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AN EMBEDDING THEOREM FOR
LATTICE-ORDERED FIELDS

PAuL CONRAD AND JOHN DAUNS

In this paper we develop a method for constructing lattice-
ordered fields (‘‘.&”-fields’’) which are not totally ordered (‘‘o-
fields’’) and hence are not f-rings, We show that many of
these fields admit a Hahn type embedding into a field of
formal power series with real coefficients. In order to establish
such an embedding we make use of the valuation theory for
abelian &“-groups and prove the ‘‘well known’’ fact that
each o-field can be embedded in an o-field of formal power
series,

Let G be an <~-field that contains » disjoint elements, but not
n + 1 such elements. An element 0 < se G is special if there is a
unique &“-ideal of (G, +) that is maximal without containing s. We
show that the set S of special elements of G form a multiplicative
group if and only if S+ @ and s > 0 for each se S. If this is the
case, then there is a natural mapping of S onto the set I” of all values
of the elements of G. Thus I" is a po-group and if, in addition, I”
is torsion free, then there exists an _¢“-isomorphism of G into the
-field V(I', R) of all functions v of I" into the real field R whose
support {ve '] v(v) # 0} satisfies the ascending chain condition. If G
is an o-field, then the above hypotheses are satisfied and hence the
embedding theorem for o-fields is a special case of our embedding
theorem. The authors wish to thank the referee for many constructive
suggestions.

NotaTioN. If S is a subset of a group G, then [S] will denote
the subgroup of G that is generated by S. If G is a po-group, then
G+ will denote the set {g € G|g = 0} of positive elements. A disjoint
subset of an .&-group G is a set S of strictly positive elements such
that a A b = 0 for all pairs a,be S.

2. A method for constructing lattice-ordered rings. A po-set
I’ is called a root system if for each veI', the set {ael'|a ="} is
totally ordered. A nonvoid subset 4 of a root system I" is called a
W-set if it is the join of a finite number of inversely well ordered
subsets of I, and an I-set if it is infinite and trivially ordered or
well ordered with order type w. In [2] it is shown that 4 is a W-
set if and only if 4 does not contain an I-set; while in [10] five other
conditions are derived which are equivalent to 4 not containing an I-set.
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If I" is a root system and if v: I"— R is a function into the real
field R, then the support of v is defined as suppv = {ve I | v(7) # 0}.
The set V = V(I, R) of all v whose support satisfies the ascending
chain condition (A.C.C.) is a po-group if one defines v to be positive
if v(v) > 0 for each maximal element v in supp ». Such a v(v) will
be referred to as a maximal component of v. In [5] it is shown that
V is an <~-group for an arbitray po-set I" if and only if I" is a root
system. For a root system I”

W= W{I,R)={veV({",R)|suppv is a W-set}

is an _&-subgroup of V.
Now suppose that the root system I" is also a strictly po-semi-
group:

a<B—-a+v<B+7v and vH+a<v+ 4B
for all «, B, vyeI'. For u,ve W define uve W by

(wv)(7) = . g.z . w(@)v(B) .

Then W is a ring (see [2], p. 76, or [10], p.333). If 0 <wu,ve W,
then 0 < uv and so W is an <~-ring and also a real vector lattice. If
I" is an o-group, then V' = W is a totally ordered division ring (see
[8], p.137]). Throughout, a “field” is always commutative while a
“division ring” is not necessarily commutative.

In §6, there are two examples of strictly po-semigroups which
are root systems and hence can be used to construct “-rings. Al-
though it does not appear likely that all such semigroups can be
reasonably characterized, the next lemma completely characterizes all
po-groups which are also root systems.

LEMMA 2.1. Suppose that a group I has a totally ordered sub-
group H with positive cone H*. If H* <] I, then I" with this positive
cone H* is a po-group and a root system. Conversely, each po-group
that is @ root system tis of this form.

