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SINGULAR PERTURBATION OF LINEAR PARTIAL
DIFFERENTIAL EQUATION WITH
CONSTANT COEFFICIENTS

HussaIlN S. Nur

Let Pjz,¢) be a polynomial in z and ¢ with complex
coefficients, where z is in £ and ¢ > 0 is a small parameter.
Let L. = 3¢ Pi-(d,,¢)(d:) be a polynomial in 4, 6. and e,
which is not divisible by the square of a similar nenconstant
polynomial, We shall assume that P,(z,¢) =¢ and P,(z) is
independent of ..

In this paper we shall show that under certain conditions
the solution u.(t, x) of L:(u) = f:(t, ) converges to the solution
Uo(t, %) of Lo(w) = folt, ©).

Let (¢, 2) = (¢, %, @y =+, 2,) be apointin R X E™ where 0 <t < T,
and « in £™, and E™ denotes an m-dimensional Euclidean space. Let
also Cy; be the set of all infinitely times continuously differentiable
complex valued functions on E™ with compact support. For any u
in C7, let the norm ||w||, be defined for any integer » < 0 as follows:

(1) > o5t 0fm Pda = [[ulf; (lpl=@+ -+ + Pn) .

SE”” lpisp

It is easy to see that the space Cy with the norm (1) gives a Hilbert
space, which we shall call an H,-space. We may also notice that
H,DH, and [|ull, < ||u]|, if p <q. If for each » in H, we denote
by & the Fourier transform of ¢

@) = [1/@m)l|  exp (—iz. p()de

where,
m

T,z = Zlﬂ%%

then the norm defined in (1) will be equivalent to the norm

(2) e lli = gEml(1+ 2" 9p() Pde = [P 1] -

Notice that H, with respect to the norm defined in (2) is the set of
all complex valued measurable functions such that ||@]|, < <.

Let D* be any differential operator with respect to x with constant
coefficients of order & < p. Then D! is a bounded linear operator
which maps H, into H,_,.

187
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DEeFINITION 1. Let o(t) be a variable element of H, depending
on a real parameter ¢ in a finite interval J = [0, T]. We say that
@(t) is H,-continuous in ¢ in J, if the mapping ¢ in J— @(¢) in H, is
continuous; That is, ¢t — ¢, in the interval J implies ¢(t) — o(t,) in H,.
We also maintain that ¢(t) is H,-differentiable at ¢ = ¢,, if there exist
a function g¢(¢) in H, such that

(& = &) [e(®) — p(E)] — 9(to)
in H, as t — ¢, then we denote g(t) by @'(t) = (d/dt)p(t).

If D* is a differential operator in 2 in E™ with constant coefficients
of order & and ¢(t) is H,-continuous in ¢, then D*p(t) is H,_, continuous,
and if ¢(t) is H,-differentiable in ¢ then Dfp(¢t) is H,_, differentiable
in ¢ and

(d/dt)[D*p(t)] = D*[(d/dt)p(D)] .

Mr. Nagumo in [1] considered a system of linear partial differential
equations for an r-vector function with parameter ¢ > 0,

(3) L(w) = 3, P,0., 0w = £t,2)

where P;(z,¢) are » X r matrices of polynomials in (z, €) with constant

coefficients and P, is free from 9, such that det [P,(¢)] = 0 for ¢ = 0,
Here we are concerned with the case of one equation for one

complex valued function (¢, ) containing the parameter ¢ > 0

(4) L) = 3, Pi(0., 00 = £ilt, 2

with the following assumptions:

(0) L.(0) be a polynomial in ¢, 0x and ¢ which is not divisible by
the square of a similar nonconstant polynomial for 0 < e < ¢, and
f.(t, x) is H,-continuous. P;(z, €) are polynomialsin (z,¢) = (2, +++, 2y, €)
with constant coefficients such that P,(¢) = ¢ and P,_,() is independent
of e,

System (4) is certainly a special case of system (3). Restricting
ourselves to this special case, we will prove a stability theorem some-
what different from that of Mr. Nagumo [1]. Mr. Nagumo proved
the convergence of the weak solution to u,(t, x); where as we shall
prove the convergence of the solution w.(t, ) to u.(¢, ).

