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REPRESENTATIONS OF PRIMARY
ARGUESIAN LATTICES

BJARNI JONSSON AND GEORGE S. MONK

The principal result of this paper states that every pri-
mary Arguesian lattice of geometric dimension three or more
is isomorphic to the lattice of ail submodules of a finitely
generated module over a completely primary uniserial ring.

We shall discuss here briefly the background of this problem.
Insofar as it is needed in this paper, the terminology employed here
will be defined later.

In view of the correspondence between projective geometries and
complemented modular lattices (cf. [4], p. 93) it follows from the clas-
sical coordinatization theorem for projective geometries (cf. [5], Chap.
VI), that for n =4 the simple, complemented modular lattices of
dimension n coincide up to isomorphism with the lattices of all sub-
spaces of m-dimensional vector spaces over division rings or, equivalent-
ly, with the lattices of all left ideas of full rings of n by % matrices
over division rings. This result has been generalized in two directions.
On the one hand, von Neumann showed in [10] that every comple-
mented modular lattice which has a homogeneous n-frame, n = 4, is
isomorphic to the lattice of all principal left ideals of a regular ring.
On the other hand, Baer proved in [3] that every primary lattice of
geometric dimension 7 = 6 is isomorphic to the lattice of all submodules
of a finitely generated module over a completely primary uniserial
ring. Conversely, the lattice of all submodules of a finitely generat-
ed module over a completely primary uniserial ring is always a primary
lattice. To indicate why these results are interesting, we remark that
the class of rings involved contains the ring of integers modulo a
prime power, and the corresponding class of modules therefore con-
tains all finite primary Abelian groups. Baer’s result was rediscover-
ed by Inaba, who in [6] gave a different proof and, more important,
replaced the condition » = 6 by n = 4.

Even for finite dimensional complemented modular lattices these
results cannot be extended to the case n=38 because of the existence
of projective planes in which Desargues’ Law fails. In [11] Shiitzen-
berger observed that a projective geometry satisfies Desargues’ Law
if and only if a certain identity holds in the corresponding lattice.
We adopt here a variant of Schutzenberger’s identity that was in-
troduced in [8], and call a lattice Arguesian in case it satisfies this
identity. Thus, for =3 the simple, complemented Arguesian lattices
of dimension n coincide up to isomorphism with the lattices of all

95



96 BJARNI JONSSON AND GEORGE S. MONK

subspaces of n-dimensional vector spaces over division rings. In [7]
a corresponding generalization of von Neumann’s result was obtained:
Every complemented Arguesian lattice which possesses a homogeneous
n-frame with n = 3 is isomorphic to the lattice of all principal left
ideals of a regular ring. (The condition on the frame was also relax-
ed in other ways that need not concern us here.) Our result provides
a corresponding generalization of the Baer-Inaba theorem.

A somewhat weaker form of our principal theorem was obtained
in [9]. The addition condition which the lattices considered there
were assumed to satisfy, the so-called four-point property, corresponds
to the geometric assumption that each line has at least four points.
The basic approach in [9] is inspired by the classical construction of
the coordinate ring, using the points on a line as ring elements. Our
present approach is closer to Artin’s method of coordinatization (cf.
[2]); we single out a “hyperplane” and use the corresponding Abelian
group of translations as the representation module, the scalars being
the trace-preserving endomorphisms. A corresponding approach to the
von Neumann theorem was first used by Amemiya in [1].

2. Preliminaries. For basic notions and results from lattice
theory the reader is referred to [4]. We use + and - to denote the
binary lattice operations, ¥ and II for the corresponding operations
on arbitrary families of lattice elements, < and < for the lattice in-
clusion and strict inclusion, and { for the covering relation. If a <b,
then [a, b] is the interval {x: a < « < b}. All our lattices will be finite
dimensional, and will therefore have a smallest element 0, and a lar-
gest element 1. The dimension of an element a will be denoted by d(a).

Given a sequence of elements a,, a,, ---, a, of a finite dimensional
modular lattice L, the following conditions are equivalent:

(1) day+a, + +-- + a,) = d(a) + d(a) + -+ + (a,).

(2) (@+a + +++ +a;)a;=0for 1=1,2, ... m.

(8) For any disjoint subsets I and J of {0,1, ---, n},

S(ai,iel)oS(a,icd) =0.
(4) For any subsets I and J of {0,1, -+, n},
S(a;,t€l)o(a;,te€d)=2(a;,teINJ).

If these conditions are satisfied, then the elements a,; are said to be
independent,—in symbols

(@) @yy =, @,) L

In order to indicate that the summands in a lattice sum are indepen-
dent, we place a dot over the operation symbol, and write
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S, i<mn) or at+a + - Fa,.

If the elements a, a,, -+, a, of a modular lattice I generate a
distributive lattice, then we write (a, a, -+, a,)4. We shall have
occasions to make use of the fact that (a, a, ---,a,) L implies
(@, @y, + -+, a,)d. Mostly, however, we will be concerned with the case
of three elements a, b, ¢, and shall make frequent use of the fact that
the one instance a(b + ¢) = ab + ac of the distributive law (or the
dual a + bc = (a + b)(a + ¢)) implies (a, b, ¢)4. In particular, (a, b, ¢)4
is implied by the condition a(b+ ¢) <b and, a fortiori, by a(b+¢)=0.

An element a of a modular lattice with a zero element is said to
be indecomposable if a = 0 and if o cannot be written as a sum a =
b4 ¢ with b < a and ¢ < a. We recall the fundamental theorem due
to O. Ore: If an element u of a finite dimensional modular lattice L
has two representations as a sum of independent indecomposable
elements,

w=0+a+ o Fap=b+b+ -+ b,

then & = n, and there exists a permutation ¢ of the indices 1,2, .--, k
such that

u:b¢(x)+b¢(z)+ LR —i—b,ﬁ(i)-{'—aiﬂ_}. coe +oa,

for ©=1,2,---, k. In particular, this implies that a; and b, have
the same dimension.

We finally mention the following consequence of the modular law:
If the elements a;, b;,,7=0,1, .-+, % of the modular lattice L are such
that a; < b, whenever 7,7 <% and ¢ # j, then

F(aby, 1 =n) = X, i =n)- 11 (b;, 1 = m) .

3. Arguesian lattices. We now introduce the lattice theoretic
counterpart of Desargues’ Law.

DerINITION 2.1. A lattice L is said to be Arguesian if the follow-
ing condition holds: For any elements a,, a,, a,, b,, b,, b, L, if

Y = (@ + a,)(b, + b)[(a, + az)(b, + b;) + (a, + a,)(b, + b))l ,
then
(@ + bo)(a, + b)(a: + b)) < as(a, + y) + by(b, + ) .

COROLLARY 3.2. FHwery Arguestan lattice is modular.

Proof. Suppose L is an Arguesian lattice. Given u, v, w e L with
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% < w, apply Definition 3.1 with
a=a,=b,=u,a,=b,=v,b =w,
and therefore ¥y = (u + v)w. This yields
w+vw=u-+w,

and therefore shows that L is modular.

The property used to define Arguesian lattices is not a very con-
venient one to work with. Fortunately it implies another condition,
a conditional inclusion, which is much more suggestive of its geome-

tric origin. In order to make the intuitive idea more transparent, we
borrow some geometric terminology.

DEFINITION 3.3. Two ordered triples (a,, a,, a,) and (b, b,, b,) of
elements of a lattice L are said to be axially perspective, in symbols

(@0, @y, az) /N (by, by, bs)
if
(@ + a)(by + b)) = (a, + a5)(b, + b,) + (a, + a,)(b, + b)) .

THEOREM 3.4. If L 1is an Arguesian lattice, then for any ele-
ments a,, a,, &y, by, by, by € L, the condition

(@ + bo)(a, + b)) < a, + b,
implies that (ao, a., a,) /N (b, by, b,).

Proof. Letting

¢ = (a, + a)(b, + b,) , ¢, = (a; + a)(b, + by) ,
¢, = (a, + a)(b, + b)) , Co = (a, + a)(c, + ¢) ,

we first note that

Co+ ¢ = (a, + a, + ¢)(e, + ¢)
= [a, + (¢ + a.)(b, + a, + b)](e, + ¢)
= [a, + (@ + a)(by + (@ + bo)(a, + b))](e, + ¢.)
= la, + (a, + a)(a, + b)(b, + a, + b)](¢c; + ¢)
= [a, + ao(by + a, + b)l(e, + ¢)
= (a, + a)(b, + a, + b)(c, + ¢,)
= (ag + a)(b, + b)e, + ¢) =c¢, .

Then, taking the elements a,, a,, a,, b, b, b, in the definition of an
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Arguesian lattice to be ¢, b,, a,, ¢, b,, a,, and letting
Y = (¢, + b)(c, + b)[(e, + a)(C, + a) + (by + a))(b, + a))],
we infer that
¢, = (a, + a,)(b, + b)(c; + ¢,)
= (b, + ) + ol + ) = e + &b + ) .
Furthermore,
Yy = (b + bz)[(ao + a)(a, + a;) + (a, + b,)(a, + b)]
= (b, + by)[(ay + as)(a, + a,) + b,]
= (b, + b)(a, + a.)(a, + a,) + b, = c(a, + a,) + b, ,
80 that
Co(b, + ) = (a, + a,)[b, + b, + c(a, + a))]
= (al + az)(bl + bz) =+ cl(al + a?) =¢+e .

‘Consequently ¢, < ¢, + ¢,.

The converse of this theorem does not hold. In fact, even in a
projective geometry that satisfies Desargues’ Law, axial perspectivity
does not imply central perspectivity if the given triangles are dege-
nerate. This difficulty can be avoided by weakening somewhat the

condition for central perspectivity.

COROLLARY 3.5. Suppose a,, a,, a,, b, b, b, are elements of an
Arguestan lattice L. Then (ay, a,, a,) & (b, b, b,) tf and only if
( i ) (a, + bU)(a/l +b) =< (a, + a)(a, + a,) + (bo + b2)(bl + by).

Proof. Again let ¢, = (a,+ a,)(b,+b,) and cyclically. If (a, a,, @) N
(by, b, b,), then by the hypothesis
(@ +a)b, +b)=c +c,

whence it follows by the preceding theorem that (a,, b,, ¢,) A (a,, b, ¢,).
Inasmuch as

(@ + ¢)(a, + ¢) = (a, + a)(a, + a,) ,
(by + ¢)(b, + ¢) = (b, + b,)(b, + bs)

this yields (i). For the converse we apply the preceding theorem
with a, and b, replaced by

CL; = (ao + az)(al + ae) and b; = (bo + b?.)(bl + bz) ’

observing that a; + ¢} = a; + a, and b, + b, = b, + b, for 1 = 0, 1.
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One of the most important consequences of Desargues’ Law is the
theorem that states that five of the six points of a quadragular six-
tuple determine the sixth point. The next theorem is a counterpart
to this result. For a geometric interpretation m is to be thought of
as a line, a, b, ¢,z and y as the five given points, s, t,q and r as the
vertices of one of the quadrangles used to construct the sixth point,
and s, t’, ¢’ and v’ as the vertices of the other quadrangle. It is quite
possible that the condition

(s + 8)ym = (t + t)m = (s + &)t + 1)

in the hypothesis is redundant, and that the summands bd and zd can
be omitted from the conclusion, but so far we have been unable to
prove this. It is only after further restricting the class of lattices,
and even then with considerable difficulty, that we are able to obtain
a result fully analogous to the classical theorem.

THEOREM 3.6. Suppose L 1is an Arguesian lattice, and assume
that the elements a,b,c,d, x,y, m,s, s, t,t’ € L are such that a,b,c,
d,z,y <m and

s+tim=E"+t'm=a,sm=tm=sm=t'm=0,
s+sm=@C+t')m=(s+8t+th=d.