Proof. Clearly, I' is just the join of disjoint totally ordered cosets
and so in this partial order I becomes a root system and a po-group.
Conversely, suppose that 7" is a po-group and a root system. Let [I"*]
be the subgroup of I" generated by its positive cone I't. Then H =
[*1<] I is a directed po-group. If H were not an o-group, then
there would exist «, 8, v e H such that &« = 8, « = v and such that g8
and 7 are not comparable (notation S|/v). But then —Z|| —v, and
—B, —ve{del'|6 = —a} which contradicts the fact that I” is a root
system.
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Now let I" be a po-group and a root system and suppose that
H = [I'*] I is the unique totally ordered normal subgroup such that
I' is the disjoint union of totally ordered cosets of H. It is well known
that if I" is abelian and torsion free then the given partial order can
be extended in a not necessarily unique way to yield a totally ordered
group. The latter may fail for nonabelian groups. However, if I" is
torsion free with H <]I" and I'/H finite, then the given total order
on H can be extended uniquely to a total group order on I' (see
[14], p. 326). The hypothesis that I"/H is finite can in fact be weakened
to require merely that any finite set of elements of I'/H generate a
finite subgroup (see [14], p. 325).

ProposITION 2.2. Suppose that I" is a torsion free po-group, and
H=[I"] s a totally ordered subgroup with I'/H finite. Then
W(I, R) = V(I, R) is a lattice ordered division ring. Moreover, the
lattice order of V(I', R) can be extended to a total ring order on
V(I", R).

Proof. Let I', be the totally ordered group having the same
underlying set of elements as I" given by the unique extension of the
partial order of I" to a total one. As has already been remarked
(I8], p.137), V(I',, R) is a totally ordered division ring. Since the
support of ve V(I", R) is the join of a finite number of inversely well
ordered sets in I", when supp v is viewed as a subset of I, it will
satisfy the A.C.C. Thusve V(I", R) and V(I", R)& V(I,, R). Clearly,
V({, RS V(I", R). Since V(I", R) = V(I',, R) as sets, the lattice order
of V(I', R) can be extended to a total order.

COROLLARY. In the previous proposition V(I', R) satisfies the
Sollowing three conditions:

(i) VI, R) contains n pairwise disjoint elements but not n + 1
such elements.

(ii) If0 < ve V({, R) has just one maximal component (such a
v 1s called special), then so does its inverse. All the special elements
Jorm a multiplicative group.

(iii) The multiplicative group of special elements is torsion free.

In §4, we show that, conversely, an _~-field with these three
properties can be embedded in V(I", R).

3. Special elements in an ~-ring. In order to obtain an em-
bedding theorem for an <~-field G, we assume that the special elements
in G form a multiplicative group. In this section we investigate what
this hypothesis means. In particular, we show that such special
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elements behave like elements in f-rings in that they distribute over
joins and intersections.

Let G be an abelian <~-group. A convex subgroup of G which
is also sublattice is called an &-ideal. An -ideal L of G is called
regular if it is maximal with respect to not containing some element
geG. If this is the case, then G/L is an o-group (see [4] or [5]) and
hence there exists a unique ¢~-ideal that covers L. Let I" = I'(G) be
the set of all pairs of <~-ideals (G', G,) such that G, is regular and
G" covers G,. We shall frequently identify I" with the set of pairs
(G", G,). In particular, define a < 8 in I" if G*S G,. Then (I", £) is
a root system. If geG"\G,, then we say that v is a value of g. If
0 < g has exactly one value, then ¢ is called special and in this case
its unique value will be denoted by w»(g9). If ge G has exactly one
value then ¢ is comparable with zero and so either g or — g is special.
If a,b, € G are special, then a A b = 0 if and only if »(a)| v(®). If
L is an <~-ideal of G such that G/L is an o-group and 0 < ge G\L
implies that ¢ > L, then G is called a lex-extension of L. It follows
that each coset L == L + = consists entirely of positive elements or
entirely of negative elements. If o and b are positive elements of an
&-ring G, then a € b will mean that na < b for all integers n > 0.
If a € b,¢>0, and be # 0, then nac < be for all n and so ac < be.