DEFINITION 2. We say that equation (4) is an H,-stable equation
for e—0in 0 <t < T with respect to a particular solution wu.(¢, x)
of (4) for ¢ = 0 if and only if w.(f) — u,(¢) in H, for 0 < ¢ < T provided
that
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(5) St ®) — folt, )

in H, for 0 <t < T and w.(¢, «) is a solution of the partial differential
equation (4) such that

(i) 07 u.(0) — 6{'u,0) in H, G=1,---,1-1).
(6) (ii) There exists a function F(x) in H, such that
|61-12.(0, 2) | < | Fi(z)| for all small ¢ >0 .

As in [1] we associate the partial differential equation (4) with the
ordinary differential equation

(7) 3% Py(iz, €)(d/dt)y = 0 .

Let Y,(t, z, €) be the solution of the ordinary differential equation
(7) with the initial conditions

(8) 0F1Y (0, 2,8) = 64 (0, is the Kronecker delta) .
We state here a well known result

THEOREM 1. Let P(z) be a polynomial in z (z in E™) with complex
coefficients. If S = (z such that P(z) = 0) then S is measurable and
has E™ measure zero unless P(z) is identically zero.

The proof is simple. One approach is to use mathematical induction
on m and Fubini’s theorem.

COROLLARY. There exist an &, > 0 such that for eache in 0 < e < g
then assumption (0) implies that the polynomial equation

(9) o' + P,_ gt 4+ o 4 Pyiz,8) =0

has distinct roots except for z belonging to a set of E™ measure zero.

Proof. Notice that the assumption (0) implies that D(z,¢) the
discriminant of equation (9) is not identically zero. D(z, ¢) is a polynomial
of (2, +++,%m,€). Let us write D(z,¢) as a product of irreducible
polynomials in z and & over the field of complex coefficients. If one or
several of the factors do not depend on z explicitly, then they are
polynomials in €; in fact they are linear. All of these have at most
finitely many positive zeros, say ¢, ---,&,. Let ¢, = min (e, ++-,¢,);
then for ¢ ¢, we can write D(z, ) as a product of irreducible polynomials
in z and ¢ none of which vanishes identically. Now by Theorem 1
the zeros of such polynomials for each ¢ are set of E™ measure zero.

Let Y (t,2,6)(t = 1,2, --+,1) be the solution of the ordinary dif-
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ferential equation (7) with the initial conditions (8). If o,, -+, 0, are
the distinct roots of equation (9) then we can write

(10) Yilt, 2z, ¢) = 3 & exp (,t) .
2=1

Here o are constants to be computed by using the initial conditions
8). Let V(g :--,0,) be the Vandermond determinant of o, ---, g;,
i.e., V(o,, +++,0) = w5, (0, — 7,). Denote by Vi the determinant ob-
tained from V by cancelling the 7-th column and the j-th row.

THEOREM 2. Vi =17, ujup (0, — 0,)E; ; where E; ; is the coefficient
of the i-th power of o; in the expression

(0,—0;) o+ (Ojoy — OO — 0;) +++ (0 — 0)(—1) .
The proof is simple. Just write V(o ---, ;) in two ways; first

as a polynomial in ¢;, and second as a product of linear terms then
equate the coefficients of o; in the two expressions.

Then initial conditions (8) and further use of Vandermond deter-
minant give the following result

) Yilt, 2, 9) = (~ 1| 3 By exp (0/4;
where,

(12) Ai = (0, — aj) tre (0;'—1 - aj)(0j+1 —0;) .- (0, — aj) .

Since the preceding result can be computed easily, we shall omit the
details.

