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SINGULAR PERTURBATION OF LINEAR PARTIAL
DIFFERENTIAL EQUATION WITH

CONSTANT COEFFICIENTS

HUSSAIN S. NUR

Let Pj(z, ε) be a polynomial in z and ε with complex
coefficients, where z is in Em and ε > 0 is a small parameter.
Let Ls = Σlj=o Pι-j(.δχ, ε)(δt)

3 be a polynomial in δt, δx and ε,

which is not divisible by the square of a similar nonconstant
polynomial. We shall assume that P0(z, ε) = ε and Pi(z) is
independent of ε.

In this paper we shall show that under certain conditions
the solution uζ(t, x) of Lz(u) = fz(t, x) converges to the solution
uo(t, x) of LΌ(u) = fo(t, x).

Let (£, x) — (t, Xi, x2, , xm) be a point in R x Em where 0 <; t g Γ,
and $ in i?m, and Em denotes an m-dimensional Euclidean space. Let
also CΓ be the set of all infinitely times continuously differentiable
complex valued functions on Em with compact support. For any u
in Cj% let the norm \\u\\p be defined for any integer p < 0 as follows:

( 1 ) \F»^p\dZl~-d&\2dx= \\u\\l (\φ\ = φi+ - . . +φj.

It is easy to see that the space C~ with the norm (1) gives a Hubert
space, which we shall call an iϊp-space. We may also notice that
HPZD Hq and \\u\\p gj \\u\\q if p < q. If for each φ in Hp we denote
by ^ the Fourier transform of φ

Φ(z) = [l/(2ττ)w/2]ί exp (-ix. z)φ(x)dx

where,

m

1

then the norm defined in (1) will be equivalent to the norm

(2) \\φ\\\ = \EJ(1 + \z\ψ2φ(z)\2dz = \\φ\\l .

Notice that Hp with respect to the norm defined in (2) is the set of
all complex valued measurable functions such that \\φ\\p < °o.

Let Dlc be any differential operator with respect to x with constant
coefficients of order k ^ p. Then Dk is a bounded linear operator
which maps Hp into Hp_k.
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DEFINITION 1. Let φ(t) be a variable element of Hp depending
on a real parameter ί in a finite interval J = [0, T]. We say that
φ(t) is fiΓp-continuous in t in /, if the mapping t in J—>φ(t) in Hp is
continuous; That is, t—+t0 in the interval J implies φ(t) —> φ(t0) in Hp.
We also maintain that φ(t) is ϋ^-differentiable at ί = ί0, if there exist
a function g(t) in Hp such that

(ί - t,rι[

in Hp as t—>t0, then we denote #(ί) by <p'(t) = (d/dt)φ(t).

If Dfc is a differential operator in x in ϋ7m with constant coefficients
of order k and φ(t) is iί^-continuous in ί, then Dkφ(t) is i ? ^ continuous,
and if φ(t) is iJp-differentiable in t then Dkφ(t) is £Γί,_A differentiable
in ί and

(d/dt)[Dkφ(t)] - DA[(ώ/dί)φ(ί)] .

Mr. Nagumo in [1] considered a system of linear partial differential
equations for an r-vector function with parameter ε > 0,

( 3 ) Lε(u) = Σ Ptf,, e)(dtyu = fε(t, x)
3=0

where Pj(z, ε) are r x r matrices of polynomials in (2, ε) with constant
coefficients and Px is free from dx such that det [P*(ε)] ^ 0 for ε = 0.

Here we are concerned with the case of one equation for one
complex valued function u(t, x) containing the parameter ε > 0

( 4 ) Lε(u) = Σ ^i(3χ, e)(3t)% - /.(ί, a?)
i=o

with the following assumptions:
( 0 ) Lε(σ) be a polynomial in σ, dx and ε which is not divisible by
the square of a similar nonconstant polynomial for 0 ^ ε <̂  ε0 and
fε(t, x) is iίp-continuous. P3 (z, e) are polynomials in (z, ε) = (z19 , zm, ε)
with constant coefficients such that P,(ε) = ε and Pi-^z) is independent
of ε.