3.1. In [4] it is shown that for 0 < ge @, the following are
equivalent:

(1) g is special;

(2) G(g9) ={2e€G||z] < ng for some integer n > 0} has exactly
one maximal &-ideal;

(3) G(g) is a lex-extension of a proper .&“-ideal L.

Consequently, if a is special and L is the unique maximal &“-ideal
of G(a), then G(a)/L is an archimedian o-group and G(a) is a lex-
extension of L.

LEMMA 3.2. If G is an abelian F-group and 0 < ge G, then
Tg={2cG|0=<2<L 9} is a convex semigroup that contains 0 but not
gand so [Tg]l ={y — z|y,ze Tg} is an < -ideal of G and [Tg]* = Tg.

Proof. By Theorem 11 on page 81 in [8] it suffices to show that
Tg is a semigroup. But this is well known for o-groups, and since
G is a subdirect sum of o-groups, it follows that Tg is a semigroup.

COROLLARY. [Ty] is the largest (proper) < -ideal of G(g) vf and
only if g s special.

Proof. If [Tg] is the largest ~-ideal of G(g), then g is special by
3.1 (2). Conversely, suppose that g is special and let L be the largest
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-ideal of G(g). Since g¢|[Tg] it follows that [Tg]< L and since
nL+* S L* < g for all positive integers n, LS [Tg] = L.

LeEmMA 3.3. Suppose that a and b are special elements in an
F-ring G with an identity and that a=' and b~ exist.

(i) If a*eG*, then a' 1is special.

(ii) If e, b7'e G, then Tab = TaG(b)* = G(a)*Tb and [Tab] is
the largest <~ -ideal in G(ab). Thus ab is special.

Proof. (i) Let L be a proper <~-ideal of G(a™') and consider
0 < geL. Since g < na~* for some n > 0, we have qa* < na and so
qa’c G(a). If qa*¢ Ta, then since G(a)/[Ta] is an archimedian o-group,
[Ta] + nga* > [Ta] + @ for some n > 0. Then since G(a) is a lex-
extension of [Ta], nga® > a and so ng > a¢~'. But then L2G(a™), a
contradiction. Thus ga’c Ta and so ga* < a, and hence ¢ < a™'.
Therefore L™ = Ta~' and hence by the above corollary a~' is special.

(ii) If xe Ta and y < G(b)*, then knx < a and y < kb for some
k>0 and all » > 0. Thus kney < ay < kab and hence nay < ab for
all n, and since ab = 0, nay < ab for all n. Thus TaG(b)* < Tab.
If ze Tab, then z< ab and 2b~' € a. Then 2z = (zb"')be TaG(b)*.
Therefore Tab = TaG(b)™ and similarly Tab = G(a)*Tb.

Now suppose that L is a proper <~-ideal of G(ab) and 0 < ge L.
Since ¢ < nab for some n, ¢gb~" < na shows that ¢gb~' € G(a). If ¢b~'¢ Ta,
then as above mgb™ > a for some m > 0 and so L 2= G(ab), a contra-
diction. Thus gb—'¢ Ta and hence ¢ = (¢gb~")b e TaG(b)* = Tab. Hence
L+*< Tab and ab is special.

Conditions (4) and (5) in the next theorem show that special
elements behave like elements from an f-ring. A commutative &~-field
is totally ordered if and only if the positive cone is closed under
division (see [8], p.139). This is one reason for putting requirements
on the special elements, rather than on all the positive elements.

THEOREM I. For a lattice ordered division ring G with an
identity the following are equivalent.

(1) The special elements form a multiplicative group or the
null set.

(2) If a is special, them a= > 0.

(3) If a is special, then a™ s special.

(4) a(c\V 0)=ac\V 0 for special elements a and all ccQ@G.

(5) a(y Vz)=ayV az for special elments a and all y,zc@.
Six additional conditions each equivalent to (4) and (5) are obtained
by writing (cV 0)a = ca V0, (¥ V 2)a = ya \/ za, and by replacing “\/”
with “A”.
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Proof. The implications (1) — (3) — (2) and (5) — (4) are trivial
and (2) — (1) follows from Lemma 3.3.

