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CHARACTERIZATION OF CERTAIN INVARIANT
SUBSPACES OF H? AND L? SPACES DERIVED
FROM LOGMODULAR ALGEBRAS

SAMUEL MERRILL, III, AND NAND LAL

Let A= A(X) be a logmodular algebra and m a represent-
ing measure on X associated with a nontrivial Gleason part.
For 1 < p < oo, let H?(dm) denote the closure of A in L?(dm)
(w* closure for p = o), A closed subspace M of H?(dm) or
Lr(dm) is called invariant if f€ M and g € A imply that fg € M.
The main result of this paper is a characterization of the
invariant subspaces which satisfy a weaker hypothesis than
that required in the usual form of the generalized Beurling
theorem, as given by Hoffman or Srinivasan,

For 1 < p < o, let I* be the subspace of functions in H*(dm)
vanishing on the Gleason part of m and let A, = { feA: S fdm = O}.

THEOREM. Let M be a closed itnvariant subspace of L*(dm) such
that the linear span of A,M 1is dense in M but the subspace R =
{feM: f1 I°M} is nontrivial and has the same support set E as M.
Then M has the form y,-F-(I)* for some unimodular function F.

A modified form of the result holds for 1 < p < «. This theorem
is applied to give a complete characterization of the invariant subspaces
of L*(dm) when A is the standard algebra on the torus associated with

a lexicographic ordering of the dual group and m is normalized Haar
measure.

1. Invariant subspaces. In 1949 Beurling [1], using function
analytic methods, showed that all the closed invariant subspaces of
H* of the circle have the form M = FH? where |F|=1 a.e. In
1958 Helson and Lowdenslager [3] and [4] extended the result to
some but not all subspaces of the H? space of the torus, using Hilbert
space methods. In the past 10 years the latter arguments have been
extended by Hoffman [5, Th. 5.5, p.293], Srinivasan [8], [9], and
others to prove the following generalized Beurling theorem. If m is
a representing measure for a logmodular algebra 4 and if M is an
invariant subspace of L*(dm) which is simply invariant, i.e., if

(1) the linear span of A,M is not dense in M,
then M = FH* for |F'|=1. In the general case (even the torus case)
not all invariant subspaces satisfy this hypothesis. Our purpose is to
extend the characterization by weakening hypothesis (1).
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We assume throughout the paper that 4 = A(X) is a logmodular
algebra [5] of continuous complex-valued functions on a compact
Hausdorff space X and that m is the unique representing measure on

X for a complex homomorphism of A, i.e., S fodm = S fdm S gdm for

all f,9e A. Furthermore we assume that this complex homomorphism
lies in a Gleason part P(m) containing more than one element. A
function fe H>(dm) is called inner if | f| =1. For each fe H*dm)

we write f(p) = S fdp for ¢ in P(m), where ¢ also denotes the

representing measure for the homomorphism .

In [10] Wermer showed (for A a Dirichlet algebra) that there
exists an inner function Z such that Z maps P(m) onto {\:|\| < 1}
and such thaAt the eguation

(2) G(Z(p) = flp)
associates with each fin H*dm) an analytic function G(\) = D7, a,\"
for |N| <1 where a, = \ Z"fdm. (See [5] for the extension to log-

modular algebras.) Denote by F' the boundary value function of G
(i.e., the function in L*(d#) whose Fourier coefficients are a,, where
df is normalized Lebesgue measure on {|1]| = 1}).

Elementary arguments (including the Riesz-Fischer theorem) esta-
blish that the mapping @(f) = F can be extended to a bounded linear
transformation of L*(dm) onto L*df), using the fact that L*(dm) =
H¥dm) @ Hi(dm) [5, Th. 5.4, p.293].

Denote by 2? the closure (in L”(dm)) of the polynomials in Z;
denote by &7 the closure (in L”(dm)) of the polynomials in Z and
Z. (For p = oo, the closure is taken in the w* topology.) Thus
= 2@ 2%, and @, restricted to &7, is an isometric isomorphism
onto L*d#), induced by the correspondence Z — ¢*.

Actually @ can be extended to a continuous transformation of
L'(dm) onto L'(d#) induced by formula (2) and for 1 < p < - carrying
~? isometrically onto L?(df). (This map also carries H*(dm) onto
H*(d#).) This follows from the following result of Lumer [6, Th. 3, p.
285] (and our Lemma 5 below): The correspondence Z— ¢* induces an
isometric isomorphism of _<#” onto L*(dd) for each p,1 < P < -, which
carries .<~? onto H"(d0). See also Merrill [7, Proof of Th. 1]. For f
and g e L¥(dm), @(fg) = O(f)P(9) (see the proof of Lemma 10 in Wer-
mer [10]). We call @ the natural homomorphism of L'(dm) onto L'(d9).