System (4) is certainly a special case of system (3). Restricting
ourselves to this special case, we will prove a stability theorem some-
what different from that of Mr. Nagumo [1], Mr. Nagumo proved
the convergence of the weak solution to uo{t, x); where as we shall
prove the convergence of the solution ue(t, x) to uo(t, x).

DEFINITION 2. We say that equation (4) is an iϊp-stable equation
for ε —> 0 in 0 <£ t <S T with respect to a particular solution u,0(t, x)
of (4) for ε = 0 if and only if uε(t) -> uQ(t) in Hp ΐor 0 ^ t ^ T provided
that
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( 5 ) / . ( * , * ) — / o ( ί , a)

in Hv for 0 ^ t S T and ut{t, x) is a solution of the partial differential
equation (4) such that

( i ) 3 Γ ^ ( 0 ) — dΓX(O) inffp tf = 1, • • •, i - 1) .

( 6 ) (ii) There exists a function F(x) in fl^ such that

I dlr%(0, z)\^\ F(z) I for all small ε > 0 .

As in [1] we associate the partial differential equation (4) with the
ordinary differential equation

(7 ) Σ PA™, e)(d/dt)*y = 0 .

Let Yj(t, z, ε) be the solution of the ordinary differential equation

(7) with the initial conditions

(8 ) dtΎj(0, z, ε) = δjk (δjk is the Kronecker delta) .

We state here a well known result

THEOREM 1. Let P(z) be a polynomial in z (z in Em) with complex
coefficients. If S = (z such that P(z) — 0) then S is measurable and
has Em measure zero unless P(z) is identically zero.

The proof is simple. One approach is to use mathematical induction
on m and Fubini's theorem.

COROLLARY. There exist an εQ > 0 such that for each ε in 0 ^ ε ^ ε0

then assumption (0) implies that the polynomial equation

(9 ) σι + Pι_ισ
ι~1 + + PQ(iz, ε) = 0

has distinct roots except for z belonging to a set of Em measure zero.

Proof. Notice that the assumption (0) implies that D(z, ε) the
discriminant of equation (9) is not identically zero. D(z, ε) is a polynomial
of (zL, •• ,s», s). Let us write D(z,ε) as a product of irreducible
polynomials in z and ε over the field of complex coefficients. If one or
several of the factors do not depend on z explicitly, then they are
polynomials in ε; in fact they are linear. All of these have at most
finitely many positive zeros, say ely •••,£». Let ε o ^ m i n t a , * ,εn);
then for ε ε0 we can write D(z, ε) as a product of irreducible polynomials
in z and ε none of which vanishes identically. Now by Theorem 1
the zeros of such polynomials for each ε are set of Em measure zero.

Let Yi(t, z, ε)(i = 1, 2, , I) be the solution of the ordinary dif-
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ferential equation (7) with the initial conditions (8). If σly , σι are
the distinct roots of equation (9) then we can write

(10) Ytf, z, e) = Σ oή exp (σst) .
3=1

Here a) are constants to be computed by using the initial conditions
(8). Let V(σ19 •• ,σI) be the Vandermond determinant of σlf •••,#*,
i.e., V(σu , σt) = πq>p (σq — σv). Denote by V{ the determinant ob-
tained from V by cancelling the i-th column and the i-th row.

THEOREM 2. V{ = πqp,qΦj^p (σq — σp)Ejti where Ejyί is the coefficient
of the i-th power of σ5 in the expression

fo-σy) (σi_1 - σs)(σi+ι - σs) (σ - σd)(-iy .

The proof is simple. Just write V((τlf « ,σz) in two ways; first
as a polynomial in σά, and second as a product of linear terms then
equate the coefficients of a3- in the two expressions.

Then initial conditions (8) and further use of Vandermond deter-
minant give the following result

(11) Yάt, z, ε) = ( - l ^ Σ ^ , ^ ) exp ((7y)/Ay]

where,

(12) Ad = (σι - σό) . (σά_x - σό)(σj+1 - σ5) . . (σ1 - σ5) .

Since the preceding result can be computed easily, we shall omit the
details.