THEOREM 3. If 0, ---,0, are the roots of equation (9) and Y,
Y,, ---, Y, are the solutions of the ordinary differential equation (7)

with the initial conditions (8). Then for each o; = 0(j =1, ---,1)
we have
(13) o113 (Yifot™) = exp (0,1) .

1=1

Proof. The initial conditions (8) shows that the identity (13) is
valid for ¢ = 0. Furthermore take the 1st, 2nd, - .-, ({ — 1)-th derivatives
of both sides of the identity with respect to ¢ and each time apply
the initial conditions (8) we get the validity of the identity for ¢ = 0.
Since the right side of equation (13) is a solution of the ordinary
differential equation (7) therefore the identity (13) is valid for all ¢
nost T,
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THEOREM 4. For each fixed z in E™ consider Y,(t, z, €) a function
of t and € only and assume that there exists a number M;(z)(j =1, -+, 1)
wndependent of both t and € such that

I Yj(t7 z, 8) | é MJ(Z)

for 0<e=<e and 0t < T. Then the roots of equation (9) have
for each z im E™ a real part bounded from above as ¢ — 0.

Proof. Let z, be a fixed point in ™. Let ¢ = eo when o is a
root of equation (9) then, equation (9) becomes

(14) ¢+ P (i)'t + ePy(1z, &) pt 2 + + oo + 1P (iz,6) = 0 .

Now assume first that P,_,(iz,) % 0 then for ¢ = 0 equation (14) becomes
(15) U+ P iz = 0 = p N (p + Po_y(12,)) .

Here we have one simple root p, = — P,_,(i%,), if we call this root

2:(0) then we can write

1:(6) = 1(0) + 3% 4., 50 1) — 1(0) as e — 0 .

Therefore we can write the simple root ¢,(z, ¢) of equation (14) as
follows,

0, = (Me)n(e) = (—Pr(iz)fo) + 3 )™ .

Hence Real 0,(2,, ¢) = — Real P,_,(iz,)/¢ + Real ¢,,(z,) + o(¢). Therefore
if Real P,_,(7z,) = 0 then obviously Real o,(¢) is bounded from above.
Now suppose that Real P,_, < 0. Then |o,(¢)| = Real (g,(¢)) — = in
turn implies that for ¢ > 0 we get

! |

ZI. [Y;(t, 2, €)/0* 7] l M(z,)

as ¢ — 0 for some number M;(z,) independent of ¢ and e¢. This is so
because of the hypothesis of the theorem. Now we use Theorem 3.
Then identity (13) shows for small

€>0,2|P | =|— Py(1z + 0(e) | = (1/2) | P,_,(22,) |
since Real P,_,(iz,) < 0 and as ¢t > 0,

[exp (t Re 6))/0i7![] = [exp (2ie | P, [)e'"/(4 | Pr_y(22,) )]
= (t/41l e) — o ase—0

utilizing only the (I — 1) th term of the Taylor series of the exponential
function.



192 HUSSAIN S. NUR

But the above result contradicts the boundedness of expression
(13) for small € > 0. Consequently Real P,_,(¢z,) = 0 and hence Real
0,(¢) is bounded from above as 0 < ¢ < ¢,.

In order to prove the result for the remaining of the roots of
equation (9) we shall give a reasoning which is incidentally does not
utilize the condition P,_,(iz,) # 0. Equation (15) has a root x(0) = 0
of multiplicity (! — 1). From the Puiseux series expansion we deduce
that the (I — 1) roots p(¢) of equation (14) other than g, will split
into r groups of my, +++,m,, 1 <m, < --- <m,and X m; =1—1as
follows: each root f;, ---, t,,_,; can be written as p,; = 37, ¢,;:9°
where,

x = (¢g)™j and » =0,1, .-+, m;_, .

