi \a = 1.

Next using Lemma 3.3 we get homeomorphisms gltί, g2>1, , gPfl of
Mn onto itself so that gifl \ | ^ |αj = 1 and for any integers fc^ &2, , kr

b e t w e e n 1 a n d p , ί*: Πk(f\:=ί hk%(\ φ k . \ a i ) ) - > Π k ( Γ \ U Qkinhkin(\ φ k ι \β) i s
trivial for 0 <̂  k < q. We continue this process first engulfing | φp+2 \a

then improving the intersections. For each ΐ = l , 2 , , p w e get an
i n c r e a s i n g s e q u e n c e o f o p e n c e l l s | φi |α, gitlhitl(\ Φi \ β l ) , glt2hit2gitlhitl(\ φ{ \β2),
• , whose direct limit is an open n-ce\l, call it d. For any collection
ku kZi , kr of integers between 1 and p we see, using the fact that
the groups of the intersection Πί=i Cki &**e the direct limits of

n i Φki ι«, n gki K (i Φkι u) that πk(n ck.) = o

for k = 0, 1,2, ...,gf ~ 1.



COVERING MANIFOLDS WITH CELLS 205

We should point out that a special case of Theorem 1 was proved
by Zeeman in [6],

COROLLARY 3.4. A contractible open n-manifold, n rgi 5 is the
union of two open cells whose intersection is a contractible open
manifold.

Proof. By Theorem 1 we can cover such a manifold by two open
cells C1 ahd C2 whose intersection is 1-connected. Using the Meyer-
Victoris sequence we get the exact sequence

> Hk+1(C U C2) - H^C, Π C2) - Hk{Cd 0 Hk(C2) - + . . . .

But H^iC, U Q = H^CJ = Hk(C2) = 0 for every k, so H^C, Π C2) = 0.

The Hurewics isomorphism shows Πk(C1 Π C2) = 0 for each k. This
implies that Cι Π C2 is contractible.

One might hope that the groups of the intersections of the covering
cells might be improved to give trivial groups in dimension q. The
following example shows that this may not be possible without using
more cells to cover the manifold.

EXAMPLE. S3
 X S3 can be covered by three open cells whose

intersections are 1-connected. We show that these intersections cannot
be improved to be 2-connected. Suppose, to the contrary that

S 3 x S 3 - C , U C 2 U C,

and that CΊ Γ) C2, CΊ Π C3 and C2 Π C3 are 2-connected. Using the
Meyer-Victoris sequence we get 11,(0, U C2) © HZ(C2) — iϊ 3 (S 3 x S3) ->
^ ( ( C , U C2) n Q and JSgίQ 0 fl"8(C2) -> flsίCΊ U Q — fl^ Π C2) which
implies H3(C1 U C2) = 0. Furthermore we get the exact sequence

H.ic, n c3) e H2(C2 n Q -> H^C, u Q n c3) - ^(C, n c2 n Q

but H.iC, Π C3) = ίί2(C2 nCs) = 0 = H1(C1 Π C2 n Q . This implies that
H2({C1 U C2) Π C3) = 0. In the first given exact sequence we have all
groups being trivial except H^S3 x S 3 ) , This contradicts exactness.
Note that if we are willing to use six open cells to cover S3 x S 3 we
can arrange it so that the intersections are open cells.

COROLLARY 3.5. Every topological n-manifold can be covered by

(n + 1) open n-cells.

COROLLARY 3.6. If Mn is a compact manifold (n <̂  5) that is a
homotopy n-sphere then Mn = Sn.

Proof. Mn can be covered by tw ô open cells hence Mn = Sn.
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4* Covering manifolds with boundary with closed cells* Using

the methods of § 2 we can get the following theorem.

THEOREM 4.1. // Mn is a compact manifold with boundary and
Mn and Bd Mn are q connected, q ̂  n — 4 then Mn can be covered
by p closed cells if p(q + 1) > n.

We note that if An is the closure of region between two tame
(n — 1) spheres in Sn then the annulus conjecture says that An =
gn-i χ ^ ijβ Note that the annulus conjecture is equivalent with
the assertion that A"1 can be covered by two closed cells. It is the
stumbling block presented by the annulus conjecture that prevents
us from weakening the hypothesis of Theorem 4.1 to require only
that each component of Bd Mn be g-connected.

5* An equivalence for the 3-dimensional Poincare conjecture*
The Poincare conjecture says that a compact w-manifold without
boundary that has the same homotopy groups as a sphere is a sphere.
This conjecture is known to be true for n Φ 3,4. We prove the
following:

THEOREM 4.1. The ^-dimensional Poincare conjecture is true if
and only if every contractible open %-manifold that is 1-connected
at infinity is the union of two open cells.

Proof. According to Wall [5] if the Poincare conjecture is true,
then an open 3-manifold that is 1-connected at infinity is a compact
manifold minus a point. In the case of a contractible open manifold
that is 1-connected at infinity, the 1-point compactification would be a
homotopy 3-sphere, which again by the Poincare conjecture is a 3-sphere.

Conversely, suppose that each contractible open 3-manifold that
is 1-connected at infinity is the union of two open cells. Let S be a
homotopy 3-sphere and peS. Then M = S — {p} is a contractible open
manifold that is 1-connected at infinity. By hypothesis M= Eι\]Ez

where Eί and E2 are open 3-cells. Thus S can be covered by three
open cells. McMillan and Hempel [2] have shown that such a manifold
is*a 3-sphere with handles. But the only simply connected 3-sphere
with handles is S3.
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