Let
qg=(s+0b)(t+c), r=(s+ )t +y), z=(q+rym,
¢ = (s +b)(t' +c¢), 7= (s + )t +y) , = +r)m.
Then

2 <z +bd+ 2d.

Proof. By Theorem 3.4, (b,s,s") & (¢, ¢, ), (x,s,8) A (y,t,t), and
therefore ¢ < ¢’ +d and » < ' + d. Observing that

< (s+b+axym=0+ 2,
and therefore z = (¢ + 7)(b + ), we complete the proof by showing that
(1) (b,x,8) N (g, r,d), b+ s)g+d) =q + bd,
@+ sYr+d) v 4+ xd.
Since s(b + x) < sm = 0, we have (s, b, x)4. Therefore

G+@+r)=@E+dE+b+e)s+x)=(s+bx)t+b+c)
=8t +b-+c)+bx=s(s+ t)t+b+c)+ b

s[t + (s + )b +c¢)] +bx <s(t+a)+bx,s +d

(s+8)s"+t+1) =5+ a).

Il
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From this the first formula in (1) follows by Corollary 3.5. Again
using the fact that ¢ < ¢’ + d and » < v + d, we now compute

b+sNg+d)=(@E"+b0@ +d)=q¢ + (" +bd=4q +bd,
@+ s)r+d =@ +a)r+d)=r+ (" +a)d=1r"+2ad,

and the proof is complete.

COROLLARY 3.7. Under the hypothesis of Theorem 3.6, tf either

bd<c¢ and xzdZvy,
or ¢cd<b and yd<ux,

’

then z = 2/,

Proof. We may assume that bd < ¢ and 2d < y. Then bd < bec =
by’ <2 and xd < a2y < 2’ < 2/, hence

22 +bd +ad =27".

The opposite inclusion follows by symmetry.

4. Semi-primary lattices. In this and the next two sections we
present the basic properties of semi-primary and primary lattices.
Some of these results can be found in [3] and [6], but are included
here for the sake of completeness.

DEFINITION 4.1. An element ¢ of a finite dimensional lattice is
called a cycle if [0, ¢] is a chain, and a dual cycle if [¢, 1] is a chain.

DEFINITION 4.2. A lattice L is said to be semi-primary if L is
finite dimensional and modular, and every element of L is the sum
of cycles and the product of dual cycles.

THEOREM 4.3. For any finite dimensional modular lattice L,
the following conditions are equivalent:

(1) Every element of L is the sum of cycles.

(ii) Ewvery interval in L with a single dual atom is a chain.

Proof. Assuming (i), consider an interval [z, y] in L with a single
dual atom v. Since y is the sum of cycles, there exists a cycle z that
is contained in y but not in v. Thus the element x + z belongs to
[, ] and is not contained in v, whence it follows that = -+ z = y.
Consequently

[z, y] = [z, z + 2] = [xz, 2] .
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Since z is a cycle, this last interval is a chain, and hence so is [z, y].

Conversely, if (ii) holds, then every element that covers a unique
element is a cycle. But every element that covers more than one
element is of course the sum of lower dimensional elements.
Hence (i) follows by induction on the dimension of the element

involved.

COROLLARY 4.4. FEwery interval wn a semi-primary lattice s
SeMI-Primary.

Some additional terminology is needed.

DEFINITION 4.5. Suppose L is a semi-primary lattice. If ¢,¢’ e L
are cycles and ¢’ < ¢, then ¢ is called a subcycle of ¢. A cycle whose
dimension is k is called a k-cycle. For ac L, the least upper bound
of the dimensions of the cycles ¢ < a is called the rank of a,—briefly
rank(a)—and the number rank(l) is also called the rank of L. For
ac L we let alk] be the sum of all cycles ¢ < a with d(c) £ k.

THEOREM 4.6. If L is a semi-primary lattice and x;€ L (1€ 1)
are cycles with 1 = Y(x;,1€ 1), then

rank L = max {o(x;):tel}.

Proof. The maximum #n of the integers o(x;) is certainly not
greater than the rank of L. We will show by induction on 7 that

equality holds.
If n=1, then the unit of L is the sum of atoms, and L is

therefore complemented. Consequently L contains no 2-cycle, and
rank(L) = 1.
Now suppose n > 1, and let

u = @[n—1],2€el).

Given a cycle xe L, xu is a cycle in [0, 4] and by the inductive hypo-
thesis o(xu) < m — 1. For 1€,

and x; either covers or equals x,[n — 1]. Hence u + x; either covers
or equals u. Thus 1 is the sum of elements that cover «, and [u, 1]
is therefore complemented. Consequently

rank [xu, 2] = rank [u, x + u] < rank [u,1] =1,

and since [xu, 2] is a chain, this shows that x either equals or covers
xu, and o(z) < n.
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COROLLARY 4.7. For any interval [a, b] in a semi-primary lattice
L, rank [a, b] < rank L.

Proof. There exist cycles b,e L (i€ I) whose sum is b. Then
a + b;(ieI) are cycles in [a, b] whose sum is b, and since the dimen-
sion of a + b; in [a, b] does not exceed the dimension of b, in L, the
conclusion follows by the preceding theorem.

THEOREM 4.8. If L is a semi-primary lattice, rank L = n, and
acL is an n-cycle, then a has a complement in L. In fact, every
element ve L with ax = 0 is contained in a complement of a.

Proof. Except in the trivial case when a=1, there exists a non-
zero element that is disjoint from a, and we may therefore assume
that © = 0. The element a + « is an n-cycle in [z, 1] and if we as-
sume that the theorem holds with L replaced by [z, 1], then there
exists be L such that (¢ +2)+b=1 and (a + x)b = x, but this clear-
ly implies that b is a complement of & in L. The theorem now follows
by induction on the dimension of L.

THEOREM 4.9. Ewvery element a of a semi-primary lattice L is
the sum of independent cycles. Moreover, if

a= 23,1 <k)= 3,1 < n)

are two such representations, with all the the summands distinct
from 0, then k=mn, and there exists a permutation ¢ of the indices
such that o(b;) = o(cy) for 1 =0,1, -+, k — 1,

Proof. Choose a cycle ¢ of maximal dimension in [0, ¢]. Then 2
has a complement o' in [0,a]. If @ % 0, then z % 0, and therefore
o(a’) < 6(a). The first part of the theorem now follows by induction
on d(a); the second part is but a special case of Ore’s Theorem.

The last theorem makes the following definition possible;

DEFINITION 4.10. Suppose L is a semi-primary lattice. By the
type of an element a € L. we mean the sequence (%, k,, -+, k,) where
n is the rank of [0,a] and, for 1 = 1,2, .-+, n, k; is the number of
cycles of dimension ¢ in a representation of ¢ as a sum of independent
cycles. The type of 1 is also called the type of L.

COROLLARY 4.11. The type of a semi-primary lattice is equal to
the type of its dual.
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Proof. Given a representation
1= 3(e;, i < m)
of 1 as the sum of independent cycles, the element
¢y = 2(e,t < ny 1 #J)
is a complement of ¢;. Therefore
[0, ci] = [eiciy ei] = [e, ¢ + ] = [ei, 1],

whence it follows that ¢} is a dual ecycle whose dual dimension is equal

to the dimension of a. We have
CoCL v €L+ €l = Gy 01y =1,

so that the elements ¢, are independent in the dual lattice. Finally,
using the fact that independent elements generate a distributive lat-
tice, we see that the product of the elements ¢! is 0. Thus in the
dual of L, the unit 0 is the sum of the independent cycles ¢, whence
the conclusion follows.

LEMMA 4.12. Suppose L 1is a semi-primary lattice, a € L and
k=rank (a). If by, b, ---,b,_,€ L are independent, and a=<23(b;, 1<n),
then a < Z(bilk], 1 < m).

Proof. For 7 < n let

By = S0, i <mi+j), ¢ =ba+h).
Then b, < a + b; for ¢ + j, whence it follows that
eyt <m) =2, <n)[[(@+b,i<n) =a.
We observe that

[Oy Ci] = [b;ciy Ci] = [b;y b: + Ci]
= [0}, @ + bi] = [ab}, a] .

Consequently rank (¢;) < rank (a) = k, ¢; < b[k], and the conclusion
follows.

COROLLARY 4.13. If a,b and ¢ are elements of a semi-primary
lattice, and of a = b + ¢, then alk] = blk] + c[k].

THEOREM 4.14. If L is a semi-primary lattice and a,, a,, ---,
Q,_, € L, then the conditions

(a'is 7’ < %)J—y (az[lly 7/ < %)J_
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are equivalent.

Proof. If the elements a; are not independent, then there exists
a smallest index j such that the product (a, + a, + «-- + a;_)a; is
not 0, and therefore contains an atom p. Clearly p < a,[1], and since
the sequence (a,, a,, -+, a;_,) is independent, it follows from Lemma
4.12 that p is contained in the sum of the elements a;[1] with 7 < j.
Consequently the elements a;[1] are not independent.

Conversely, if the elements a; are independent, then so is any
sequence of elements b, < a,. In particular this holds for b, = a;[1].

DEFINITION 4.15. Suppose L and L’ are semi-primary lattices.
By a cycle isomorphism of L onto L’ we mean a one-to-one map of
the cycles of L onto the cycles of L’ such that, for any cycles a,b,c
of L, the conditions

e=b+c, fla)=f0)+ flo

are equivalent,

LEMMA 4.16. If L and L’ are semi-primary lattices and f is a
cycle tsomorphism of L onto L', then for any cycles a, b, b, «-+-,b,_,
the conditions

a < 3b,i<n), fla)=23(fb),i<n)

are equivalent.

Proof. We first show that
(1) a < b1 <n) implies fla) < X(f(b), 1< n).

Inasmuch as this is true by definition for n = 2, we may proceed by
induction on n. Letting

c=(a+b)3b;0<1<m),

observe that a + b, = b, + ¢, hence [0, ¢] = [ab,. a], and ¢ is therefore
a cycle. Since a <b,+¢ and ¢ < X(b;,, 0 <t <m), the inductive hypo-
thesis yields

fla) = f(b,) + fle) = J(f(b), 1 < m) .
Having established (1), we show next that
(2) (f(b),1 < m)L implies (b;,t <m)L .

In fact, if the cycles b; are not independent, then for some j < n the
element ¢ = b;(b, + b, + --- b;_,) is a nonzero cycle that is contained
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in both b; and b, + b, + --- 4 b,_,. But then f(¢) is a nonzero cycle
that is contained in both f(b;) and f(b,) + f(b,) + --- f(b;_,). Thus the
cycles f(b;) also fail to be independent.

The proof is now completed by appling (1) and (2) both to f and
to its inverse.

THEOREM 4.17. If L and L' are semi-primary lattices, and f
is a cycle tsomorphism of L onto L’, then there exists a unique iso-
morphism g of L onto L' containing f.

Proof. Given an element x e L, as a consequence of the preced-
ing lemma we can define

9(@) = 3(f (), 5 < n)

where b,, b, -+, b,_, are cycles such that & = X(b;,7 < n). We also
infer from the lemma that ¢ is one-to-one and onto, and has the pro-
perty that g(x) < g(y) if and only if x < y. Therefore ¢ is the desired
isomorphism. The uniqueness of ¢ is obvious.

5. Geometric elements. The atoms in a semi-primary lattice
L can of course be considered as the points of a projective geometry
(possibly with degenerate lines), with three atoms being collinear if
and only if they are not independent. The cycles of dimension n =
rank L also play a role somewhat similar to the points in a geometry.
In particular, the maximum number of independent n-cycles serves to
some extent as a substitute for the notion of dimension in geometry.