THEOREM 3. If 0lf , &ι are the roots of equation (9) and Yu

Y2, , Yι are the solutions of the ordinary differential equation (7)
with the initial conditions (8). Then for each σό Φ 0(j = 1, •••, I)
we have

(13) σιrΣ,(YJσιr) = exp(σjt) .
i = l

Proof. The initial conditions (8) shows that the identity (13) is
valid for t = 0. Furthermore take the 1st, 2nd, •••,(£ — l)-th derivatives
of both sides of the identity with respect to t and each time apply
the initial conditions (8) we get the validity of the identity for t = 0.
Since the right side of equation (13) is a solution of the ordinary
differential equation (7) therefore the identity (13) is valid for all t
in 0 < t < T.
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THEOREM 4. For each fixed z in Em consider Yj(t, z, ε) a function

of t and ε only and assume that there exists a number M3 (z)(j = 1, •••,£)

independent of both t and ε such that

I Y, (t, z, ε) I ^ Ms(z)

for 0 < ε fg ε0 and 0 <̂  t rgj T. TAew ί/&e rooίs o/ equation (9)
/or βαcfe z in Em a real part bounded from above as ε—> 0.

Proof. Let £0 be a fixed point in Em. Let μ — εσ when σ is a
root of equation (9) then, equation (9) becomes

(14) μι + Pι^(iz0)μ1-1 + eP2(iz, ε)μι~2 + . - + ε ^ 1 ^ ^ , ε) = 0 .

Now assume first that P^iz^ Φ 0 then for ε = 0 equation (14) becomes

(15) μι + PUi^μ1-1 - 0 - μι~\μ + Pt^(iz0)) .

Here we have one simple root μx = — Pz_i(ώ0), if we call this root
/^(0) then we can write

ft(e) = Λ(0) + Σ Qnβ** s o /^i(ε) -^ J"i(0) as ε -> 0 .
1

Therefore we can write the simple root σ^, ε) of equation (14) as
follows,

Hence Real σ^Zo, ε) — — Real Pz_i(ί^0)/ε + Real gn(^0) + o(ε). Therefore
if Real Pι^{iz^) >̂ 0 then obviously Real σ^ε) is bounded from above.
Now suppose that Real Pι_1 < 0. Then | σ^ε) \ ̂  Real (^(ε)) —> oo in
turn implies that for t > 0 we get

as ε—+0 for some number M^o) independent of t and ε. This is so
because of the hypothesis of the theorem. Now we use Theorem 3.
Then identity (13) shows for small

ε > 0, 2 I P^ 1 ^ 1 - PUi*o + 0(ε) | ^ (1/2) | Pι^1(iz0) \

since Real P^izo) < 0 and as t > 0,

[exp (t Re σ^r1 \] ̂  [exp (2̂ ε | P^ |)ε

^ (t/Aιll ε) -> oo as ε ̂ > 0

utilizing only the (I — 1) th term of the Taylor series of the exponential
function.
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But the above result contradicts the boundedness of expression
(13) for small ε > 0. Consequently Real Pι^(iz0) ^ 0 and hence Real
σ^e) is bounded from above as 0 < ε <̂  ε0.

In order to prove the result for the remaining of the roots of
equation (9) we shall give a reasoning which is incidentally does not
utilize the condition P^izo) Φ 0. Equation (15) has a root μ(Q) = 0
of multiplicity (I — 1). From the Puiseux series expansion we deduce
that the (I — 1) roots μ(ε) of equation (14) other than μ1 will split
into r groups of mlf , mr, 1 ^ mι ^ ^ mr and XΓ m* — I — 1 as
follows: each root μoί, •• ,μw._]y can be written as μηj — Σ~ = 1 Qvaχi

where,

x = (e)llmj and ΎJ = 0,1, , m ^ .