Notice that the above series converges for sufficiently small x. We
shall here and later understand by (e)"/™j the positive m;-th root of
€ > 0. Let p,; be any one of the (I — 1) roots of equation (14) which
tend to zero as ¢ tends to zero, then we can write the corresponding
roots o, of equation (9) as follows

(16) (110) = 0,(w, 20) = (UX"5( 3 qus)) -

Now to simplify notations, let us drop indices 7, of the root p,; once
we are dealing with only one root. Put ¢7;; = ¢; and m; = m. Assume
that ¢, is the first nonzero coefficient in equation (16) if there is any,
and ¢, is the first nonzero coefficient that has a nonzero real part, if
there is any, in the expresion ¢ = 3 ¢;2*. Evidently, if s = m then,
Real o(x, 2,) = x*~™ Real q, + 0(x), and this is bounded from above as
x— 0. If there is no s, then og(z,z) < 0. Let s < m, notice that
k < s < m. Then we can write ¢ as follows,

o(@) =" "¢ + +o0 + G + T A+ ee)
and
Real o(x) = x*™(Real ¢, + 0(%)) .

If Realq, < 0 then Realo(x) — — o as # — 0 implying Realo < 0 as
€ —0. Suppose finaly Realq, > 0, i.e., Realo(x) > + «~ as z—0.
Then for small x > 0,2]|q,| = |q, + 0(z)| and Real ¢, + 0(x)=Re q,/2,
and

exp (tReo)/|o | = exp (; Re q@"~™)/2'" | g, [Tl t*—m 0=
> (t]/j! 2j)xj(s——m) (Real qs)j/zl—l [ qk il—-lx(k—m)(l-—l) .

Here we utilize only the (5 + 1)-th term of the Taylor series of the
exponential function where j is the smallest integer greater than zero
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such that (m — k)(! — 1) + j(s — m) < 0. Therefore
exp (t Real 0)/| 0|~ > t/(Real ¢ )fam—B-t+it=m) /5] 2i+1=1 | g, |'=' — oo

as © — 0 because of the assumption on j.

Now in order to prove that Real ¢ is bounded from above we use
identity (13) once more.

In order to complete the proof of the theorem we should assume
that P,_,(iz,) = 0. Notice that equation (14) for P,_, = 0 becomes

#l + 8Pl—z((izoy &) + - + 5l_1Po(izm €) = 0.

This means that ¢ = 0 is a root of multiplicity [, not I — 1, of equation
(15). So by Puiseux series expansion we can write the roots

01‘1 = (1/6)[12‘1 1813' €xp (27”"01]./77%)5]./7”1] n= Or e, My — 1

orn = (1/5)[215” exp (277, j/m,,)sf/"‘r] 7= 0, e m, —1.

Now we can carry on the same proof as before for any root. The proof
of Theorem 4 is completed.

In what follows there will be for each ¢ certain exceptional sets
of z of measure zero for which our conclusion do not apply. In order
to be able to draw inferences as ¢—0,¢ >0 we wish to be able
to disregard these sets. Now let the notion ¢ — 0 be henceforth
interpreted as meaning ‘‘c tends to zero through an arbitrary sequence
of positive numbers.”” Then all of the corresponding exceptional sets
will still be a countable union of sets of measure zero and accordingly
has itself measure zero.

THEOREM 5. Assume in equation (9) that P,_,(1z,) does not vanish
identically. Also assume that for 0 <t < T, 0<e < ¢, there are numbers
M(z) and Myz)(j =1, -+, 1) independent of both t and e such that,

le(t,z,E)igMj(Z)f07'0<8§€o.
Then for almost all z in E™ we have
(i) |Yi(t,z,8)] —0ase—0and for 0t T.
(ii) |A/e)Y(t, 2, 8) | EM@) for0<t<Tandase—0.

Proof. Here we use Theorem 1 in order to be able to assume
P,_,(iz,) # 0. By the corollary of Theorem 1, equation (9) has for fixed
small ¢ and for almost all z in E™ distinct roots. By letting ¢t = eo
the equation (9) becomes as we have seen before
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1+ Ptz ' 4 ePy_ (12, )7 4« + €712, 6) = 0 .
So for ¢ = 0 the above equation will be,
1 e+ Pioy(izg) = 0.