(2)—(4). Since a and a' are both positive, the left multipli-
cations by a and o' are inverse order preserving mappings and hence
are lattice automorphisms.

(4)— (2). If ais special, thena(l\V0)=aV0=aandsolVv0=
1. Thus a(a*Vv 0 =1Vv0=1and hence a*=a*Vv 0>0.

(4)—(5).

a(y V 2) = a[((y — 2) vV 0) + 7]
= ((ay —az) V0) +az =ay V az .

The equation

ay N2)=a(—(—yV —2)) = —(a(—y V —2))
= —(—ay V —az) = ay A\ az

shows that “\/” may be replaced by “A” throughout. Finally, each
of the above arguments applies equally well to (¢ \VV 0)a, (v V ?)a,
(¢ A\ 0)a, and (y A 2)a.

Suppose that each element in the lattice ordered division ring G
has at most a finite number of values and that the special elements
in G form a multiplicative group S. Then each ve " is the value of
a special element (see [4], p.118) and the map » of s€ S onto its
value v(s) is an o-homomorphism of S onto I". In particular, I" is a
partially ordered group and of course a root system.

ProprosITION 3.4. If G s a finite valued ~-field, t.e., each
element has only a finite number of values, and tf the special elements
of G form a group and the associated value group I' of G is torsion
free, then the order of G can be extended to a total order.

Proof. Extend the partial order of I" to a total order. An element
0 # g€ G has a unique representation g = g, + --- + g, where each g;
or —g; is special and |g;| A |g;| =0 if ¢ =7 (see [4]). One of the
v(g;) will be the largest in the total ordering of I, say v = v(g;). Define
g to be positive if G, + g > G,. Clearly this is a total order of the
set G that extends the given lattice order and a straightforward
computation shows that G is an o-field.

An element 0 < b of an <~-group G is basic if {geG|0 < g < b}
is totally ordered. A basis for G is a maximal pairwise disjoint subset
of G which, in addition, consists of basic elements. G has a finite
basis if there exists a basis consiting of % elements or equivalently
if G contains 7 disjoint elements but not % + 1 such elements. For
a structure theorem for a group with a finite basis see ([8], p. 86).
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If G is a lattice ordered division ring with a finite basis, if the
special elements form a group and if I'(G) is torsion free, then there
exists an extension of the lattice order of G to a total order of G.
The proof of this fact is the same as the proof of the last proposition.

4. An embedding theorem for o-fields. In this section it is
shown that an arbitrary totally ordered field F' can be embedded in
the o-field V(I"(F'), R). Only the statement of this embedding theorem
and not the method of proof will be used in subsequent sections.
The proof assumes some familiarity with the valuation theory of fields.

Let F be an o-field and F* be the multipleative group of all
strictly positive elements of F. Then F* is the set of all special
elements, and the mapping v of fe F* upon its value »(f) in I" =
I'(F) is an o-homomorphism. Thus I" may be regarded as an addi-
tive o-group with identity 6, and v is the natural order valuation
of F' (see[1] or [11]). Note that 1 e F%\F,, F'? is the valuation ring of
F, and F’/|F, is the residue class field. Also, F'’/F, is an archimedian
o-field and hence essentially a subfield of the real numbers. As
before, V = V(I", R) is the o-field of formal power series with exponents
from I" and with real coefficients. For veI', let @ be the element
in V such that

lifa=v
o) —
wi@) = 0 otherwise .
Note that 2’ = 1. Although V(I", R) in general contains several o-
isomorphic copies of the reals, it contains Ra’ as a distinguished copy,
and V([, R) is an o-algebra over the reals under component-wise
multiplication by Rxz’.

Let E be a not necessarily ordered division ring with a valuation
w: E\{0} — I'(F) in the sense of [16] except with the order of I'(E)
reversed. Thus in case E is ordered w would be an order preserving
map. If EcC D where D is another valuated division ring whose
valuation extends w, then D is called an immediate extension of (E, w)
provided the value group of E, that is w(E), is also the value group
of D, and if the residue class fields of E and D are isomorphic. By
Zorn’s lemma, every (F, w) has a maximal immediate extension.