Notice that the above series converges for sufficiently small x. We
shall here and later understand by (ε)1/rnj the positive m^-th root of
ε > 0. Let μηj be any one of the (I — 1) roots of equation (14) which
tend to zero as ε tends to zero, then we can write the corresponding
roots ση of equation (9) as follows

(16) (Pv/e) = σΛχ> zo) =

Now to simplify notations, let us drop indices j , rj of the root μvj once
we are dealing with only one root. Put qrjάi — qi and md = m. Assume
that qk is the first nonzero coefficient in equation (16) if there is any,
and qs is the first nonzero coefficient that has a nonzero real part, if
there is any, in the expresion μ — Σ q{x\ Evidently, if s ^ m then,
Real σ(x, z0) = xs~m~Realqs + 0(x), and this is bounded from above as
x—*0. If there is no s, then σ(x,z0) fg 0. Let s < m, notice that
k ^ s ^ m. Then we can write σ as follows,

(T(a?) = xk~m(qk + + qsx
s~k + ^ s+i^ s~ fc+1 + •)

and

Real σ(x) = α;s~m(Real gs + 0(x)) .

If Real qs < 0 then Real σ (α ) —> — ^ as a? —• 0 implying Real σ ^ O a s
ε—>0. Suppose finaly R e a l g s > 0 , i.e., Real σ(a ) —> + oo as x—*0.
Then for small x > 0, 2 | <?fc | ^ | qk + 0(a?) | and Real ^ s + 0(α;)^Re qJ2,
and

exp (ί Re σ)j \ σ \1'1 ^ exp (I Re gs^
s-m)/2z~11 qk ^x^-^m-D

> (ίVϋ 2 ί > / ί β " w ) (Real qs)
jβ1-1 \ qk \ι-W>-*w-v .

Here we utilize only the (j + l)-th term of the Taylor series of the
exponential function where j is the smallest integer greater than zero
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such that (m - k)(l — 1) + j(s - m) < 0. Therefore

exp (ί Real σ)/\ σ \ι~ι > ίJ'(Real q8yχ«*-*w-v+''<*-<v/jl 2 i + z" 11 qk I1'1 -> oo

as x —• 0 because of the assumption on i .
Now in order to prove that Real a is bounded from above we use

identity (13) once more.
In order to complete the proof of the theorem we should assume

that Pz-iίizo) = 0. Notice that equation (14) for Pι_ι = 0 becomes

μι + εPι-*(iZo, ε) + + ε^P^iz,, ε) = 0 .

This means that μ — 0 is a root of multiplicity i, not I — 1, of equation
(15). So by Puiseux series expansion we can write the roots

σιVl = (l/e)[Σ βn exp (2πiτ}1j/mι)εj!mi~] ^ = 0, , mL - 1

σr>7r = (l/ε)[Σ iβrί exp {2πiηrJlmr)εilmΆ ηr = 0, , mr - 1 .

Now we can carry on the same proof as before for any root. The proof
of Theorem 4 is completed.

In what follows there will be for each ε certain exceptional sets
of z of measure zero for which our conclusion do not apply. In order
to be able to draw inferences as ε —• 0, ε > 0 we wish to be able
to disregard these sets. Now let the notion ε —> 0 be henceforth
interpreted as meaning "s tends to zero through an arbitrary sequence
of positive numbers." Then all of the corresponding exceptional sets
will still be a countable union of sets of measure zero and accordingly
has itself measure zero.

THEOREM 5. Assume in equation (9) that Pz_i(ώ0) does not vanish
identically. Also assume that for 0 ̂  t ^ T, 0<ε <̂  ε0, there are numbers
M(z) and M3-(z)(j = 1, •••, I) independent of both t and e such that,

I Ys(t, z, ε) I ̂  Mό{z)for 0 < ε ^ ε0 .

Then for almost all z in Em we have

( i ) I Yι{t, z, ε) ] -* 0 as ε -> 0 and forO^t^T.

(ii) I (1/ε) Yi(ί, z, ε) | g M(z) forO^t^T and as ε -* 0 .

Proof. Here we use Theorem 1 in order to be able to assume
-Pj-i(ίso) Φ 0. By the corollary of Theorem 1, equation (9) has for fixed
small ε and for almost all z in Em distinct roots. By letting μ — εσ
the equation (9) becomes as we have seen before
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μι + Pi-άizύμ1-1 + ePι_1(izQ, ε)μι~2 + . . . + e 1 - 1 ^ , e) = 0 .

So for ε = 0 the above equation will be,

μι'\μ + Pz-^^o)) - 0 .