Therefore by Puiseux series expansion we can write the roots of
equation (9) as follows,

0, = (1/5)[—Pl—1(izo) + 0(5)]

m, roots as follows,

Oy, = (1/8)[i B,,;6/™ exp (27ri771j/m1)] n,=1,«,m

and m, roots as follows,
O nyr, = (o) 3 Brexp @min gimyei™ | 7, =1, -0 m, .

Provided that I =1+ m, + «-+ + m, where 1 <m, < -+« < m,. Let
us write v = [0, ---, 0,]. Notice that each ¢ in v is a regular function
in ¢ and hence the difference between any two of them is also regular
in e. If o, = (1/e)[ — P,_.(i%,) + 0(¢)] then for any 5,1 < j < | we have,
since P,_,(1z,) # 0,

lo; — a,| = | /e)]—P,_,(tz;) + 0(e) — 0(e®)]| — = as ¢ — 0.
For o; = (1/¢)[0(c™)], R 0 a rational number.
Notice that for each 1 =1, .-+, 1,1 # 7,
|0, — o4

either; (1) goes to zero as ¢ tends to zero; (2) tends to some fixed
number greater than zero or (3) goes to infinity as ¢ tends to zero.
For any arbitrary o in v collect those, and only those, elements o’
of v such that |6’ — 0|—0 as ¢ —0. Then v will split into disjoint
subsets, namely:

anmn v =%UY---Ur.and 7; N7, =@ for g #Fk,

which incidentally do not necessarily coincide with our previous group-
ing of the ¢’s. According to this decomposition of v and using identity
(10) we can write

|Yi(t, z,¢)| =| 3. [exp(to;)/A;]+ -+ + 3 [exp(tg,)/A;]] .

ujifnrl thnT,r
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LEMMA 1. In the above expression each summation tends to zero
wn absolute value as € tends to zero.

Proof. Denoting by a}, ---, g, the elements of v,. Then,

S [exp @i0)/A] = % [exp (@})/]

I P
ojinTy 05imTy

p= 11 (0,—0) Il (6k —07).

opiny—r1 opinTy
k#j

Let F(o)) = exp (to})/ [1.,inr—r, (01 — 05) and F(o;) = a(e). Now if 7,
contains the root o, = (1/¢)[ — P,_,(12,) + 0(¢)] then it will contain only
0,. Since P,(1z,) # 0 it is easily shown that,

exp (to,))/JA,— 0 as ¢ —0.

Now suppose that v, does not contain ¢,. Then [[,,in—r, (6, — 07) Will
have a factor (g, — ¢}) = 0(¢) and hence tends to infinity as ¢ tends
to zero while no factor of [[,,:.,_;, (0, — ) tends to zero as ¢ tends
to zero. Therefore,
Il (o, —0d))—> = as e—0.
oini—Ty

This in turn implies that a(e) tends to zero as ¢ tends to zero. Let
a = min (limit,_, | o, — ¢}]). The minimum is taken over all ¢, iny — 7,.
Notice that by the definition of v,,0 > 0. Now chose a circle C of
radius 6/2 about one of the points oj, - -, g/, of 7,. Then for sufficiently
small ¢ > 0, C will contain those, and only those, ¢ which belong to
7.. We may likewise assume that for any point w on the circumference
of C, that |w — ;| >d/4,(j =1,---,n). Let

1= (2wi) | Fopdy) 11 (0% =)

6kinrl
then,
(18) I <4 a(e)/om— 0 as e — 0.

On the other hand, I equal the absolute value of the sum of the
residues of the integrand at o¢f, --., 0},. Notice that for each ¢} the
residue of I at o} is F(0})/ Il.,»; (0, — 03) and hence the sum of
the residues of I at the o7, --- ¢ is equal to

S [exp (t0})/A)] .

ojinrl
Hence by (18) the above expression tends to zero as ¢ tends to zero
and this ends the proof of the lemma. Now in order to finish the
proof of the theorem we just write,
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[ Yi(t,ze) | = | 35 [exp (toj)/A;] + -+ + 2 exp(toj)/4;] .

gjinyy 0jinT

Using Lemma 1 one sees for all positive ¢t < T that
| Yy(t,2,6)] —0as e—0.