Define I* = {fe Hr(dm): S Z"fdm=0,2=0,1,2, ---}for 1<pLoo,
so that H*dm) =27 I Using (2) it is not hard to check that
I’ ={fe H(dm): f(p) =0, p € P(m)}. For any subset S <& L*dm), denote
by [S] the closed linear span of S.

DEFINITION. Let M be a closed invariant subspace of L*(dm). M
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is called simply invariant if A,M is not dense in M (w* dense for
p = oo) and doubly invariant if AM = M. We call M sesqui-invariant
if ZM < M but M is not invariant under A.

There exist closed invariant subspaces of L*(dm) which are sesqui-
invariant, i.e., neither simply nor doubly invariant. For example, let
M = I*. If I*® satisfied (1) so that it had the form FH? F inner, then
F would be in I?, so that ZF would be in I* by Lemma 1 below. But
if I* = FH?, then Zec H?, which is not the case.

Our main purpose in §2 is to relax hypothesis (1) and to obtain
a characterization of certain invariant subspaces of L*(dm) not covered
by the Beurling theorem, in terms of the support set of M, a unimodular
function, and 7°. At the end we extend the result to 1 < p < oo.
Examples in which I* is nontrivial are given in §3 together with
applications of the main theorem. First we give three lemmas of a
preliminary nature which collect elementary and known facts.

LEMMA 1. If feI®, then Z"feI®.

Proof. Clearly it suffices to show that Zfe H?, for then Zf 1 g
and hence ZfeI®>. Let he Hi(dm) and write

a, = SZ_”fdm, b, = S Z hdm .
Then SZ_fhdm = ab, + ab, =0 so Zfe H*

LEMMA 2. Let M < L¥(dm) be a closed subspace. Then the follow-
mg are equivalent

(i) AMc M

(il) H*M<& M

(iii) Ho;M = ZM = A, M].

Proof. That (i) implies (ii) follows from the w* density of A in
H>(dm). To see that (ii) implies (iii) observe that by definition of Z,
H: = ZH* and hence H, = ZH', by taking closure in L. By con-
sidering conjugate spaces and applying Corollary to Theorem 6.1 in
Hoffman [5, p. 298], we have H; = ZH>. Using (ii), HoM = ZH>M =
ZM < H;M. In any case HoM = [A,M] by the w* density of A4, in
Hz. This establishes (iii).

To show that (iii) implies (i), it suffices to show (iii) implies (ii).
We have seen that H: = ZH™ or ZHz = H>. Using (iii) this yields
HM = ZH:M < ZZM = M.

LEMMA 3. Let M = L¥dm) be a closed invariant subspace. Then
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the following are equivalent.
(a) M = FH* for some unimodular function F.
(b) MoOI[A.M] + {0}.
(c) MO ZM =+ {0}.
(d) M is not tmvariant under Z.

Proof. The equivalence of (a) and (b) is the generalized Beurling
theorem. Items (b) and (c) are equivalent by Lemma 2. If (a) holds
then so does (d). For if M were invariant under Z then since F e M,
ZF e M = FH?, so that Ze H* which is not the case. On the other
hand, if (d) holds, ZM is a proper closed subspace of M, i.e., (c) holds.

DErINITION. If fe L'(dm), we define the support set of f (denoted
by E;) as the complement of a set of maximal measure on which f
is null. If M is a closed subspace of L'(dm), the support set of M
(denoted by E)) is defined as the complement of a set of maximal
measure on which all fe M are null. Clearly E; and E, are defined
only up to sets of measure zero.

2. The invariant subspace theorem.

THEOREM 1. Let A be a logmodular algebra and m a fixed
representing measure such that the part P(m) contains more than
one element. Let M be a closed sesqui-invariant subspace of L*(dm)
and let E be the support set of M. Let R= MO [I°M] and L =
M O [I=M"] where M* = {feyL¥dm): f L M}. Then

(8) L is nontrivial and the support set of L is E if and only
if Yz€ L and M has the form M = Y -F-I* for some unimodular
function F, and

(4) R s nontrivial and the support set of R is E if and only
if Yz € L and M has the form M = yz-F-(I)* = Yz F-(Z* @ I*) for
some unimodular function F'.