Therefore by Puiseux series expansion we can write the roots of
equation (9) as follows,

πι1 roots as follows,

σ1+Vl = ( l / £ ) [ | A / / m i exp (2πiηJlm^ n, = 1, , mι

and mr roots as follows,

Provided that I = 1 + mι + + mr where 1 ^ m1 <Ξ ^ m r. Let
us write 7 = [σ19 , σt]. Notice that each σ in y is a regular function
in ε and hence the difference between any two of them is also regular
in ε. If σγ — (l/ε)[ — P^izo) + 0(ε)] then for any j, 1 < j ^ I we have,
since Pι^(iz^ Φ 0,

\σs-σ1\ = \ (l/eM-P^ΪSo) + O(ε) - O(εβ)]| -> - as ε -> 0 .

For σ, = (l/e)[0(εB)], R 0 a rational number.

Notice that for each i — 1, , I, i Φ j,

either; (1) goes to zero as ε tends to zero; (2) tends to some fixed
number greater than zero or (3) goes to infinity as ε tends to zero.
For any arbitrary σ in y collect those, and only those, elements σf

of 7 such that | σr — σ \ —> 0 as ε —• 0. Then y will split into disjoint
subsets, namely:

(17) 7 = 7 1 ί / 7 2 Uyr a n d y 5 Π y k = 0 f o r j φ k ,

which incidentally do not necessarily coincide with our previous group-
ing of the tf's. According to this decomposition of 7 and using identity
(10) we can write

\Yι(t,z,ε)\ = [exp (tσs)/As] + + Σ [exp
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LEMMA 1. In the above expression each summation tends to zero
in absolute value as ε tends to zero.

Proof. Denoting by σ[, •••,< the elements of 7L. Then,

Σ [ex^(σ^jt)/Aj]= Σ [exvi

φ = Π (σ* - σ'}) Π (σί - σ'}) .
σkιnγ-γ1 ok%nγλ

Let F(σ',) = exp (ίσj)/ Π α ^ - n (** ~ *y) and F(σ)) = α(ε). Now if 7,
contains the root σ1 = (l/ε)[ — P^^izo) + 0(ε)] then it will contain only
σιm Since P^IZQ) Φ 0 it is easily shown that,

exp (tσ1)/A1 —> 0 as ε —• 0 .

Now suppose that i ι does not contain σ19 Then JJσkinr-ri (ffk — σ'ύ) will
have a factor (σι — σj) = 0(ε) and hence tends to infinity as ε tends
to zero while no factor of ΐlokini-ri(

σk — #') tends to zero as ε tends
to zero. Therefore,

Π {ok — σ]) ~>oo as ε —> 0 .
akinγ-γ1

This in turn implies that a(ε) tends to zero as ε tends to zero. Let
a — min (limite_>01 σk — σ\ |). The minimum is taken over all σk in Ί — Ίx.
Notice that by the definition of τ u δ > 0. Now chose a circle C of
radius δ/2 about one of the points σ[, , σ'n of γ1Φ Then for sufficiently
small ε > 0, C will contain those, and only those, a) which belong to
7i We may likewise assume that for any point w on the circumference
of C, that I w — σ) \ > δ/4, (j = 1, , n). Let

/ - (l/2τrΐ) ί F(η)dηl Π (σ'k - η)
Jc δkinT\

then,

(18) / < Ana(ε)/δn -> 0 as ε — 0 .

On the other hand, / equal the absolute value of the sum of the
residues of the integrand at σ[, •• ,σ'w. Notice that for each σ'ά the
residue of / at σ] is F{σ'5)l IL^σ'i (σk — 0"ί) and hence the sum of
the residues of I at the σ[, σ'n is equal to

Σ [exp (ίαJVA,] .
σ'jinn

Hence by (18) the above expression tends to zero as ε tends to zero
and this ends the proof of the lemma. Now in order to finish the
proof of the theorem we just write,
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Yι(t, zε) I ^ ,] + - + Σ exp {tσi)IAj

Using Lemma 1 one sees for all positive t ^ T that

Yι(t, «, e) I —> 0 as ε — 0 .