Now for proving the second part of the theorem, one notices from
the preceding discussion that Y,(¢, z, €) = 0(¢), i.e., there exist a number
M(z) such that | Y,(¢, 7, &)/e| = M(z) .

LEMMA A. Limit._, | E, /A, = 0.

P?'OOf. lEl,(i—l)/A1| = 102 s 01 ;41 +oeee 4+ Oy *° 0'1_1/j = 2(O'j — Gl)l
(7=1,.--,1). Notice that as ¢ tends to zero o, tends to infinity
while o,(¢) tends to 0,(0) and hence this proves the lemma.

LEmMmA B. Limit.., (E;;_/o) = E';,;_,, where E'; ., 1s. the
coefficient of the (v — 1)th power of d;(0) in the expression,
l .
II [0:(0) — 0,(0)](—1)" .

k72
k3

Proof. Notice that E; ;_,, is the sum of the product of ¢ taken
Il — (@ +1) at a time, i.e.,

Ejiy =10, Oriiy + + oo + iy » o 0 (=) 7H(=1)

Therefore, o
Ei,(i~1)/01 =0y Oy + **0 + (0i+z et 0-!—1/0-1)(—1)H]2 .

Now it is easy to see that E, _,, tends to E’; ,_, as € tends to zero.

LEemMmA C. Limit._,[E; ;_, exp (to;)/A;] = E'; ;. exp (a(0)t)/ A}
(4 =2,++-) and A) =k = 2[0,(0) — 0,(0)].

Proof. Let us write.

A; = (0, — 0y kIl=I2 (0, —0;) = Ulkﬁz (0, — 0;) — O'jkljz (0, — o)) .

k3 k#3 k%]

Therefore A;/o, tends to A} as ¢ tends to zero. Now we use Lemma
B and the proof of Lemma C will be completed.

Notice that Yi(t,z,0) = 3, B, exp (0,(0)0)/ 4,

is the solution of the ordinary differential equation L,(D)Y = 0 with
the initial conditions ¢Y;(0,2,0) = 6,,1 <7,k <1l — 1. Now we may
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sum the results of Lemmas A, B, and C in the following theorem.

THEOREM 6. Let Y,(t,z,¢), --+, Yi(t, 2,¢) be the solutions of the
ordinary differential equation (7) with the initial conditions (8).
Assume that; (1) P,_,(iz) ts not identically zero. (2) assumption (0)
on page (3). And finally (3) There exist numbers M(z) and & such
that for 0 < ¢ < ¢, and for almost all z in E™,

| Yi(t, 2,¢)| = M(2) 1<i<,1>2.

Let ¢ tend to zero on a sequence, then Y (t,z,¢) tends to Y;(0,z, 0)
for 0<t<T,1<1<1l—1 and for almost all z in E™., Where
Yi(t,2,0) are the solution of the ordinary differential equation
Ly(D)Y = 0 with the initial conditions 0¥ Y (0,2,0) =0, 1 <1, k<11,

THEOREM 7. Assuming all the hypothesis of Theorem (5) then
for each z im E™ we have,
| (1/e) Y. (L, 2, €) — (1/P,_,(12)) Y, (¢, 2, €) | — O
as €e—0 and for all 0t T.
Proof.
| 5—1 Yl(ta Z, 6) - -Pl—l(iz)—-1 Yl—l(ts %, 8) |
= |cA) " exp (08) + (AP) " exp(0t) 0 |

+

}i:; [(cA;)™" exp (0,t) + (P,_,A;)™" exp (0,t) é‘lg"

]

It is clear that the first term of the above sum tends to zero as ¢
tends to zero. Before dealing with the second term we shall reduce
it into a simpler form. Notice that >}, ..,0,=>,.,0;, —0; =
—e7'P,_ (1) — 0; .