We need several lemmas, the key fact being Lemma 8.

LEMMA 4. Let Z be the Wermer embedding function. If 6 is
Lebesgue measure on T, then 0{Z(x):xe X} =1 and m(Z'(E)) =0 ¢f
and only if 0(E) =0, for each measurable subset E of T. Moreover,
if F in L{d6) corresponds to f € " under the natural homomorphism
@, then f(x) = F(Z(x)) a.e.

Proof. Suppose that §(Z(X)) <1. Then there exists a closed set
K < T\Z(X) such that 6(K) > 0. The functions f,(t) = 1/(1+np(t, K)),
where p denotes distance, are continuous for each n and converge to
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Ax(t) pointwise everywhere and in L*df). Let g, and g denote the
images in &* of f, and yx, respectively, under the natural correspond-
ence. Hence g, — ¢ in L*(dm) and by passing to a subsequence we may
assume that g,(x) — g(®) a.e. (dm). Since the f, may be approximated
by trigonometric polynomials, g,(x) = f.(Z(x)) a.e. (dm), and the latter
sequence converges to zero a.e. (dm) by the definition of the f,. Hence
g(x) = 0 a.e. (dm). But this contradicts the fact that g corresponds
to a nonzero function. Thus 4(Z(X)) = 1.

This also proves that if 6(K) > 0, then m(Z (&) > 0. Now
suppose that 6(E) = 0, i.e., that ys(¢t) = 1 a.e. (dd), where S = T\E.
Choose closed sets K, S K, <, -+, = S, such that 4(K,) — 6(S). Using
the argument of the previous paragraph, we can show that the
characteristic function of K, corresponds to that of Z~'(K,). Thus
the characteristic function of Z-'(K,) converges in L*dm) to the
function 1. But the characteristic function of Z—*(K,) also converges
to that of Z-'(U K,). Thus the latter function is 1 a.e. Thus
m(Z7(S)) = 1 so that m(Z'(E)) = 0.

To obtain the last assertion of the lemma, let F'e L'(df) and f
the corresponding function in the isomorphic image of L'(df) in L'(dm).
Choose a sequence F', of polynomials in ¢ and e~* which converge to
F in L'(df) and a.e. Let f, correspond to F, so that f, — f in L'(dm)
and can be replaced by a subsequence which converges a.e.

Since F', are polynomials, f,(x) = F,(Z(x)) a.e. (dm). Since F,(t)—
F'(t) a.e. (d0), the first part of the lemma implies that F,(Z(x)) — F(Z(x))
a.e. (dm). Thus f(zx) = F(Z(x)) a.e.

LEMMA 5. If 1 < p < oo, then
H(dm) = 2" I*

z_vhm'e @ denotes algebraic direct sum. Denote by NP the closure of
I’@P I in L (dm) (morm closure for 1 < p < oo; w* closure for p =
). Then

L¥dm) = <»> @ N* .
Proof. First assume 1 < p < . If fe H?(dm), then f defines a
bounded linear functional on L*(dm) which (via Lumer’s isometry)

induces a bounded linear functional on L‘d#), which in turn is
represented by some F'e L?(df). It is easy to show that

SZ”fdm - S ¢ Fdf

for all integers n. Hence F e H?(df), and by Lumer’s isometry there
exists ge 2°? with
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SZ”fdm = S Z"gdm

so that f — ge I*. Hence H?(dm) = 2P ", 1 < p < oo,

Now let p =1 and fe H'(dm). Since the lemma holds for p =2
and H' is the closure of 2*@ I* there exists g,€ 2% and h,cI?
such that the functions f, = ¢, + h, converge in L' to f. We will
have shown that H'(dm) = 2°'@ I' if we can establish that {g,} forms
a Cauchy sequence. For this it suffices to show that whenever f =
g+ h for ge 27* and hel? then ||g|, =Z || f .-

Applying Lumer’s isometry for p = 1 for the second equality and
for p = o for the fourth, we have

. |[ otas

Hall={ Igldm = |o(g)i0 -
X T Hell=
= sup S qu?n‘ = sup S fqdm} =lrfl,
1HglleS1 X Hallo=1 X

where ¢ ranges over &=. Thus H*(dm) = 2?P*,1 < p < co.
For the second part of the lemma, denote

M? = {fe Lr(dm): S Z*fdm = 0 all integers n} .