DEFINITION 5.1. Suppose L is a semi-primary lattice of rank m=.
A cycle ce L of dimension 7 is called a point of L. An element ae L
that is the sum of independent points is said to be geometric. If the
type of an element ac L is (k, k., ---, k,), then k, is called the geo-
metric dimension of a, —gd(a) = k,. We let gd(L) = gd(1), and call
gd(L) the geometric dimension of L.

THEOREM 5.2. If L is a semi-primary lattice and a€ L is geo-
metric, then a has a complement. In fact, every element x with
ax = 0 1s contained in a complement of a.

Proof. Write a and 1 each as the sum of independent nonzero
cycles, a = Sy, i < k), 1 = Z’(zj, j <l). Except in the trivial case
when @ = 1, we must have k < [, because d(z;) < rank L = i(y;) for all
1< k and 7 <!l. It follows that at least one of the atoms z,[1] is
not contained in the sum of the atoms ¥,;[1], and therefore, by Theorem
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4,14, az; = 0. This shows that we can assume without loss of genera-
lity that = == 0. From this point on we can proceed exactly as in the
proof of Theorem 4.8.

THEOREM 5.3. If L is a semi-primary lattice and a€ L 1is geo-
metric, then for any cycle ce€ L with ¢ < a there exists a point be L
with ¢ < b < a.

Proof. Write a as the sum of independent points, a = 3(y;, 1 < k),
and for j <k let 9, =3y, 1<k, 1+7). The product of the
elements y} is 0, and therefore [] (cy}, 7 < k) = 0. Since ¢ is a cycle,
this implies that cy; = 0 for some j < k. Applying the preceding
theorem with L replaced by [0, a], we see that the geometric element
y, has a complement b in [0, a] which contains ¢. From the fact that
a=1vy;+ y; =y;+0b, it follows that b must be a point.

6. Primary lattices. The next, and final, condition which we
impose on our lattices corresponds to the geometric axiom that excludes
degenerate lines containing only two points.

DEFINITION 6.1. A lattice L is said to be primary if L is semi-
primary and every interval in L that is not a chain has at least three

atoms.

COROLLARY 6.2. The dual of a primary lattice is primary.

Proof. If in a semi-primary lattice L, an interval [a, b] is not a
chain, then, by the dual of Theorem 4.3, [a, b] has at least two dis-
tinct atoms « and y, and [a, © + y] is therefore a two-dimensional in-
terval that is not a chain. From this it is clear that L is primary
if and only if every two-dimensional interval in Z that is not a chain
has at least three atoms. Since this latter condition is selfdual, so
is the property of being primary.

THEOREM 6.2. Every primary lattice that is mot a chain 1is
simple.

Proof. It suffices to show that if a,d,ce L and a € b < ¢, then
every congruence relation 6 over L that identifies ¢ and b also iden-
tifies b and c¢. Since every two-dimensional lattice with more than
two atoms is simple, we need only consider the case when [a, c] is a
chain.

If ¢ is a cycle, then there exists an atom pe L with p £e¢. In
this case [a,b + p] and [b, ¢ + p] are two-dimensional intervals that
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are not chains, and are therefore simple. Thus, since ¢ identifies a
and b, it also identifies b and b + p, and therefore the simplicity of
the second interval implies that ¢ identifies b and c.

If ¢ is not a cycle, then there exists an element x e L with z<e¢
and ¢ # b. In this case [bx, ¢] is a two-dimensional interval that is
not a chain. Also, bx + a, because [a, ¢] is a chain. This shows that
ax £ a, so that [ax, b] is a two-dimensional interval that is not a chain.
The conclusion now follows exactly as in the preceding case.

THEOREM 6.3. If L s a primary lattice that has at least three
independent atoms, then any two two-dimensional intervals in L that
are mot chains are projective.

Proof. We use induction on the dimension of L. It suffices to
show that any two-dimensional interval [a, ] in L that is not a chain
is projective to an interval of the form [0, ¢].

If there exists an atom p with »p £ b, then [a, b] is projective
to [a + », b + p]. Repeating this process, we arrive at an interval
[¢/, b'] that is projective to [a,b] and has the property that every
atom of L is contained in &'. Therefore, if ¥’ = 1, then the given
problem reduces to the corresponding problem for the lower dimensional
lattice [0, b'].

We are thus left with the case ¥ = 1. Let # be the product of
all the dual atoms of L. Then w < ¢/, and [u, 1] is a complemented
lattice, whence it follows that any two two-dimensional intervals of
[, 1] are projective. Except in the trivial case when L is comple-
mented, we can find a dual atom x that includes all the atoms of L.
Using Corollary 4.11 we see that the dimension of [u, 1] is at least
three, and we can therefore find an element y such that v <y < %
and [y, 2] is two-dimensional. Then [a/, b’] is projective to [y, z], and
the given problem therefore reduces to the corresponding problem for
the lower dimensional lattice [0, x].

LEMMA 6.4. If L is a primary lattice and a,be L are cycles
with ab = 0 and d(a) = d(b), then there exists a cycle ce L such that
at+b=a+c=0b+Fc.

Proof. We may assume that b+ 0. Let u be the subcycle of a
such that &(u) = d(a) — 6(b). Then the interval [u,a + b] is not a
chain, and since a and b + u are cycles in [u, @ + b], there exists an
atom p of [u, a+ b] that is contained in neither a nor b+ u. Observe
that b + u is a point in the lattice [u, a + b] and therefore, by Theorem
4.8, has a complement ¢ in that lattice with p < ¢. Thus

ac = (b + u)e = u, bc = bu = 0, d(c) = d(a)
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and ¢ < a + b, and the conclusion follows by a simple dimension argu-
ment.

DEFINITION 6.5. A primary lattice L is said to have the four-
point property if every interval in L that is not a chain has at least
four atoms.

The primary lattices in which the four-point property fails cor-
respond to projective geometries with three points on each line. As
was mentioned in the introduction, these lattices cause considerable
complications, and have to some extent to be treated separately.

We now introduce the appropriate class of rings and prove the
easy converse of the representation theorem.

DEFINITION 6.6. A ring R with unit is said to be completely
primary and uniserial if there is a two-sided ideal P of R such that
every left or right ideal of R is of the form P* (where P° = R). The
rank of such a ring is the smallest integer k£ such that P* = (0).

The lattice of all submodules of a module over a ring is always
Arguesian (cf. [8]). We prove

THEOREM 6.7. The lattice of all submodules of a finitely generat-
ed module over a completely primary and uniserial ring is primary.

Proof. Let R be the given ring, U the module, and L the lattice
of all submodules of U.

For any element x ¢ U, the module epimorphism a — xa of R onto
2R induces an isomorphism of the lattice of all submodules of xR onto
the lattice of all those right ideals of R that contain the kernel of
the epimorphism. Consequently the submodules of R form a chain,
and xR is therefore a cycle in L. Since U is finitely generated, this
shows that U is the lattice sum of finitely many cycles. Since each
xR is finite dimensional, it follows that L is finite dimensional, and
from this we infer that each submodule of U is finitely generated,
and is therefore the sum of finitely many cycles in L.

We next want to prove that, dually, every member of L is the
lattice product of dual cycles. According to the dual of Theorem 4.3
this is equivalent to the assertion that every interval in L that has
only one atom is a chain. If this is not the case, then there exists
an interval [V, W] such that V is covered by a unique element X & W,
and X is covered by two distinct elements Y,Z < W. We may as-
sume that V = (0), for otherwise we could replace U by the factor
module U/V.
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There exist ye€ Y and ze€ Z with y,2z¢ X. Since (0) # yR< Y,
and X is the unique atom contained in Y, we must have X & yR.
Bquality is excluded because y ¢ X, and yR cannot be strictly between
X and Y because Y covers X. Therefore Y = yR. Similarly Z = zR.

Let P be the unique maximal proper ideal of R. Since yR covers
X, we have X = yP. Choosing A€ R with P = AR we therefore find
that X = y\R, yn€ Z, yn = zp for some pe R. Since 2R = X = zP
we have pe P, 1t = v\ for some ve R. Letting 2’ = z2v we conclude
that (y—2')» =0, (y—=7)P = (0), (y—2')R at most covers (0), (y—2 )R &
XcZyeZ Y= Z. We have thus arrived at a contradiction, there
by proving the assertion.

Finally, we must prove that if an interval [V, W] has two dis-
tinct atoms X and Y, then it has a third atom. As before, we need
only consider the case when V = (0). Then X =«R and Y = yR for
some z,ye W, and Z = (x — y)R is easily seen to be our third atom.
For, since xR and yR are atoms, we have P = yP = (0), and there-
fore (x — y)P = (0). On the other hand Z = (0) because x — y = 0.
Also, X+ Z=Y+7Z = X+Y, and this shows that Z is distinect from

both X and Y.

7. Partial translations. This section is devoted to the deriva-
tion of a number of technical lemmas needed in the proof of the qua-
drangle property. Actually these lemmas will be used only in the
treatment of the special case in which the four-point property fails.
The proof for lattices with the four-point property is relatively simple
and direct, and if the reader is willing to restrict himself to these
lattices, he may omit this section as well as Lemma 8.3 and the last

part of the proof of Theorem 8.4.
We assume throughout this section that L is a primary Arguesian
lattice, m ¢ L is a complemented dual cycle and gd(m) = 2.

DEFINITION 7.1. C(L,m) ={peL:1 = p 4+ m}.

DEFINITION 7.2. Given p, p’ € C(L, m), we let
Opp(®) = [(p + P)m + ul[(p + 2)m + D]

whenever w e L and ((p + p')m, p, w)d.
For the remainder of this section we consider fixed elements

p,peC(L,m) and let ¢ = (p + p')m. For any element wec L. with
(e, p, w)d, we let

up = ('M/ + p)m! ?/L, = Op,p’(u) = (6 + u)(up + p') .

Lemma 7.3. If (e, p,u)d, then



REPRESENTATION OF PRIMARY ARGUESIAN LATTICES

wW+e=u-+e um=um
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COROLLARY 7.4. If we C(L, m) and (e, p,w)d, then u' e C(L, m).

LEMMA 7.5. If (e, p, w)d, then (e, p’, w)4 and o, ,(u) = u.

LEMMA 7.6. If (e, p, w)d and (e, p,v)d, then

W + v)Ym = (u + v)m .

Proof. We may assume that v < v + m. Then

(1 ) (’ll/, e, 'U) N (u’py p’y vp) ’

because

(u + u,)(e + )

By (1), v = (u + v)m + o/,

=

and using Lemma 7.3 we find that

(w + p)e + p)(u + m)
ue + p(u + m) = ue + p(v+m)
ue + v + v, .

@ +v)ym=(u+vm+vm=(u+v)m.

The opposite inclusion follows by Lemma 7.5.

LemmA 7.7. If qe C(L,m) and (e, p,q)d, then

@+ qg)m=e¢ and 07,,(p)=17p".

Proof. The first equation is trivial, and routine calculations show

that

O4,0(0) =@+ €0 +q,) =0+ e + q,)
=p"+ P+ eq, =9+ D+ e)p+ gm
=p +pm=17.

LEMMA 7.8. Suppose q e C(L, m) and (e, p,q)4. If (e, », u)4d and

(e, q, w)d, then o,,,(uw) = u.

Proof. Letting

Uq = (@ + uym, U= 04,,(0) ,

we have (u + u,)(e + ') = p + eu =< q + q, + eu, therefore

(u, €, 9) N (up, D', q,) -

From this it follows that
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W= W+, +q)+d = +q,
W= w+te)u,+q)=17u.