Then it is easy to see that

zl] [(zsA,-)—1 exp (o;t) + (4;P,_,)" exp(o,t) ;1 U,;]

j=2
i#]

= — 3 (A,P,_) 0. exp (a,1) .
j=2

Now if, |o; —0;] =0 >0(i,5 =2, --+,1)1 # j then it is clear that

i (A;P,_)"'g;exp (0;t)|— 0 as e —0.

On the other hand, if for some ¢ and ¢ #+ 5 we have |o; — 0;]| tends
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to zero as ¢ tends to zero then we use the residue theorem to prove
that

>V (A,;P,_)'o;exp(t;t)—0 as e—0
1=2
in the same way used before. The proof of Theorem 7 is ended.

Now we arrive at the main theorem of this paper.

THEOREM 8. Let the degree of P;(iz) be at most kinz (j =1, -+ 1)
and assume that P,_,(iz) not identically zero. Denote by wu(t) the
1l — 1 times H,., continuously differentiable solution of the partial
differential equation (4) for e =0 in 0 <t < T. If there exist two
constants €, > 0 and C such that

(19,i) Sup |Yit,2,6)|=Cfor0=t=Tand0<e=0 (=1,--:1)
zin EM

(19, ii) Sup STie“‘Yl(t, 2,6)|dt < C for 0 < e<e,
0

zin EM™

where y = Y; the solutions of equation (T) with the initial conditions
(8). Then equation (4) is an H,-stable equation with respect to u, (t).

Proof. Let wu.(t,x) be l-times H,., continuously differentiable
solution of the partial differential equation (4) with the initial con-
ditions (6). Then from Theorem 2 in [1] we may write

wlt, ¥) = i“ (2m)~m2 S exp (1, 2) Y;(t, 2, €)0,7'4.(0, z)dz
j=1 EM™
+ 2g—mi2 S exp (i, 2) St e Y(t — 7, 26)f.(z, 2)d dz
Em 0
and

-1

Ut ) = 3 (2m)" S exp (i, 2) Y (t, 2, 0)0i (0, 2)dz
Em

j=1

+ @) S exp (i, 2) S P_ Yt — 7, )z, 2)d dz .
m 0

We have to prove that
[|u(t, ) — uy(t, )|, —0 as e—0.
Let us write
lu.t, ©) — ut, 2) ||, = M(2) + N(@) + Q=)

M) = || @my= 3| exp (in, 9 V,(t, 2 99171200, 2) — 2,0, 2)]

i=

+ @0t | exp (in, 9 ViZ2.0, 2l
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N@ = | 1@+ 127 | e Yt = 7,2, 900z, e dz

m 0
X §(z,2) = fuz, 2) — flz, 2)
Q@) = | @ +izpme| @Yt 7,50 - PRY. (- 7,20)
X folz, 2)dz ['dz .
To prove the convergence of M(x) we proceed as follows,
1

M) < || 2r)~"2 3, L exp (tx, 2) Y;(t, 2, €)0i[4.(0, 2) — 4,0, 2)] ||,
i=1 g
+ || 2m)~—"* S exp (1, 2) Y (t, 2, €)0;7*4.(0, 2) ||, .
EM

Using the condition (19,1i) and Ascoli’s theorem we conclude
M(x)—0 as e—0.
Condition (19, ii) and Ascoli’s theorem imply that
N@)—0as ¢—0.
For Q(x) we proceed as follows. Notice that Theorem 6 shows that
(1/P,_,(22)) Y,_,(t, 2, &) — (1/P,_,(32)) Y, _,(¢, 2, 0)
and Theorem 7 shows that
|etY(t, 2,6) — P7LY _((t,2,6)|] — 0 as € —0.
Therefore
| &Y (t, 2,&) — Pi4(12)Y,_(t,2,0) | — 0 as € —0.
Consequently, using Ascoli’s theorem once more we get
Q) —0as e6—0.
This ends the proof of Theorem 8.
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