THEOREM II. (i) If F is an o-field with value group I', then
there exists a value and order preserving isomorphism @ of F' into the
o-field V(I", R). (ii) Moreover, if 4C I is a rationally independent
basis for the divisible hull of I', and for each 6€ 4,0 < x;€F 1is
arbitrary with value 0, them m can be chosen so that x,m = 2°,
(iii) Now assume in addition that R C F is any o-isomorphic copy
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of the reals and r — 7 is the umique o-isomorphism of R onto R.
Then in addition to satisfying (i), T can be so chosen that 7w = ra’.

Proof. We only outline a proof in the sense that [13] and [16]
are quoted for all the difficult steps (also see [1], p. 328). By [13],
any totally ordered field F' can be embedded in a totally ordered field
E so that the order induced on F' from F C FE is the orginal order of
F, both E and F have the same value group I" = I'(F') = I'(F), and E
contains an isomorphic copy of the reals, i.e., R = R E. Since v(1) =
0, necessarily, R\(0}< E°\E, and also E°/E, = R. The reader should
recall that the real field R has no nontrivial automorphisms, since R
admits exactly one total order. Let r — 7 denote the o-isomorphism
of Ronto R. The field E with the natural order valuation v: E/{0} — I"
has a maximal immediate extension < M. Denote the valuation on
M also by v. We define d ¢ M with value v to be positive if M, + df~*
is positive in M/ M, for some 0 < fe F' with value . This is the
unique extension of the order of E to M. Let M* ={d|0 < de M}.

It will be shown next that the subgroup

M* 0 (MO\M,) = {0 < deM|v(d) = 6}

isdivisible. If0 < d e Mwithv(d) =0, definec c Rby¢ = inf (¥ |d < r1}.
Then v(d — ¢1) <@ and d =¢(1 + \),n = (1/e)d — 1 with v(\) < 6.
If m > 1 is any integer, then in order to show that d'™ e M* N (M%M,)
take ¢ = 1 and define p,e M* N (M M,) by taking terms up to A"
from the formal power series expansion of (1 + \)/™. Then {p,|n =
1,2, ...} defines a so called pseudo convergent sequence (see [16],
p.39]). If this sequence has a pseudo limit ([16], p.47), then that
limit is d*™. However, by ([16], p. 51, Th. 8), M contains a pseudo limit
for each of its pseudo convergent sequences. Thus d'™e M* N (M°\M,)
and hence M* splits, M* = T x M* N (M°\M,), where T is some com-
plement of M* N (M?M,). For te T define ¢t # = 2°* and for Fe R
define 77 = ra’. Then this determines a value and order preserving
isomorphism 7 of the subfield K of M that is generated by B U T into
V. Moreover, M and V are maximal immediate extensions of K and
Kr respectively. By ([16], p. 222, Th. 4), 7 can be extended to a value
preserving isomorphism of M onto V so that the following diagram
commutes:

K— M
| =|x
K — V(I,R) .

It is asserted that 7: M — V preserves order. Since each element of

M’ is congruent modulo M, to an element of the form # with re R,
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and since 7r = ra?, it follows that = induces an order preserving iso-
morphism z?: M’/M, — V°’/V, = R. But de M is positive by definition,
provided for any 0 < ke K with v(k) = v(d), we have M, < M, + dk™.
However, since kr > 0, and since (M, + dk)n’ = (V, + dn)(V, + k~'n),
it necessarily follows that dz > 0.

The set {x; |0 € 4} described in the theorem generates a subgroup
of M* whose intersection with M* N (M°M,) is zero and so we may
pick TD{x;|0 € 4}. Finally, in performing the embedding any subfield
R c M isomorphic to R could have been used.

REMARK. Hahn’s theorem for an abelian o-group G states that G
can be o-embedded in V(I", R). (See [8], p.60). There are now several
short elementary proofs of this result in the literature. It would be
a considerable achievement to also have such a direct proof of the
above theorem.

5. An embedding theorem for a class of .&-fields. The em-
bedding theorem for an o-field is actually a special case of the more
general embedding theorem for <~-fields which is developed in this
section.