In view of Lemma 7.3, strict inclusion is impossible, and we must
have u' = 7.

LemMA 7.9. Suppose q,re C(L, m), (p+p)q =0, and qr==0. For
every cycle we L, if (¢ + e)u = (r + e)u = eu, then o,,,.(u) = 0, ,.(u).

Proof. Observe that, since ¢r == 0, the condition (p + p')g = 0
implies that (p + p’)r = 0, and therefore both ¢’ and + are defined.
Also, the condition (¢ + e¢)u = (» + e)u = eu implies that (e, ¢, u)4 and
(e, r,u)d, and therefore u is in the domains of ¢,, and o,,.

If (e, q, )4, then by Lemma 7.8, o, ,(r) = v/, and replacing p and
q by ¢ and r, we again use Lemma 7.8 to infer that o, ,(u)=0, . (%).

Now assume (e, q, v)4 fails, and therefore (¢ + r)e = 0. Let »,=
(¢ + r)ym. There exist cycles e, e, < m such that

Yy, =6 + €, 7,8 = 1.8 = ee, =ee =ee =0.

In fact, we can take for e, any cycle contained in m that is disjoint
from r, and has the same dimension as »,, and then apply Lemma 6.4
to obtain a cycle e, such that », 4 ¢ =7, + ¢, = ¢, 4+ ¢,. Since the
three cycles 7, ¢, and e, have the same dimension, », and ¢, must be
disjoint. Finally, since r,e == 0, the cycles e, and e, must be disjoint
from ¢ also. The element s = (¢ + ¢)(» + ¢,) is clearly a complement
of m, and sq = sr > 0, therefore (p + p')s = 0, and s’ is defined. Also
(g+s)e=(s+r)e=0and (s + e)u = eu. To prove the last equation
we observe that (e + u)g = eq + uq = uqg = eq = 0 and sq == 0, hence

(e +uw)s=0,(s,e,u)d, (s + e)u = su + eu = eu .

We can now apply the first part of the proof twice to conclude that
oq,q’(u) = os,s'(u’) = Or,r'(u’)'

LEMMA 7.10. Suppose p* € C(L, m), and let e* = (p + p*)m, e=
(p" + p*)m. For any welL, if (e, p,uw)d, (e*, p,w)d and (e, p’, w')4,
then o, (U) = 0, 0, ().

Proof. Let

wu* = 0,(w), U=0,,u).

Since u, ', u* and # all have the same dimension, it suffices to show
that % < u*. Observe that
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W+ u)e+p)=(p+uw(®+e)=0p+ue
< e* + p* 4 ue,
so that (u, e, ¢*) X (u,, p’, p*). This yields ' < u* + &, and therefore

w = (¢ + u)(u, + p*) = (¢ + u*)(», + p¥)
= u* + e(u, + p*) = u* + eu, .

But, by Lemma 7.3 and the assumption that (e, p’, w')4,
eu, = e(u + p) =¢ew +p)=¢eu +ep =eu=u*,
and we conclude that # < u*, as was to be shown.

8. The quadrangle property. We introduce two auxiliary de-
finitions.

DEFINITION 8.1. Suppose L is a primary lattice, m, a, s, t € L, and
a < m. We say that (s, t) is admissible for a if s, ¢, a are cycles and

s+tm=a,s+t=t+a=a+s,st=ta=as=0.

DEFINITION 8.2. Suppose L is a primary lattice and m,s, t € L.
For any cycles b, ¢, 2, ¥y < m we define

Q. (b, c, 2, y) = [(s + b)(t + ¢) + (s + )t + y)]m .

LeEMMA 8.3. Suppose L is a primary lattice, me L 1is a dual
cycle, and a,b,c,x,yc L are cycles contained in m. If (s,t) is ad-
missible for a, then

0(Qs,(b, ¢, 2, y)) = o(a(b + ¢)(x + y)) + d(be + xy) — d(a(bx + cy)) .
Proof. Let
g=(+bEt+e), r=Es+a0+y,
2=Q..(b,c,x,y) = (¢ +7r)m.
Then ¢ + 2z < ¢ + r, and therefore
(1) d(z) = o(r) + d(gz) — a(gr) .
We have

or)y=0(s+a)+0(t+y) —d(s+t+ax+y)
=ds+®) +dt+y) —os+a+z+y)
= 0(t) + d(x) + d(y) — d(a + = + ¥)
= 0(a) + (%) + d(y) — o(a) — d(z + y) + d(a(z + ¥))
= d(a(z + ¥)) + d(zy) .
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Since gr = (s + bx)(t + cy), we can replace x and y in the above cal-
culations by bx and ¢y and obtain

o(qr) = é(a(bx + cy)) + d(bexy) ,
Finally ¢z = gm = be. The left hand side of (1) is thus equal to

da(x + ) + 6(xy) + d(be) — d(bexy) — d(a(dbx + cy))
= 0(a(x + y)) + 0(bec + xy) — 6(a(bx + cy)) .

Therefore
(2) 0(z) < d(a(x + y)) + o(be + my) — (a(bx + cy)) ,

with equality holding if and only if » < ¢+z or, equivalently, r+m=<
q + m. Similarly

(3) d(z) = d(a(d + ¢)) + d(be + wy) — d(a(dr + cy)) ,

with equivality holding just in case ¢ + m < » +m. Now ¢ + m and
r 4+ m are members of the chain [m, 1], and one must therefore be
included in the other, say » + m < q + m. Then equality holds in (2),
which implies that d(a(x + %)) < d(a(d + ¢)), and therefore a(x + y) <
a(b + ¢), since a(x + y) and a(b + ¢) are subeycles of a. Thus

a@ +y) =abd + )@ + vy,

and the proof is complete.

THEOREM 8.4. Suppose L is a primary Arguesian lattice, me L
is a complemented dual cycle, gd(m) =2, ae L is a cycle and a < m.
If (s, t) and (s',t") are admissible for a, then Q,, = Q, ..

Proof. Let k = d(a). Suppose b,c,x,y < m are cycles, and as-
sume that (s, t) and (s, t') are admissible for a. Let

g=6+dt+ce¢), r=6+z0t+y,
¢ =6+ +¢), =+ +v),
z=(q +7rm = Q,«b, ¢, 2, ¥) .
By symmetry it suffices to show that
(1) r=q + 7.
We begin by treating a very special case:

(2) If s=¢, then @Q,,=Q, . .

To prove this we observe that
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(3) (¢, y,t) N (q,1,9),
because

c+u+nN={E+eo)t+y)=t+cy
Sa+stey=s+t +ey.

From (3) it follows that
(4) c+yg+nr=C+t)Ng+s)+Hy+t)r+s).

Now 2= (t + ¢+ y)m = c¢ + y, and the left hand side of (4) is there-
fore equal to z, while the two summands on the right are easily seen
to be equal to ¢’ and 7/, respectively. Thus (1) holds in the present
case, and our assertion (2) is therefore established.

We next reduce the general problem to the special case in which

(5) s+t +t)=ua,
(6) (s+sm=_0C+t)m=_(+sNE+7).

If (5) fails, we use the hypothesis gd(m) = 2 to secure a point p < m
with pa = 0, and we then choose k-cycles s”" <s+p and t"<s" +a
such that ss” = ps” = 0 and s"t” = at”” = 0. It readily follows that
(s”,t”) is admissible for @, and that (s + t)(s” + t”) = a. We must
also have (s' +t')(s” +t”) = a, because the elements (s + t)(s’ +¢') and
(" + t')(s"” +t”) belong to the chain [a, s’ + t'], and if they were both
larger than a, then their product would also be larger than a. Our
problem thus reduces to showing that Q.. = Q... and Q... = Q,....,
and in each case we are in the situation described by (5).

Assuming that (5) holds, observe that any three of the four cycles
s, t, 8, t' are independent. Let d = (s + §')m and " = (s’ + a)(t + d).
Observe that a4+t =s-+1t¢ and s+d = s’ +d, therefore a+t+d=s.
From this it readily follows that (s’, ") is admissible for a, and that
both (5) and (6) hold with ¢’ replaced by ¢’. By (2), Q... = Q,,,.., and
the problem thus reduces to showing that Q.. .. = @Q,,., i.e., it reduces
to a situation where both (5) and (6) are satisfied.

We henceforth assume that (5) and (6) hold, and we let

d=(6s+s8)t+1).

The case when L has the four-point property is now readily disposed of.
In this case there exists by Theorem 5.3, a k-cycle ¢ < a+d that is dis-
joint from the cycles b, and a. Letting s” = (s + e)(s’ + ¢') and
t" = (t + e)(s' + t') we easily see that (s”,t”) is admissible for a, and
that (5) and (6) hold with s” and ¢” in place of s’ and ¢'. Since ¢ =
(s + s")(t + t"") is disjoint from b and 2z, we infer by Theorem 3.6 that
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Qs,t(by ¢, x, y) = Qa”,t"(by ¢, X, y) .

If ¢t' =0, then it follows from (2) that Q,..... = @, = Q,.,., and if
t”s' = 0, then we similarly obtain Q,... = Q, ., = Q,,,. Finally, if
8"t =0 and t”s’ # 0, then we can choose a k-cycle u < s’ + t’ that is
disjoint from s’,# and a, and hence also from s” and ¢”, and use (2)
three times to infer that

Qs”,t” = Qs",u = Qs'vu = Qs',t' .

We assume from now on that the four-point property fails in L.
We may also assume that

(7) ea+b=b+c=c+a, aot+r=2+ty=y+a.

This is justified by observing that if we replace the element a, b, c,
xz,Y,s,t s,t by

a, = a(b + o) + ¥) , b, = b(a, + ¢) , ¢, = c(a, +b),
z, = a(a, + ¥), =yl +®), s =sa+1),
t, = t(al + S) y S; = S’(al + t’) y t; = t,(aq + S,) ’

then the results of the operations Q,., Q,.... are unchanged,

Qsl,tl(al’ blr C1y Xy yl) = Qs,t(a/, b: ¢, X, y) ’
Qo (s, by, €, T, Y1) = Quye(a, b, e, 2, y) .

In fact, the elements on the left are certainly contained in the elements
on the right, and it follows from Lemma 8.3 that both sides have
the same dimension. Since the new elements satisfy (7) this justifies
the assumption. Furthermore, we may assume that

(8) s, t, 8, t'eC(L,m),

for the elements s+ m, ¢t +m, s’ + m,t’' + m are in any case equal to
each other, since they all belong to the chain [m, 1] and all have the
dimension d(m) + k, and we can therefore replace L by [0, s + m].

Observe that if o,,.(q) exists, i.e., if (d, s, ¢)4, then o,,,(q) = ¢'.
In fact, by Theorem 3.4 we have (b, s, s) A (c, t', t), therefore ¢' <
d + ¢q. This readily implies that ¢’ < o,,.(q), and equality must hold
because both elements have the same dimension as gq.

If d,s, q)4 and (d, s, )4, then ¢ = o,,(q) and ' = 0,,,(r), and
(1) holds by Lemma 7.6. The case when (d, ¢, q)4 and (d,t, r)4 can
be treated similarly. The conditions (d, s, q)4 and (d,t,q)4 cannot
both fail, for then the subcycles d(s + q) and d(t + q) of d would
both be larger than ¢, which is impossible because

dis+ )t +q) =d(s +b)(t +c)=dgqg.
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Similarly, only one of the conditions (d, s, )4 and (d, ¢, )4 can fail.
In view of these observations we may assume that

(9) not — (dv S, Q)A ’ (dy t, Q)A ]
not — (d, t, )4, (d,s,r)4.

It follows that

(10) ¢ =0,(0, 1 =0,.).