It can be shown that L?(dm) = <* @ M?® by the same arguments we
used for the H? case. We can complete the proof of the lemma by
showing that M? = N?,1 < p < oo.

Clearly N» = M?. Let fe M”. Since Hz(dm)@ H?(dm) is dense
in LP(dm) [5, Th. 6.7, p. 305] and H?(dm) = 2°?@ I* by the first part
of the lemma, we can choose ¢,c.<? and h,c N” such that

S k(g + h)dm — S kfdm
for all ke L*(dm). Write k = k, + k, where k, ¢ <©? and k,e M?. Thus

Sklgndm - Skl(gn + hy)dm—s S k fdm = 0 .

Also S k.g,dm = 0. Thus S kg,.dm — 0. Since the subspace N? is norm

closed for 1 < p < o, it is also weakly closed, so fe N?. If p = oo,
clearly fe N=.

LEMMA 6. Let M be a closed sesqui-invariant subspace of L*(dm),
and lez R=MOI[I"M]. If feR and E; is the support set of f,
write f for the characteristic function of E;. Then f 1 I

Proof. Observe that for any f, g € R the function /g is orthogonal
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to both I= and I=. For if heI>, gheI~M so that f 1 gh, i.e., f§ Lh.
Similarly fg L I=. In particular |f|* = ff L I= and I~. It follows
easily from Lemma 5 that | f|* lies in &', If F is the function in
L'(d6) corresponding to |f|?, we have |f(x)|* = F(Z(x)) by Lemma 4,
In particular f(z) = 0 if and only if F(Z(x)) =0 so that f= FoZ.
Since F'e L¥d#), it follows that fe <=2, i.e., L I%

LEMMA 7. Suppose that M is a closed sesqui-invariant subspace
of L¥dm) and let R= MO |[I*M]. Then there exists fe R with
Ef - ER.

Proof. If f,ge R, note that there exists e R with ¥, = E;UE,.
For let FF = E\E;. Since y,e <"* by Lemma 6, y,9€ B. Then f +
Yrg € R and has support set E; U E,. Now let a = sup {m(E;): fe R}.
Choose f, € R with m(E; )—a and E; S E;, & ---. Alter the functions
f. by the technique above so that their supports are disjoint. Then
fo=2..2f, e R and has support G with m(G) = a. If m(£,) > «,
then there would exist a set of positive measure in E;\G and a function
g€ R such that g would not vanish on that set. But then E; U E,
is the support set for some function in R, although m(E; U E,) > a.
This contradiction shows that E, = E,.

LEMMA 8. Let M be a closed sesqui-invariant subspace of L*(dm),
R=MQO[I*M], and let E be the support set of R. Then there exists
a unimodular function F e LXdm) such that y,FeR. If m(E) =1,
then FeR.

Proof. By Lemma 7, there exists fe R with E, = E. Define

Flo) = f(w)/lf(w) s zzg

Then |F(x)| =1 a.e., and f = F|f]|.

As in the proof of Lemma 6, since fe R, there exists a function
Fe LY(df) such that |f(x)|* = F(Z(x)) a.e. Thus F =0 a.e. and
v'F e L¥df). Let h be the function in the isomorphic image of
LXdp) corresponding to /F. By Lemma 4, V/F(Z(x)) = h(z) a.e.,
ie., | fi=he <o It follows that f = F|f|e F&*. Clearly [Z"f] &
F.<~* for all integers n. Writing N = [Z"f], we have FN = [Z"Ff].
But Z*Ff = Z*(| f|/f)f = Z*|f| on E, and is zero off E. Therefore
Z"Ffe <% so that FN < <*. However, F'N is invariant under Z
and Z, so that its isomorphic image in L*d#) is doubly invariant and
must have the form QL*df) where Q = @ ¢ L*df). Thus FN = q.&*
where ¢ is the corresponding idempotent in .&#%. It is clear from the



470 SAMUEL MERRILL, III, AND NAND LAL
definition of N that ¢ =y,. Hence N = F'y,.<?, so that Fy,e NS R.

REMARK. If M is a closed sesqui-invariant subspace of L*dm),
then M*: (as defined earlier) is a closed subspace of L*(dm) invariant
under H=(dm) and Z. Let L = M* O [I~M"']. Then dual forms of
Lemma 6, 7, and 8 hold with L in place of R.