Suppose that H is a subgroup of finite index in a torsion free
abelian group I". Then I'/H is a direct sum of cyclic groups.

I''H=[H+ s)] @ -+ ©[H + s(k)]
where the order of [H + s(i)] = d(%), d1) = --- = d(k) and d(z + 1) | d(%).

LEMMA 5.1. The subgroup of I generated by the s(i) is a di-
rect sum [s(1)] P -+ B [sk)]. In particular, d1)s(1), - - -, d(k)s(k) are
rationally independent elements of H.

Proof. Suppose that >, m(¢)s(t) = 0, where the integers m(z) are
not all zero. Since I" is torsion free, the g.c.d. of the m(7) can be
factored out and so we may assume that the m(7) have g.c.d. 1. But
since the linear combination must become trivial modulo H, d() | m(7)
and hence d(k) | m() for all ¢, a contradiction.

THEOREM III. Suppose that G is an £-field with a finite basis
and that the special elements of G form a group. Then the set of
values I' of G is a po-group and a root system. If I" is torsion free
then there exists a value preserving &~ -isomorphism of G into the
Z-field V(I', R).

Proof. It follows from § 3 that I" is a po-group and a root system.
Then by Lemma 2.1 there exists a totally ordered subgroup H of I”
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such that the index | I": H| = n of H in I" is finite and H+ is the positive
cone for I'. Thus I'=U{H + 7. |k=1,---,n} is a disjoint union
of totally ordered cosets, where v,eI” is chosen as v, = 6. Just as
in the proof of Proposition 3.4 each ge G is uniquely of the form
9=9, + +++ g, where if g, # 0, then either g, or —g, is special,
where |g;| A |9;] = 0 if 7 # 7, and where g; “lives” on H + v,, that
is g;€ @G, for all yeI'\(H + v;). Let F be the set of all elements that
“live” on H, that is

F={geG|geG, for all yeI"\H}.

Then F is a totally ordered subfield of G. For clearly, F is a totally
ordered convex subring of G, and if g is special, then by hypothesis
¢g~' is also special. Thus ¢~ lives on H + v; for some ¢. If =1,
then g g=* = 1 lives on H + v, which is impossible. Therefore g-'c F’
and thus F' is a field. Now assume that 7" is torsion free; then by
Proposition 2.2 V(I", R) is an .&~-field. As before, for each v ¢ I" define
2'e V by
lifa=v

(@) =
(@) 0 otherwise .

In particular 2 = 1. As previously
I''H =[H+ s1)] D --- D [H + s(k)]

with orders d(1) = --- = d(k) so that d(7 + 1) | d(7). The reader should
note that » = dQ1) --- d(k) and that d(k)*|n. For each +=1,---,k
pick 0 < z;e€ G that lives on H + v, and has value v;. In particular,
each z; is special. By Lemma 5.1, the d(1)s(1), - - -, d(k)s(k) are ration-
ally independent elements of H and hence by Theorem II there exists
a value and order preserving isomorphism 7 of the o-field F' into
V(I", R) such that
(i) the support of fz is contained in H for each fe F, and
(i) #07 = gite),
We shall extend 7 to an isomorphism of G into V. Consider

gO(H + s1)) + --+ + g(B)(H + s(k)) e I'|H

where g(7) are integers in 0 < g(¢) < d(?) and let ge G live on this
coset. Then

g = ngng(z) e z%(k)

where ge F. Since g lives on one of the n distinct cosets of I'/H, g
is special and conversely every special element is of the above form.
Define
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T = G Wge@s@ . otk |

Thus we have extended = to a one to one mapping of all special
elements S of G. (Note that the mapS— F,g— g is not a homo-
morphism of multiplicative groups unless I" = H, while g — g(¢) is a
homomorphism of S into the integers modulo d(¢).) If he S also lives
on this same coset as g, then so does % + ¢ and ¢g(?) = k() = (b + 9)(2)
for all ¢, thus

h + g = hzf(l) 4 eee z;cb(k) + ng(” e zi(k) — (h + 'g—)zgl:(l) eee z%(k) .