From (9) it follows that (s + ¢)d + 0, therefore bd + 0. If ed =0,
then gm = bec = 0, and therefore ¢ is a cycle, but if e¢d = 0, then by
Corollary 4.13,

q[1] = (s[1] + b[ADE[1] + c[1])
= (s[1] + d[1D[1] + d[1]) = d[1] ,

and ¢ is therefore a cycle in this case too. Since (s + d)q = 0, we
have ¢[1] < s + d. It follows from Theorem 6.3 that s 4+ d contains
only three atoms, s[1], s’[1] and d[1], and ¢[1] must therefore be one
of these. We therefore have sq = 0 or s'qg == 0 or dq + 0. Similarly
r is a cycle and one of the conditions ¢r = 0, t'r = 0, d»r = 0 holds.
The nine cases that result will be combined into four in the argument
that follows.

Before dividing the argument into cases, observe that it follows
from (7) and (8) that s <t + b + ¢, and therefore

g+m=(@6+b{Et+ec)+m=(s+bEt+b+c)+m
=s+b+m=1,

so that if gm =0, then ¢geC(L,m). Similarly, if »m = 0, then
re C(L, m).

Case 1. sq+# 0 or tr = 0.

Without loss of generality assume that sq = 0. Then qgm = 0, so
that ge C(L, m). Also q(t + d) = 0 because s(t + d) = 0. It follows
that (¢ + d)(t + d) = d. Thus the product of the two sub-cycles (¢+d)r
and (t + d)r of r is dr, and since by (9), (¢ + d)r > dr, this implies
that (¢ + d)r = dr, hence (d,q, r)4. We infer by Lemma 7.9 that
0,.(r) =7, and since 0,,(q) = ¢’, we conclude by Lemma 7.6 that
(1) holds in this case.

Case 2. dg # 0 and dr == 0.

Let ¢ = (s + tYm,t" = (s + a)(s’ + ¢). It is easy to check that
t"eC(L, m). We have (a + t)qg = 0 because (¢ + t)d = 0 and dq = 0.
Similarly (@ + s)» = 0. We can therefore form
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q= at,s(Q) ’ r= o.s,t”('r) .

Since dg = dg # 0, we have (s + t')g = 0. Similarly (s + ¢t")7 = 0
because 7d = rd = 0 and (s’ + t”)d = 0. Using Lemma 7.10 we infer
that

q’ = as,t’({j) ? ’l" = o't",s’(q—;) .
We claim that
(11) (s+t)7r=0.

For, 7d = rd +#+ 0, therefore 7r = 0, and if (11) fails, this implies
(s+th)r=0,t+t)(s+t)r+0,tr+0, t'rm =0, a contradiction.
From (11) we infer that o,,.(7) exists. Inasmuch as t” =g, (s") and
thus by Lemma 7.5, s’ = o,,.(t"”), it follows by Lemma 7.8 that
1 = 0,,,(F). Consequently, by Lemma 7.6,

@ +7rm=(@q+7rm.
Furthermore, s’ = o,,.(t'), hence by Lemma 7.8,
T = 04,,(r) = 0,,,(1) ,
whence it follows by Lemma 7.6 that
@+ 7)m=(q+ rm.
This completes the proof for the case under consideration.
Case 3. s'q# 0 and ¢'r = 0.

Let u = 0,,(q), v =0,,r). Then us+0 and vt =+ 0, and by
Lemma 7.5

q=040(u), r=0,.(v).

Thus we have r =07, ,,v) by Lemma 7.9, and hence (u+v)ym=(q+r)m
by Lemma 7.6. Let

¢=@w+gm, r.=@w+nrm,

u, = (7) + q)(u + 7') = (v + ql)(u + 7'1) ’

v, = (T + Q1)(q + "'1) .
Then (u + v)(r, + ¢)) < (w + v)m < ¢ + r, from which it follows that
(w, r, 9 N (v, q, r), and therefore w, < d + v,. This in turn implies
that (v, u,d) ~ (q,r,v,), and therefore

w+u(g+7)=@+d)g+v) + (w+d)r+0v).

Since the element on the left is known to contain z, it suffices to show



REPRESENTATION OF PRIMARY ARGUESIAN LATTICES 119

that the two summands on the right are contained in 7’ and ¢, re-
spectively. Indeed, by Lemma 7.9, ' = 7,,(r), and therefore

r=(r+dg+r)=@+da+),
and similarly ¢’ = (u + d)(r + v,).
Case 4. dq = 0 and dr =0, or dgq = 0 and dr = 0.

By symmetry it suffices to consider the first alternative. We have
bd = (g + s)d > 0 and bed = qd = 0, therefore c¢d = 0. Also

yd = (r + t)d > rd = xyd ,

hence 0 < ad < yd. Let T = x[k], ¥ = y[k]. Because of (7) we have
a+2=a+y. Since a + d is geometric in [0, ¢ + d + Z], it follows
from Theorem 5.2 that there exists we L such that a +d + 2 =
a + d 4+ u. Observe that

@ + PI1] = o[1] + Z[1] = a[1] + d[1] ,
and therefore uw(Z + %) = 0. Let
d=(u+2z)(a+d.
Clearly ud = 0, and therefore
[0, d] = [ud, d] = [u,  + d] = [u, u + F] = [uZ, Z] = [0,'%] ,

so that d is a k-cycle. _Since dd = dx > 0, this implies that ad = 0
and hence a + d = a + d. Letting

§'= (s +d)S + 1), 1 =+ )+ 1),

one easily verifies that s, ¢’ e C(L, m). Also s"t' = (s + d)t’ = 0, be-
cause (s+d)t’ =0 and the elements s+ d and s+ d contain the same
atoms. Furthermore s”t” =0, because the only atom contained in both
s+d and t + d is d[1], and d(s’ + ) = 0. We thus see that

S"'i_t"‘:s"i-t':s"“l't,,
and that (s” + t”)(s + ¢) = a. It is also easy to see that
(s+s8)Ym=@E+t")Ym=(s+ )Nt +1t').

Finally, ¢d = 0 and bd = 0, because dd = 0, and dy = Ty < z, dy < d=.
By Corollary 3.7 and two applications of (2) we therefore have

Qs,t(by C, fE, y) = Qs",t”(b’ C’ x) y)

= Qu,.(b, ¢, 2, )
= Qs',t'(b’ c, %, ’!/) .
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The proof is now complete.

DEFINITION 8.5. Suppose L is a primary Arguesian lattice, m e L
is a complemented dual cycle and gd(m) = 2. For any cycles a, b, c,
z, y € L contained in m, if there exists (s, t) that is admissible for a,
then we let

Qa, b, c,z,y) = Q,,.(b, ¢, x, y) .

9. Extensions of isomorphisms. A one-to-one mapping of the
points on a line in a projective plane that satisfies Desargues’ Law
onto the points on a line in another such plane can be extended to
an isomorphism between the two planes if and only if it preserves
the operation Q. This section is devoted to the proof of a correspond-
ing theorem for primary lattices.

THEOREM 9.1. Suppose L and L' are primary Arguesian lattices
of geometric dimension three or more, me L and m’'c L’ are dual
points, and ¢:[0, m] = [0, m']. Then the following conditions are
equivalent:

(i) For any w,ve C(L,m) and w',v' € C(L', m'), if

w =0,u?v =0 and g{(w + v)m) = W + v)m’,
then there exists f such that
fL=L,g< ), flu) =, flv)=2".

(ii) For any cycles a,b,c,x,yc L contained tn m,
g(Q(a, b: c, X, y)) = Q(g(a’)’ g(b)s g(C), g(%), g(y)) .

Proof. Assume (i). Clearly there exist
uw,veC(L,m) and «,v eC(/,m)

that satisfy the hypothesis of (i), and this condition is therefore not
vacuous. Therefore there exists as isomorphism f of L onto L’ with
g = f. Given cycles a, b, ¢, z, y < m, choose (s, t) that is admissible
for a. Then (f(s), f(t)) is admissible for f(a). We can therefore use
these two ordered pairs to compute

z = Q(ay by ¢, T, Y) and 2’ = Q(g(a’)) g(b)7 g(c), g(x)) 9(y) ,

respectively, and we infer that f(2) = 2/, hence g(z) = 2.

Conversely, assume (ii), and suppose u, v, %', v' satisfy the condi-
tions of (i). Letting a, = and a, = v, we can find a,, a;c C(L, m)
such that any three of the four cycles a; are independent. For ¢ == 7 let
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b;,; = (a; + a;)m, bi; = g(b;,;) .

Also let a) = ' and a, = v’, and
a, = (uw + b)) +b;) for 1=2,3.
Then a, a;, a;, a; are complements of m’ in L’ and
bi,; = (ai + af)m’ .
For any cycle xe L, and for ¢+ = 0,1, 2, 3, let

x(?) = (a; + x)ym, 2'(3) = g(x(?)) ,

and let

r* = I:Io(ag + 2'(2)) .

We claim that the map x — x* is a cycle isomorphism. From this it
follows at once that the induced isomorphism f has the required pro-
perties, since af = a, for © = 0,1, 2,3, and 2* = g(x) for x < m.

For any cycle x e L there exist distinet indices ¢ and j such that
(a; + a;)x = 0. For any such indices we have (a;, a;, ¢) L, and therefore

(a; + x(D))(a; + (7)) = (@ + @)(a; + @) =@ .

Under the same conditions, using (a;, ;) as the admissible ordered pair
for b;,;, we find that

Q(bi,i5 biiy bjiy (1), (7)) = (k) .
Consequently
Qb5 O, bG,0, @' (1), 4'(9)) = @'(K) .
Using (a}, ) as the admissible ordered pair for b} ; we obtain
2'(k) = (a}, + r)Ym , where r = (a} + 2'(2))(a; + 2'(7)) .

Therefore » < a}, + 2'(k). Since this is true for each of the indices %,
we infer that » < x*. The opposite inclusion is obvious, and we have

o = (@i + 2'(0))(a; + 2'(9)) .
It is now easily seen that z* is a cycle of the same dimension as z, for
a; +x(7) = a;+ 2« and a) + 2'(7) = ai 4 x* .
We next observe that, for any cycles x, y € L,

@* +y*)m' = g((@ + yym) ,
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for if we choose the distinct indices 7 and 7 so that
(@; + aj)x = (a; + a;)y =0,
then
(x + y)m = Q(bi,jy 51?(?,), w(J)y y(%)y y(j)) y
(@* + y*)m' = Q(bi,5, 2'(¢), x'(7), ¥'(3), ¥'(7)) .

From the special case ¥y = 0 we see that x*m’ = g(xm), therefore
o(x*m’) = 6(xm), and since 6(x*) = o(x), this implies that o(x* + m’) =
o(@ + m).

Now if z,y e L are cycles, then the conditions

y=x+m, oy-+m)=o@+ m),
oy* +m') =o(@* +m'), y*=<az*+m

are equivalent, and we thus have
y<2x+m if and only if y* < z*+m.
We wish to show that, for any eycles «,y,z¢ L,
z=x+y if and only if 2* < a* + y*.

It may be assumed without loss of generality that ¥ + m < « + m.
Thus if z £z + y, then 2,2,y <« + m and «*, y*, 2* < 2* + m’. Now

+om=(x+ym,
9((z + 2)ym) < g((x + y)m) ,
(@ 4+ a*)m’ < (@* + y*)m’,

and adding z* to both sides, we obtain
z*+x*§x*+y*.

Since the above steps can be reversed, the opposite implication also
holds.

To complete the proof we need only show that the map x — x*
is one-to-one and onto. For this it suffices to observe that the cor-
responding map of cycles in L’ onto cycles in L is an inverse of the
given map.