Now for proving the second part of the theorem, one notices from
the preceding discussion that Yt(t, z, ε) = 0(ε), i.e., there exist a number
M(z) such that | Yt(t, z, ε)/ε | ^ M(z) .

LEMMA A. Limits \ Elf{i_1)/A1| = 0.

Proof. I Eu[i_1)jAι I = I cτ2... σι_i+1 + + σi+1 σ^^/i = 2(σ3 - σx) |
O" = l, •••,?). Notice that as ε tends to zero σt tends to infinity-
while 0\, (ε) tends to σy(0) and hence this proves the lemma.

LEMMA B. Limits (E^^σ^ = B"if(<-1) where E^t{i^x) is the
coefficient of the (i — l)th power of (Tj(O) in the expression,

Π K(0) - σd(0)](-iy .
kψt

Proof. Notice that Ej>{i_v is the sum of the product of σ taken
I — (i + 1) at a time, i.e.,

#i,<*-i> = K *!-*+! + + <ri+i ^ i l i K - ) ^ - ! ) * " 1

Therefore,
•E^U-DM = Λ •• σ,_i+1 + + (σi+1 σ^/σJi-iy^'2 .

Now it is easy to see that 2£yf<»•_!, tends to E'J^D as ε tends to zero.

LEMMA C. Limits [JS^U-D exp (ta^/Aj] = E'j^^ exp
i = 2, .) αrwi A; = fc = 2[σfc(0) ~

Proof. Let us write.

I ί Z

Aj = (σι - σό) Π (^* - ^y) = ^ i Π (tf* ~ ^i) ~ ^i Π (̂ * ~ ^ 3 ) .
k=2 k=2 fc=2
fc^i fc^i kφj

Therefore Aj/σ1 tends to Aj as ε tends to zero. Now we use Lemma
B and the proof of Lemma C will be completed.

Notice that Γ«(ί, s, 0) = Σ ^ ' ^ ( - D
 e χ P (^j(O)t)/Afj

is the solution of the ordinary differential equation L0(D) Y = 0 with
the initial conditions ot^Γ^O, z, 0) = δiΛ 1 <̂  j , fc ̂  ϊ — 1. Now we may
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sum the results of Lemmas A, B, and C in the following theorem.

THEOREM 6. Let Y^t, z, ε), , F,(ί, z, ε) be the solutions of the
ordinary differential equation (7) with the initial conditions (8).
Assume that; (1) Pi^(iz) is not identically zero. (2) assumption (0)
on page (3). And finally (3) There exist numbers M^z) and ε0 such
that for 0 < ε ^ ε0 and for almost all z in Em,

I Y,(t, z,ε)\^ Mt(z) l^i^l,l>2.

Let ε tend to zero on a sequence, then Yi(t, z, ε) tends to Y{(0, z, 0)
for OrgίίJ T, l ί g ί r g ί — 1 and for almost all z in Em. Where
Yι(t, z, 0) are the solution of the ordinary differential equation
L0(D) Y~Q with the initial conditions dk

t~
ι Yi(0, z, 0) = δik, 1 ̂  i, k <* I — 1.

THEOREM 7. Assuming all the hypothesis of Theorem (5) then
for each z in Em we have,

I (l/ε)Yι(tf z, ε) - (l/PUiz))YUt, z, ε) j

as ε -* 0 and for all 0 ^ ί ^ T .

0

Proof.

, z, ε) - Pt_

i)-1 exp

-1 Yi-i.it, z, ε)

+ (AiP^i)"1 exp I

l_

j^2

1 exp ((7yί) + (Pi^Aj)-1 exp (^ί) Σ σt

It is clear that the first term of the above sum tends to zero as ε
tends to zero. Before dealing with the second term we shall reduce
it into a simpler form. Notice that Σi=i,w σ% — Σ*=i °i ~ °j =

Then it is easy to see that

i Γ

Σ iεAj)-1 exp iσ t) + iAj P^)-1 exp {σ5t) Σ ^
j=2|_ i = l

= — Σ i^jPι-i)~lσ-' exp (α j ί) .
3=2

Now if, I σ{ — σy | ^ δ > 0 (i, i = 2, , I) i Φ j then it is clear that

Σ iAjPt^σj exp {aat) \ -> 0 as ε -> 0 .