Proof of Theorem 1. First we assume that M = y FI* for some
unimodular function F' and that y,e ¢°* and show that y,Fe L, so
that EF, = E. To this end let A e I®. Then

SXEF 1eFhdm = S xehdm = 0

by assumption, so that y,F'e M*. To see that y,F1I~M", let heI"
and ke M*'. It suffices to show that y,F L hk, i.e., that y,Fh 1 k.
But this follows since k¥ 1 M. A dual argument shows that M =
v:F(I*)" and y,e <* imply that y,FeR so that E, = E.
Conversely, let us suppose that E, = E. By Lemma 8, there exists
a unimodular function F'e L*(dm) such that y F e L. It follows that

(5) FH*(dm) 2 M 2 yFI*.

To prove the first inclusion in (5) it suffices to show that M' 2
FH? where this time M+ denotes the orthogonal complement in all of
L¥dm). Thus let he A,, so that hMS M and y.F 1 hM. Since the
functions in M vanish off E by assumption it follows that F 1L hlM,
i.e., Fh 1 M, so that FH: = M* as required.

To obtain the second inclusion, let g € I* and suppose that f1 M
in yyL*(dm). It follows easily from Lemma 5 that I= is dense in I*.
Thus it suffices to show that y.Fg.lf, i.e., that y,F 1 gf. But this
follows since y,F L I=M" by construction.

Multiplying (5) by F we have

(6) H¥dm) 2 FM 2 y,I*.

We use the invariance of M under Z to show that FM = y,I°
For let fe F'M and write f = f, + f, where f,e 2%, f,eI’. By Lemma
6, xz€.Z* so that

S =%ef = Yufi + Aule

is the unique orthogonal decomposition of f into <% and I’. However,
since f and yf. are both in H® (Lemma 1), it follows that y.f, e H*.
Therefore ¥pf,€ 2°*. But y.f, vanishes on the complement of E so
that either (i) m(E) =1, or (ii) yzf, = 0.

If case (i) holds, H> 2 FFM 2 I* so that either M = I* or there
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exists fe FM with SZ *fdm # 0 for some nonnegative integer n. By
considering the least integer for which such an f exists, it is not
hard to see that FM would not be invariant under Z. Thus M = FI?.

If case (ii) holds, f = yzfc I* and y.f = fe yzI*. Thus FM < y,I
Together with (6) this implies that FM = y,I*. So that M = y,-F-I.

We turn now to case (4) in which R is nontrivial and the support
of (R)y=FE. Let N=M"={feldm): E; = FE and f1 M}. Then N
is the complex conjugate of a sesqui-invariant subspace and

N'©[I*N]l=MO["M]=R.

We apply (a trivial modification of) the first part of the theorem to
N. For this we need to know that Ey, = E. If G = E\E, is not
the null set, then y,-L*dm) S M which is not possible. Thus E, = F
and N = y,-F-I* for some unimodular function . Hence

M=N:=y,F-I)" =y,-F-(L QD).

We now extend the main result to a more general class of sub-
spaces of L*(dm).

THEOREM 2. Let M be a closed sesqui-invariant subspace of L*(dm).
Let M, ={feM: f-L>(dm) =S M} and M,= MO M,, and R, = M,O
[I=M,]. Assume that E,, the support set of M, is the same as the
support set of R,. Then

M = yp - LXdm) @ 1z, - F- I
where F' is unimodular, E, is the support set of M, and Xz, L I*.
Proof. Since M, is a closed doubly invariant subspace of L*(dm),

there exists a measurable set E, & X such that M, = x; -L*(dm) (see
Helson [2, Th. 2, p.7]). It is easy to check that

M,={feM:f=0 on E}.

Since M is sesqui-invariant, M, = {0}, and is itself sesqui-invariant.
By Theorem 1, M, = y,-F-I* for some ), | I* and F' unimodular.

The final theorem of this section characterizes the invariant sub-
spaces of L?(dm) for 1 < p < o,

THEOREM 3. Fix p in the range 1 < p < o, Let M be a closed
sesqui-tnvariant subspace of LP(dm) and let E be the support set of
M. Let R={feMNL:f1I°M} and L= {feM NL*"f1LI"M}
where q 1s the conjugate index to p and M* = {fe yz-LYdm): f 1L M}.
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Then

(1) M= y;-F(&£* + I*) where Yz < and F is a unimodular
function tf and only if E is the support set for R.

(ii) M = yz-F-I* where y; € .&* and F is a unimodular function
if and only if E is the support set for L.