10. Translations. Throughout this section we assume that L is
a priamary Arguesian lattice, gd(L) = 3, and m e L is a dual point.

DEFINITION 10.1. By an m-dilation of L we mean an automorphism
f of L such that f(x) = x whenever x < m. We let D(L,m) be the
set of all m-dilations of L.
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DEFINITION 10.2. By an m-translation of L we mean an m-dilation
f of L such that, for all z, y € C(L, m),

(@ + fle))ym = (y + fly))m .
We let T(L,m) be the set of all m-translations of L.

DEFINITION 10.3. If f is an m-translation of L, then by the trace
of f—in symbols tr(f),—we mean the unique element % ¢ L such that,
for all x e C(L, m),

u = (z + flx))m .

The trace u of an m-translation f is always a cycle, for if
xeC(L,m), then  +u =a + f(xr) and 2zu =0, therefore [0, u] =
[xf(2), f()].

THEOREM 10.4. If f, g€ D(L, m), z,y € C(L, m), xy =0, f(x) = g(x)
and fly) = 9(y), then f=g.

Proof. First consider a cycle z such that (x + )z = 0. Then

z=@+2)(y+2)=[z+@+2m]y + (¥ + 2)m],
and since f and g agree on z,¥, (x + 2)m and (y + z)m, we have
f(z) = 9(2).

Now consider a cycle z with (¢ + y)2 # 0. We may assume that
2z = 0. We can find a member 3’ of C(L, m) such that (x + %)y’ =0,
and therefore xy’ = 0 and (x + ¥')2 = 0. We now apply the preced-
ing case twice, first with z replaced by %’ to infer that f(¥') = 9(¥),
and then with y replaced by %' to conclude that f(z) = g(z).

Thus f and g agree on all the cycles in L, and by Theorem 4.17
they are therefore equal.

LemMA 10.5. For all fe D(L,m) and z€ L,
f@)+m=z+m.

Proof. Since f(m)=m, f maps the chain [m, 1] onto itself. Now,
the only automorphism of a finite chain is the identity. Therefore

f@)+m=fle+m=x+m.
LemMmA 10.6. For all fe D(L, m) and x€ L,

flw + f@)) = » + flw) .
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Proof. Let w = (x + f(x))m. By the preceding lemma,
c+f)=c+u=[f)+u.

Since f maps u onto itself, the conclusion follows.

LemmaA 10.7. For all fe T(L, m) and x,y <€ C(L, m), y(x+ f(x))=
2y if and only if x(y + f(y)) = 2v.

Proof. Assuming the former equality, let
u = tr(f) = (@ + f@)m = (y + fly)m .

Then = + f(x) =2 + % and ¥ + f(y) = y + u. Observe that (x, y, w)4,
because y(x + u) = y(x + f(x)) = zy. Consequently

oy + () =2y +u) =ay +au =2y .

LemMmA 10.8. If fe T(L,m),x,y e C(L, m), and y(x + f(x)) = 2y,
then

fW) =y + @ + f@)m][f(@) + (& + y)m] .

Proof. We have (x + f(x))m = tr(f) = (y + f(y))m, and therefore

[y + (@ + f@)m][f(x) + (x + y)m]
= [y + f)f() + (& + y)m]
=y + fW)fx + (& + y)m)
=y + f)fle +v) .

By Lemmas 10.6 and 10.7, this is equal to
Ay + f)e +v) = fly + 2y + fy) = fy + zy) = fly) .

THEOREM 10.9. For all f,ge T(L,m), if f(x) = g(x) for one
xe C(L, m), then f=g.

Proof. Choose ye C(L,m) with y(x + f(x)) = 0. Then f(y) = g(y)
by Lemma 10.8, and therefore f = g by Lemma 10.4.

LEMMA 10.10. For any fe D(L,m), if there exist x,y <€ C(L, m)
such that y(x + f(®)) = 0 and

(@ + fle)m = (y + fy)m,
then fe T(L,m).

Proof. Write 2z’ for f(z). Letting w = (x + 2")Ym = (y + ¥ )m,
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observe that s+ a2’ =24+ u=2"+% and y+ 9y =y +u =9 + u.
Therefore (¢ + u)y = (x + «’)y = 0, so that (x,y, w)4. Consequently
(c+2)Ny+¥)=(@+u)(y+u) =2y +u=u. Letting v = (x + v)m,
we have

rt+y=x+v=y+v,

dry =@ty =@+)=2+v,

@ + y)ym= (@ +vym=nv,
@+aNet+v)=@+2Ne+y)=c+ay=u2u.

This last formula shows that (z, «/, v)4. Hence
@+ +y)=@+v)@ +v)=22 +v.

Consider any ze€ C(L, m) with (x + y)z = 0. Let z, = (¢ + 2)m and
2z, = (¥ + 2)m. Then

T+, =C+2=2+2,Y+2 =Y +tr=2+2%2,
@+z)y+z)=@+)y+z)=0y+z=2.

Consequently

7=+ 20y +2),
¥+ =@+2)=0+2z,,
yl+zI:(y+zy)I:yl+zy.

Since (@' + ¥)(z, +2,) < (@ +y)m =v <z + y, we have (v/,2,,2) A
(v, #,,¥), and therefore

@ +2)0 +2) =@ + o)y +y)+ @+ 20+ Y
or, in other words,
(1) F=u+z.
Also, (z,y,2) A (', ¥, 2), because

@+ 2)(@ +2)+ Y+ 2 +7)
=@+ 2)@ +2)+ Y+ 2)¥ + 2)
>ax + 2, + 2, =2 + (x4 2)m + (y + 2)m
=xx'+@+y+2m=xr +v
=@+ o) +v)=(@+ N +y).

Consequently,
@+aYy+Y)=@+2)(y+2)+ @ +2)Y +7).

Thus < 2+ 2/, and together with (1) this yields z + 2’ = z + u, hence
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+2Zm=F+um=u.

Now consider z e C(L, m) with (x + y)z = 0. Since 2, y, 2z are cycles
and 2y = 0, we have zz = 0 or yz = 0. Observe that

W+ve=UY+y)@+a)=ur=0,

and the hypothesis of the lemma is therefore symmetric in x and .
We may therefore assume that xz = 0. We can find z, € C(L, m) that
is disjoint from z + y and x + 2/, and we infer from the first part
of the proof that (z, + zi)m = v. Also, since 2z =0 and (x + )z = 0,
2+ vy and % -+ 2z contain the same atoms, whence it follows that
(x + 2)z, = 0. Thus (2, 2,2,) L, and therefore (x + 2,)z = 0. We again
apply the first part of the proof, this time with 2z, in place of y, to

conclude that (z + 2')m = w.
Thus (z + 2'ym = u for all ze C(L, m), and therefore fe T(L, m).

THEOREM 10.11. For any =z, 2’ € C(L, m), there exists a unique
fe T(L, m) such that f(x) = «'.
Proof. Choose y e C(L, m) with (x + 2')y = 0, and let
u=(@+ymv=(@+2)Ymy =@ +u)y+ ).
It is easy to check that %' e C(L, m) and
@ +y)ym=u=(@+ym.

It follows by Theorem 9.1 with ¢ replaced by the identity automor-
phism of [0, m] that there exists f € D(L, m) with f(z) =&’ and f(y)=1/,
and we infer by the preceding lemma that fe T(L,m). The unique-
ness of f follows from Theorem 10.9.

COROLLARY 10.12. For any cycle v < m there exists fe T(L,m)
with tr(f) = v.

Proof. Choosing x € C(L, m), use Lemma 6.4 to obtain 2’ € C(L, m)
with « + ' = 2 + v. By the preceding theorem there exists fe T(L, m)
with f(x) = &', and tr(f) = v.

DEFINITION 10.13. An m-translation f is said to be nonsingular if
tr(f) is a point. In the alternative case f is said to be singular.

If fe T(L,m) and x ¢ C(L, m), then
0(x) = o(tr(f)) + o(xf(®)) .

Therefore, f is nonsingular if and only if zf(x) = 0.
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THEOREM 10.14. T(L, m) is an Abelian group under composition
and, for all f,ge T(L,m),

tr(gf) =< tr(g) + tr(f) .

Proof. Clearly the identity automorphism of L is an m-transla-
tion, and the inverse of an m-translation is an m-translation. Given
fy9e T(L,m) and « € C(L, m),

tr(g) + tr(f) = (@ + fl@)m + (f(@) + gf(@)m
= [(@ + fl@)m + f(@) + gf(@)]m
= (¢ + f(®) + g9f(@)m ,

and therefore

(1) (@ + gflx)m = tr(g) + tr(f) .
To complete the proof we must show that fg = gfe T(L, m).
If tr(f)tr(g) = 0, then

g@)(@ + f(@)) = (& + tr(g)@ + tr(f)) =« ,

whence it follows by Lemma 10.8 that

J9(x) = (g(x) + tr(S)(f(x) + tr(g)) .

Because of the symmetry of this formula we infer with the aid of
Lemma 10.4 that fg = gf.

Before completing the proof of the commutativity, we establish
the closure property. We consider five cases.

Case 1. tr(f)tr(g) = 0.

Choose 2z € C(L, m), and choose a point p < m that is disjoint from
the cycles tr(f) and (x + gf(x))m, and then choose y e C(L, m) with
v+y=y+p=p+ 2 Then

(2) y+gfx) =0

(3) (x,y,tr(f)) L, (=¥, tr(g) L.

We wish to show that (3) implies

(4) (@ + gf(@)m = (y + gf(y))m.
In view of (1) this is equivalent to

(5) (x+ gf@)(r(f) + tr(9) = v + 9/(y).

We claim that

(6) (=, tr(f), y) N\ (9f(2), tr(9), 9/(y)).

In fact, since (¢ + y)m is invariant under both f and g, we have

@ + y)ym = (f(@) + fy)m = (9f(@) + 9f(y)m ,

and therefore
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(@ + y)(9f(®) + 9f(¥) = (f(x) + fy)m .
Since (tr(f) + tr(g))f(«) = 0, hence (tr(f), tr(g), f(x))4, we have

(@ + tr(fNef(@) + tr(g)) = (x + f@)(9f(®) + f(2))
= (f(@) + tr(f)(Sx) + tr(g))
= f(@) + tr(f)tr(g) .

Similarly

(tr(f) + »(tr(9) + 9/(W) = fy) + tr(f) tr(g) .
Thus

(@ + y)N9f(@) + 9f(y) + (tr(f) + y)(tr(9) + 9/(¥))
= (f(@) + fy)m + fly) + tr(f) tr(g)
= fl@) + f(y) + tr(f) tr(g)
= (v + tr())9f(@) + tr(9)) ,

which proves (6). We infer that

(@ + gf(@)(te(f) + tr(g)) = (x + y)(tr(f) + )
+ (9f(®) + 9f(y)(tr(9)+9f(y))
=y + 9fy) .

The last step follows from (8); we note that because independence is
preserved by automorphisms, the second formula in (3) implies that
(9f(x), 9/(), tr(g)) L. Thus (5) holds, and hence so does (4). Interchang-
ing # and y in the above argument, we see that the opposite inclu-
sion also holds, and therefore

(@ + gf(@)m = (y + gf(y))m .

Together with (2) and Lemma 10.10 this implies that gfe T(L, m).