On the other hand, if for some i and i Φ j we have | σ{ — (7̂-1 tends
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to zero as ε tends to zero then we use the residue theorem to prove
that

Σ {AjPι_ί)~ίσί exp (r,i) — 0 as ε — 0
3=2

in the same way used before. The proof of Theorem 7 is ended.

Now we arrive at the main theorem of this paper.

THEOREM 8. Let the degree of P3-(iz) be at most k in z (j = 1, I)
and assume that Pι^(iz) not identically zero. Denote by uo(t) the
I — 1 times Hp+k continuously differentiate solution of the partial
differential equation (4) for ε = 0in0^t^T. If there exist two
constants ε0 > 0 and C such that

(19, i ) Sup I Yό(t, z,e)\£ C for 0 ^ ί g Tand 0 < ε^ 0 (j = 1, 4)
zinEm

(19, ii) S u p Γ I erιYt(t, z,e)\dt ^ C for 0 < ε ^ ε0
zin Em JO

where y — Yό the solutions of equation (7) with the initial conditions
(8). Then equation (4) is an unstable equation with respect to uQ (t).

Proof. Let uε(t, x) be Z-times Hp+k continuously differentiate
solution of the partial differential equation (4) with the initial con-
ditions (6). Then from Theorem 2 in [1] we may write

w.(ί, x) = Σ (2π)~ml2 [ exp (ix, z) Yό(t, z, ε)dt

j~1uε(01 z)dz
3=1 Em)

+ 2τr-m/2 [ exp (ix, z) Γ ε~Ύ(t - r, ze)fe(τ, z)d dz
JE™ JO

and

uo(t, x) = Σ (2π)-m/2 [ exp (ia?f «)Γy(ί, z, 0)dr1ύQ(0, z)dz
3=1 JEM

+ (2τr)—/2 ί exp (ia?, «) (' P^Γ'Γi ί ί - τ, z)/0(τ, 2)d d^ .
JE™> Jo

We have to prove that

\\ue(t, x) — uo(t, x)\\p—»0 a s ε — > 0 .

Let us write

| | ut(t, x) - uo(t, x)\\p = M(x) + N(x) + Q(x)

M(x) = || (2π)~^ Σ ( exp (ix, z) Yό(t, z, ε)dΓ1[uε(Of z) - βo(O, β)]

+ (2τr)-»'21 exp (ix, z) Y\j?u,(0, z) \\p

j £ w
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N(x) = [ I (1 + I z \Tβ [ ε-1 Yι(t - T, z, ε)g(τ, z)dτ \*dz
)E™ JO

x 9(τ, z) = f,(τ, z) - /o(r, z)

Q(x) =\ (l + \z\T" [ (s-Ύι(t - T, z, e) - P^YUt - τ,z, 0))
JE™ JO

x fo(τ, z)dτ \*dz .

To prove the convergence of M(x) we proceed as follows,

M(x) ^ 11 (2ff)— / 2 Σ ί e x p (ix, z) Yj(t, z, ε)dt1[u1(0, z) - uo(Q, z)]\\,

+ || (2τr)-»'2 f exp (ix, z) Yι{t, z, 6)3rfl.(0, z) | |, .

Using the condition (19, i) and Ascoli's theorem we conclude

M(x) —> 0 as ε —* 0 .

Condition (19, ii) and Ascoli's theorem imply that

N(x) ^ O a s s ^ O .

For Q(x) we proceed as follows. Notice that Theorem 6 shows that

(l/PUiz))YUt, z, ε) -> (l/PUiz))YUt, z, 0)

and Theorem 7 shows that

I ε-1 Γ,(ί, «, ε) - Pr-i^-i^, ,̂ β) | —> 0 as ε -> 0 .

Therefore

I e^Γiίί, 2, ε) - Pίii(ώ) F , ^ , z, 0) | ~> 0 as ε -+ 0 .

Consequently, using Ascoli's theorem once more we get

Q(x) -»0 as ε -> 0 .

This ends the proof of Theorem 8.
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