Proof. It is easy to show that if M has form (i) or (ii) then E
is the support set of R or L, respectively. Let us prove the converse.
First we prove the theorem for p = 1. Suppose that E is the support
set of R. Let N = MN L¥dm); N is a closed sesqui-invariant subspace
of L*(dm). Let R* ={fe N:fLI>N}. Since RCR*, we get E is the
support set of R* which in turn is the support set for N. Applying
the L* invariant subspace theorem to N, we get N = y,-F (< + IY).
Since N & M, we get ¥, -F(&F* + I') & M. For fe M, define k = | f|'
for | f| = 1and 1 for |f| < 1. Takehe H*dm) outer such that | 2| = k.
It is easy to see that 1/he H=(dm) and therefore f/hec M. Since
flh e L*(dm) also, we get flhe N = - F(<* + I*) and therefore fec
Ae- F(&Z* + I'). Thus we get M = - F-(<"' + I'). When E is the
support set for L, we get M = y;-F-I' by applying an argument
similar to the above.

Now let us prove the theorem for p = «. Suppose that E is the
support set for R. Let N = [M] (where [ ] denotes closure in L*dm).
Let R* = {fe N:f1LI>N}. It is clear that E is the support set for
N which in turn is the support set for R*. By the L? invariant
subspace theorem we get N = y,-F (<% + I%). Since M & NN L=(dm),
we get M Sy, -F(<~ + I*). By applying the L' invariant subspace
theorem to M*, we get M* = y,-G-I', |G| = 1. It is easy to see that
1e GI' Ly F(&= + I*) and therefore M = y,-F(= 4 I*). When E
is the support set for L, we get M = y;-F-I~ by applying an argu-
ment similar to the above. The proof for 1 < p < 2 is similar to the
one for p =1 and that for 2 < p < « is similar to the one for p = .
Thus the theorem is true for 1 < p < co.

3. Applications. We give an example of a logmodular algebra
and a representing measure m for which I* is nontrivial and show
that the above theorems, together with known results, completely
characterize the invariant subspaces of L*(dm).

ExAMPLE 1. Let T ={AeC:|x]| =1} and let 4 = A(T? be the
logmodular algebra of continuous functions on 7* which are uniform
limits of polynomials in e"’¢™® where

n,m)e S = {(n, m): n > 0} U {(0, m): m = 0} .

The maximal ideal space of A can be identified with
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{@: 101 =1} x T)U ({0} x {p: @l =1}),

with normalized Haar measure m identified with § = ¢ = 0. The part
of m is {0} X {p:|@| <1}. The Wermer embedding function is given
by Z = ¢**, 2°* is the L? closure of the polynomials in ¢i"*, m = 0,1, -- -,
and I? is the L? closure of the polynomials in e*?¢i”¢ for n = 1.

Let now M be a closed invariant subspace of L*(dm). Observe
that M is doubly invariant if and only if €M = M. In this case
M = yz-L*dm), for some measurable set £ = T

If MO e’M + {0} and M = M we show that R == {0} and that
E, = E, (see Theorem 2). To see that R = MO e“’M, let ge M,
gleM. Since M is sesqui-invariant g | e~™¢e? M, for m = 1,2, ---.
Hence g L [I~M].

Define M, ={feM:e"™feM,n=1,2,---} and M,= MO M.,.
Then M, = y, - L*(dm) for some measurable E,. We show that Theorem
2 applies to M,. Let K be the complement of E, in T>

Since yxe€ &?, we get y M, = M,. Also yx-M,1 R so xzM,C
¢? M, and therefore y.M, = yx(e’M,). But M, cannot contain a doubly
invariant subspace, so E; = FE,. Theorem 2 applies and

M, = ¥z, F'(I)*

for some unimodular function F’. Writing F = ¢ *F’, we have M, =
Xz, F-I*. Note that the proofs of Lemmas 4, 6, and 7 are much
simpler for the torus case than for the general case.

If MO e“M + {0}, then M = FH* by the generalized Beurling
theorem.

Suppose that we now replace T x T with B x T, where B is the
Bohr compactification of the real line and consider A = A(B x T).
Again Haar measure is associated with a nontrivial part. Denote
by y.(x) the characters on B, where te R. I* is generated by the
characters y.(x)e™ for = > 0. Clearly (3) holds for M = y.I* and (4)
holds for M = y.(I* @ <~?), for any fixed z. However one can use
the example in Helson and Lowdenslager [4] to construct a sesqui-
invariant subspace of H*dm) for which both L and R are trivial.
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