Case 2. tr(f)tr(g) =0, and f and ¢ are nonsingular.
Choose x € C(L, m). Then zf(x) =0 and

(x + f@)gf@) < (f(w) + tr(Nf@) + tr(g) = f),

therefore (v + f(x))gf(x) = f(x)gf(x) =90. Thus
(7) (x, f®), 9f(x)) L.
Observe that (f(x) + fof(x))m = (x + gf(x))m because every element
contained in m is mapped onto itself by f. We now apply Lemma 10.10
with ¥ and f replaced by f(x) and fg = gf to infer that gfe T(L, m).
For use later in this proof we observe that (7) implies that gf is
nonsingular, and that tr(f)tr(gf) = 0.
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Case 3. tr(f)tr(g) = 0, f is singular and ¢ is nonsingular.

Choose a point p < m disjoint from tr(g), and choose z, y € C(L, m)
with x4y = y+4+p = p+2. By Theorem 10.11 there exist f,, f, € T(L, m)
such that fi(z) =y and f,(y) = f(z). Clearly f, and f, are nonsingular
and

tr(f) te(f) = (@ + y)(y + f(@)m = (y + 2f(@)m .

Since xf(x) is nonzero and disjoint from ¥, this shows that tr(f,) tr(f,) #
0. It follows by Case 1 that f.,f,e T(L,m), and since f,f.(z) = f(%),
we infer by Theorem 10.9 that f = f,f,. By Case 2, gf,e T(L,m).
Furthermore, as observed in the treatment of Case 2, gf, is nonsingular
and tr(gf,) is disjoint from tr(f,), and therefore also from tr(f,). By a
second application of Case 2 we therefore infer that gf=gf.f, € T(L, m).

Case 4. tr(f)tr(g) = 0, f is nonsingular and ¢ is singular.
This case can be treated exactly like the preceding one.

Case 5. tr(f)tr(g) =0 and f and g are singular.

We write f on the form f = f,f, with f, and f, nonsingular, and
then apply Case 4 twice.

It only remains to prove the commutativity for the case when
tr(f) tr(g) = 0. Since every translation can be written as the com-
position of two nonsigular translations, we may assume that f and ¢
are both nonsingular.

Choose a nonsingular m-translation # with tr(x) disjoint from tr(f)
and therefore also from tr(g). Then gf = gfhh™ = ghfh™. By the
observation made in the treatment of Case 2 above, tr(hf) is disjoint
from tr(f), and therefore also from tr(g). Consequently

9f = hfgh™ = fhgh™ = fghh™ = fg .
The proof of the theorem is now complete.

A somewhat more general form of the observation made at the
end of the treatment of Case 2 in the above proof will be useful in
the next section.

Lemma 10.15. If f,g9e T(L,m), tr(f)tr(g) =0 and g is non-
stngular, then gf is nonsingular and tr(f) tr(gf) = O.

Proof. Choose xe C(L, m). As we saw in the preceding proof,
(x + f(x)gf(x) < f(x). Therefore

(@ + fl@)gf(x) = flw)gf(@) = 0,
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tr(f) tr(gf) = (@ + f@)) (= + gf(x))m
= [2 + (z + f@)gf(2)lm = am =0,
and 2gf(x) < f()gf(x) = 0.

11. Trace-preserving endomorphisms. As in the preceding
section we assume that L is a primary Arguesian lattice, gd(L) = 3,
and m is a dual point of L. We let n be the rank of L. The
endomorphisms of the Abelian group 7T(L, m) form a ring, and in ac-
cordance with the multiplicative notation used in T(L,m) we write

the endomorphisms as exponents. Thus, for two endomorphisms a and
B, and for fe T(L,m), we have

Frb = foff, fof = ().

DEFINITION 11.1. An endomorphism a« of T(L,m) is said to be
trace-preserving if tr(f*) < tr(f) for all fe T(L, m). We let R(L, m)
be the set of all trace-preserving endomorphisms of T(L, m).

COROLLARY 11.2. R(L,m) 1s a subring of the ring of all endo-
morphisms of T(L,m), containing the identity endomorphism.

Proof. Given a,Be R(L,m) and fe T(L,m), it follows from
Theorem 10.14 that

tr(fo+?) = tr(f°fP?) = tr(f°) + tr(f?) = te(f) .
Also,

tr(f ) = tr((f)") = tr(f*) = te(f) ,
tr(f1) = tr(f) = tr(S7) .

Therefore R(L, m) is closed under the ring operations, and 1 € R(L, m).

Our next objective is to prove that if f and f’ are m-translations
of L with tr(f’") < tr(f), then f’ = f*? for some B¢ R(L, m).

LemMmA 11.8. If f, g< T(L, m), f is nonsingular and tr(f) tr(g) =
0, then for all ae R(L,m) and x<c C(L, m),

g°(@) = (¢ + tr(g)(f*@) + tr(gf™)) .
Proof. We have ¢%(x) < ¢ + tr(g®) < = + tr(g) and
g°(x) = (9f M (@) = ) + tr((9f 7)) = f4(®) + tr(gf™) .
Letting
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y = (x + tr(9)(f*(®) + tr(ef) ,

we infer that g*(x)<y. To rule out strict inclusion we need only observe
that g*(x) € C(L, m) and by Lemma 10.15, ym = tr(g) tr(gf) = 0.

LemMA 11.4. If feT(L,m) 1is mnonsingular, then for all
a, Be R(L,m), f*= f? implies a = B.

Proof. We want to show that g* = ¢° for all g e T(L, m), and in
view of Theorem 10.9 it suffices to prove that g¢%(x) = ¢’(x) for
xeC(L,m). If tr(f)tr(g) =0, then this follows from the preceding
lemma. In the alternative case we choose ke T(L, m) nonsingular and
with tr(f) tr(k) = 0, and hence also tr(g) tr(k) = 0. By two applica-
tions of the special case already considered we infer first that hA*=h?,
and then that g* = ¢°.

The following observation will be used several times in the proof
of the next theorem.

LeEmMmA 11.5. If f, g€ T(L, m), tr(f) tr(g) = 0, z, y € C(L, m), and
y =+ tr(gf), then

(@ + tr(f)(y + tr(g)) e C(L, m) .

Proof. Letting z = (x + tr(f))(y + tr(g)), we easily check that
z + tr(g) = y + tr(g) and zm = 0, whence the conclusion follows.

THEOREM 11.6. If f, f'e T(L, m) and tr(f') < tr(f), then f'=f*
Sfor some B e R(L,m).

Proof. First assume that f is nonsingular. Choose x e C(L, m).
For each g e T(L, m) with tr(f) tr(g) = 0 there exists, by Lemma 11.5
and Theorem 10.11 a member g* of T(L,m) such that

(1) g*(®) = (x + tr(g))(f'(x) + tr(gf ™).

Later, a will be extended to the whole group T(L, m), and it will be
shown that the map so obtained is the required endomorphism.

Suppose g, he T(L, m) and tr(f) tr(g9) = tr(f) tr(h) = 0. We shall
prove that

(2) h%®) = g%(@) + tr(hg™).

Consider the formula

(3) (=, h(®), g(2)) N (f'(2), tr(hf), tr(gf)).

‘We have

(@ + @) (h(x) + tr(hf ) = (f(@) + tr(/Nf@) + tr(hf))
= flx) + tr(f) tr(hf™) ,
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9(x) + tr(gf™) = f@) + tr(gf™) .

Therefore, if

(4) tr(f) tr(hf~) = tr(gf™),
then (3) holds, and (2) readily follows. If (4) fails, then tr(f) tr(gf ") <
tr(hf'), and interchanging ¢ and » we find that

(5) 9%@) = h*(®) + tr(hg™).

However, since g%(x) and h%(x) are members of C(L, m), the formulas
(2) and (5) are equivalent, and (2) therefore holds in either case.

From (2) it follows that

(6) h*x) = (x + h@))(g*@) + tr(hg™))
whenever ¢, h e T(L, m), g is nonsingular, and the three cycles tr(f),
tr(g) and tr(k) are pairwise disjoint. In fact, the left hand side is ob-
viously contained in the right, and strict inclusion is impossible because
by Lemma 11.5 the element on the right is a complement of m.

We now describe the promised extension S8 of a. Letting f, = f
and «, = a, choose nonsingular m-translations f, and f, such that the
three cycles tr(f;) are pairwise disjoint, let f/ = f* and f; = f¥, and
define the corresponding partial maps «, and «, in the same manner
as a, = a was defined using f, = f. It is easy to check using (6),
that f* = f! for ¢ % J, and again using (6) we see that any two of
the maps «; agree wherever both are defined, and they therefore have
a common extension 8 to T(L,m). Furthermore, any two m-transla-
tions g and % belong jointly to the domain of at least one «;, and
using (2) with « replaced by «;, we infer that

(7) h(x) = g°(x) + tr(hg™).

From this it readily follows that

(8) tr(hfg~f) < tr(hg™).

In fact, we have

tr(hfg=?) = (K¥(x) + g°(x))m
= (9°(®) + tr(hg™)m = tr(hg™) .
Taking g in (8) to be the identity map, we obtain
(9) tr(h?) < tr(h).
Replacing & by kg in (7), we find that
(hg)’(®) < g°(x) + tr(h) .

The corresponding formula with ¢ and % interchanged also holds, and
because of the commutativity of T(L, m) this yields

(hg)*(®) = (9°(w) + tr(R)(h¥(x) + tr(g)) .

If tr(g) tr(kh) = 0, and hence tr(¢gf) tr(h?) = 0, then by Lemma 10.8,
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Rgi(x) = (g°(x) + tr(h’)(h(x) + tr(g?))
< (9%(@) + tr(R))(R() + tr(g)) ,

and since in this case the element

(9°(2) + tr(h))(hP(x) + tr(g))
is disjoint from m, it follows that
(10) (hg)? = RhPg’.
In order to prove (10) for the case when tr(g) tr(k) = 0, we choose
1= 0,1 or 2 so that tr(f;) is disjoint from tr(g) and tr(kg), and there-

fore also from tr(k). By repeated applications of the case already
considered we then have

(hg)’ff = (hgfi)® = R (9f:)’ = Wg°f7 .

In the second step use has been made of the fact that, by Lemma
10.15, tr(gf;) is disjoint from tr(g), and therefore also from tr(%).
Canceling f#, we conclude that (10) holds for all g, » € T(L, m). Thus
B is an endomorphism of T(L,m) and, by (9), B8e€ R(L,m). Since
f? = f’, this completes the proof for case when f is nonsingular.

If fis singular, we choose g € T(L, m) nonsingular with tr(f) tr(g) =
0 and let

u = (v + tr(g)(/'(@) + tr(fg7) .

Then w + tr(g) = « + tr(g), hence w + m = 1, and it follows from the
dual of Theorem 4.8 that there exists y e C(L, m) with y < u.

By Theorem 10.11, y = ¢'(x) for some ¢’ T(L,m), and by the
first part of this proof, ¢’ = ¢g° for some B e€ R(L,m). By Lemma 11.3,

fi@) = (v + tr(S Ny + tr(fg™)
= (@ + tr(N)(w + tr(f97))
= (f'(@) + tr(/N(Sf(@) + tr(fg7™)) = f'(@) .

Consequently f? = f’, and the proof is complete.

The remainder of this section will be devoted to the problem of
showing that R(L, m) is completely primary and uniserial.

DEeFINITION 11.7. For fe T(L, m) we let v(f) = n — a(tr(f)).
Thus if fe T(L, m) and e C(L, m), then v(f) = o(xf(x)).
LeEmMA 11.8. If f, g€ T(L, m) and tr(f)tr(g) = 0, then

otr(f) tr(gf)) = max {¥(g) — ¥(f), 0} ,
v(gf) = min {¥(f), »(9)} .
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Proof. First assume that v(g) < v(f). Choosing xe C(L, m) we
have
(@ + f@)gf(x) < (f(@) + tr(N)(f®) + tr(g)) = flx) ,
so that (z, f(%), 9f(x))4, and therefore
tr(f) tr(gf) = (@ + f@)(@ + gf@)m = (& + f@)gf(x)m .

Now zg(x) < 2f(x), and therefore both xzg(x) and its image under
Js f(®)fo(z), are contained in f(x). This implies that f(x)fg(x) = zg(x) <z,
and we therefore find that ‘

tr(f) tr(gf) = am = 0.

Since tr(f) + tr(g) = tr(f) + tr(gf), and the two summands on each
side are disjoint, tr(g) and tr(¢gf) must have the same dimension, and
therefore y(gf) = v(g), as was to be shown.

If v(f) < v(g9), then, by the first part of the proof, tr(g)tr(gf) =0,
and the cycles tr(f) and tr(gf) have the same dimension. From the
equation tr(f) + tr(gf) = tr(g) + tr(gf) we therefore conclude that
o(tr(f)) = do(tr(g)) + o(tr(f) tr(gf)), and consequently

o(tr(f) tr(gf)) = o(tr(f)) — o(tr(g)) = v(g) — v(f) .

LEmmA 11.9. For any f, g € T(L, m) and a € R(L, m), if f is non-
stngular, then v(g*) = min {¥(f) + v(g), n}.

Proof. First assume that tr(f) tr(g) = 0, choose « € C(L, m), and let
w = tr(f), v = tr(9), w = tr(gf ™), v’ = tr(f), v = tr(g") .
Then by Lemma 11.3,

v = (x + g%(@)m = (x + v)(® + f(®) + w)m
=@+ v)(x+ % + wym= v + w).

We also have v + v =v + w = w + % by Theorem 10.14, uv = 0 by
hypothesis, and vw = 0 by Lemma 10.15. Using this we obtain the
isomorphisms

[uw, u] = [w, v + w] = [w, v + w] = [vw, v] = [0, 7] .
Here ' + uw is mapped onto (4’ + w)v = v'. Therefore
o) = o’ + uw) — d(uw) = o(w') — d(uw'w) ,

(1) v(g7) = v(f*) + o(w'w) .
If v(g) + v(f*) < n, then 6(v) + d(w') = n. Since, by the preced-
ing lemma, é(uw) = n — é(v), this yields é(u’') = d(uw). Inasmuch as
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w' and uw are subcycles of u, we infer that ww < %/, uw = w'w,
o(w'w) = n — d(v) = v(g), and therefore by (1),

v(9%) = v(f*) + v(g) .

If v(g) + v(f*)=mn, then d(v) + ow') £ n,dw) < n — @) = d(uw),
% = w. In this case (1) yields

v(g7) = »(f*) + a(tr(f*) = n .

For the particular case when f and g are nonsingular and their
traces are disjoint we see that v(f*) = v(g*). To prove the lemma
for the case when tr(f)tr(¢9) = 0, we therefore merely replace f by
another m-translation i such that tr(g) tr(k) = 0.

DEFINITION 11.10. For any a e R(L, m) we let v(a) be the unique
natural number %k such that v(f¢) =k for every nonsingular m-
translation f.

COROLLARY 11.11. For all ge T(L, m) and «, B e R(L, m),

v(9%) = min {¥(g) + v(@), n},
v(aB) = min {¥(a) + v(B), n} .

THEOREM 11.12. For all o, B8 e R(L, m), in order that there exist
N e R(L, m) with a = \B, it is necessary and sufficient that v(a) = v(B).

Proof. Assuming that v(a) = v(B8), choose nonsingular m-transla-
tions f and g with tr(f) tr(¢) = 0, and choose x e C(L, m). Let

w=tr(f7g%), y= (@) +u(x+tr(g).

By Lemma 11.8, u is disjoint from tr(g®), and hence also from tr(g).
Therefore y tr(g) < ym = u tr(g) = 0, and since tr(g) is a point in the
lattice [0, 2 + tr(g)], it follows by Theorem 4.8 that tr(g) has a comple-
ment z in that lattice with y < z. Clearly z e C(L, m), and hence by
Theorems 10.11 and 11.6 there exists ) e R(L, m) such that g*(x) = z.
By Lemma 11.3,

g¥(@) = (x + g @) f(x) + tr(f7'g%) .
Since tr(f~'g?) = (f(x) + 2)m = (f(®) + y)m = u, this yields

g*¥(@) = (@ + Y(fPx) + u)
= (& + flw) + u)(@ + tr(g)(f*(®) + g*(x))
= (x + tr(f) + w)g (@) = g*(=) .
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Thus ¢*(x) = g*(x), therefore ¢** = g by Theorem 10.9, and hence
M3 = «a by Lemma 11.4. The opposite implication is an immediate
consequence of Corollary 11.11.

THEOREM 11.13. For all «a,Be R(L,m), in order that a = Bu
for some pe R(L,m), it is mecessary and sufficient that v(a) = v(B).

Proof. Assuming that y(«) = y(B), choose a nonsingular m-transla-
tion f. Then tr(f*) < tr(f?), so that by Theorem 11.6 there exists
preR(L,m) with f*= (f%)" = f*. By Lemma 11.4, a = Bx¢. The
converse is an immediate consequence of Corollary 11.11.

THEOREM 11.14. R(L,m) is a completely primary uniserial ring
of rank m. The set of all elements o€ R(L, m) with v(a) # 0 is the
unique maximal proper ideal P of R(L,m), and it coincides with
the set of all nonunits of R(L, m). For k=0,1,---,n, P* is the
set of all ae R(L, m) with v(a) = k.

Proof. For k=0,1,.--,n let A, be the set of all ae R(L, m)
with v(a@) = k. From the two preceding theorems we see that if
y(a) = k, then aR(L, m) = R(L, m)a = A,. Thus the sets A, are two-
sided ideals of R(L, m), and there are no other right or left ideals.
In jparticular, P = A, is the unique maximal proper ideal of R(L, m).
Finally, choosing a ring element a with v(a) = 1, we use Corollary
11.11 to infer that v(a*) = k, and therefore A, = a*R(L, m) = P*.

12. The representation theorem. We still assume that L is a
primary Arguesian lattice of rank n, gd(L) = 3, and m is a dual peint
of L.

DEFINITION 12.1. For « = m we let
F. () = {fe T(L, m): tx(f) < =} .
LEmMA 12.2. F,, is an isomorphism of [0, m] onto the lattice of
all R(L,m) submodules of T(L, m).
Proof. From the fact that
tr(fg) = tr(f) + tr(g) ,  tr(f) = tr(f) ,

we see that F, maps [0,m] into the lattice L of all R(L, m) sub-
modules of T(L, m). It is also obvious that if z < y < m, then F,(x) &
F,.(y). Conversely, suppose «, ¥ [0, m] and « £ y. Then there exists
a cycle z such that 2 < 2 and z £ y. By Corollary 10.12 there exists
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fe T(L,m) such that tr(f) = z, hence fe F,(x) and f¢ F,(y). Thus
F,(x) £ F.(y).

To complete the proof it suffices to show that F, is onto. How-
ever, before doing this, we show that F,, preserves least upper bounds,
i.e., that

F.(u+7v) = F,(uwF,(v)

for all %, v < m. This will follow if we show that for any m-transla-
tion f with tr(f) < u + v there exist m-translations g and % such that
f = gh, tr(g) = u, tr(h) < v.

Letting w = tr(f) we may assume that v + v =v + w = w + u,
for otherwise » and v can be replaced by the elements u(v + w) and
v(u + w), and this condition will be satisfied. Choose x € C(L, m) and
let ¥y = (x + u)(f(x) +v). Then y + w = x + u, hence y + m = = + m,
and it follows from the dual of Theorem 4.8 that there exists z € C(L, m)
with z < y. Let g be the m-translation with g(x) = 2, and let h=g7'f.
Then tr(g) = (x + 2)m < u and

tr(h) = (f(®) + g(@)m = (f(@) + 2)m
= (fle) + yym = (fl@) + vym = v,

as was to be shown.

Now suppose Ue L, and let 4 be the sum of all the cycles z < m
with F,(x) & U. It follows from Theorem 11.6 that for any m-transla-
tion f, F,(tr(f)) is the cyclic submodule f**™ of T(L,m). Therefore,
if feU, then F,(tr(f)) S U, and consequently tr(f) < u, fe F,(u).
Thus U & F,(#). That this inclusion must actually be an equality
follows from the fact that « is the sum of finitely many cycles «
with F,(x) & U, and that F,(u) is the least upper bound of the cor-
responding modules F,(x).

THEOREM 12.3. L s isomorphic to the lattice of all submodules
of a finitely generated module over R(L,m).

Proof. Choose a module U that is a direct sum of a free cyclic
module kR(L,m) and a module M isomorphic to T(L,m). Let L(U)
be the lattice of all submodules of U, and L(M) the lattice of all
submodules of M. Obviously «R(L,m) is a complement of M in L(U),
and since the right ideals of R(L, m) form a chain with » + 1 elements,
kR(L,m) is an n-cycle. In view of the preceding theorem, L(M) is
of rank » and geometric dimension two or more. Therefore L(U) is
of rank n, and its geometric dimension is at least three.

The given isomorphism ¢: M = T(L, m), together with the iso-
morphism F,, gives rise to an isomorphism @: [0, m] = L(M) with
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D(x) = {§ € M: ¢(8) € Fn(2)}

for all  <m. By Theorem 9.1, in order to show that @ can be ex-
tended to an isomorphism of L onto L(U) it suffices to show that it
preserves the operation Q. We therefore consider five cycles a,b, ¢,
2,y = m and their images 4, B,C, X, Y & M under @, and let

z2=Q(a,b,c 29, Z=QA,B,C X, Y).

Also let Z’ be the set of all £e U such that for some 7,{e U,
(1) neB, ¢ —neX,eC,&—-LeY,n—-LcA.
We claim that
(2) Z=Z'< 0(z).
This will complete the proof, for by Lemma 8.3, z and Z have the
same dimension, and strict inclusions are therefore not possible.
Choosing submodules S and T of U such that (S, T') is admissible
for A, and letting

V=ES+Bn(T+C), W= +Xn(T+7Y),

we have Z = (V + W) N M. Therefore, if £c Z, then there exists A\

such that Ne V and & — ne W. Since rne V, there exist #,{ such

that ne B, A\ — eS8, {eC, » —{eT. We now infer that
E—ne(W+S)NnZ+B) & X,
E-Ce(W+T)NnEZ+C)s Y,
N—CS+T)NnB+C)SA.

Consequently (1) is satisfied, and we have £e¢ Z'.

The second inclusion in (2) is equivalent to the assertion that if
f»9, he T(L, m) are such that

geF,0), fo= € Fo(x), he F,(c), fh™' € F,(y), gh™* € F,(a) ,

then fe F,(z). In other words, it is equivalent to the assertion that if

(3) tr(9 b, tr(fg) sa,tr(h) <c,tr(fr™) Sy, tr(gh™) < q,
then tr (f) < 2. Assuming that (3) holds, choose se C(L, m) and let
t =gh™'(s) and o =tr(gh™') = (s +t)ym. Then o <a and (s, ?) is
admissible for a’. Letting

Z=Q,b,c,2,y) = Qb e, 4, 9) ,
we therefore have 2z’ < 2. Letting
v=(+0bEt+c), w=(E+a)t+y),
we have (v + w)m = 2’. Since tr(h) = (9(s) + gh~'(s))m, we have

9(s) = (s + tr(9)(gh™(s) + tr(h) = v.
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Similarly
gf=(s) = (s + tr(gf))(gh™(s) + tr(hf™)) = w .
Consequently
tr(f) = (9(s) + gf())m = (v + wym = 2z,

as was to be shown.
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