Therefore (b + g)~ = h + g and so (b + ¢)r = hw + gr. Next it will
be shown that m=: S — F is a homomorphism of multiplicative groups.
Take g, h € S and write

g(3) + k(i) = n(B)d@E) + r@), 0 < r@) < d@),i =1, -+, k.
Then since

hg = hgzt®+h) L. etk

= RgzriWw .., guldlogr) ., grie)
it follows that
(hg)~ = h_gz;t(l)dm e PR (haVG) = (i), i =1, eoe ko .

Thus
(hg)w = (hg)~2iV «++ ;% = (h7)(gT) .

Now each a e G has the above mentioned unique representation
a=a,+ +++ + a, where a; lives on H + v;; define ar = a7 + +-- +
a,w. Clearly, 7 is a map of G into V that preserves addition and
values. If beG with b=b,+ --- +b, and ab=¢, - -+ + ¢, where
b;,, c; live on H + v, it remains to show that c¢7w + -+ + ¢, 7 =
S (a;w)(b;wr). Each ¢, is of the form ¢, = 3 a;b; where Y denotes
the sum over those distinct pairs (¢,7) for which v,v,;e H + v,. It
suffices to show that ¢ = > (a;7)(b,7r). However, first, since a,,
b;e —SUS we have (a;b,)t = (a;7)(b;w); and, secondly, since 7 pre-
serves addition, 3 (a;7)(b;w) = S a;b;)wr. Thus it follows that
(ab)m = (am)(br). Therefore w is a homomorphism of the field G into
the field V(I", R) that is clearly not zero and so it must be an iso-
morphism. If ¢« =a, + --+- + @, where the a; live on H + v,, then
a Vv 0 is just the sum of the positive a;. Therefore (a \V 0)x = ax \/ 0
and 7 is a value preserving &“-isomorphism of G into V. This com-
pletes the proof of the theorem.

An &~-field F is an a-extension of an -field G, if for each
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0 < feF, there exists an element 0 < ge G such that f < mg and
g < nf for some positive integers m and n», and G is a-closed if it
does not admit such an extension.

The next corollary shows that the field V, into which G was
embedded in the last theorem, has an intrinsic characterization.

COROLLARY. Under the same hypotheses as in the previous
theorem, V is the unique a-closed a-extension of GT.

Proof. V is a-closed as an <“-group and, clearly, it is an a-
extension of Gzw. In order to prove the uniqueness of V, let G D
be any other a-extension of G. Since D satisfies all the hypotheses
of Theorem III, for ge D\G, g7 can be defined exactly as in the proof
of Theorem III to yield and .&“-embedding of D into V that extends
w. Furthermore, Dr S V is an a-extension. Finally, if D is a-closed,
then so is also Dm and hence Dzr = V. Thus 7 extends to an <~-
isomorphism of D onto V leaving G elementwise fixed.

REMARK. Under the hypotheses of Theorem III we can extend
the order of G to a total order (Proposition 3.4) and hence by Theorem
II there is an o-isomorphism of the o-field G into the <~-field V (I, R).
It would be nice to be able to prove that this isomorphism is also an
Z-isomorphism, but this we have not been able to do.

6. Examples and questions. The first example shows that I”
need not be torsion free even if G is an <~-field with a finite basis
in which the special elements form a multiplicative group. Similar
examples exist in which G is actually a real algebra.

6.1. Take an algebraic extension G = Q[w] of the rationals @,
where we R, w* = 2, i.e., w = 2" for some » = 2. For

Yy=c +ew+ - + ¢, w e Qw]

with ¢; € @ define y = 0 if and only if all ¢; = 0. Note that this order
differs from the natural order of Q[w] as a subset of R. Then in the
context of the notation of §5, the multiplicative group of special
elements S is generated by S =[{cw|0<ceQ}], H={0}; " is the
cyclic group of order n and hence not torsion free.

6.2. Take n = 2 above in 6.1 but redefine y = ¢, + ¢,w > 0 if and
only if ¢, £ 0 and ¢, = 0.

6.3. Let I" be a cancellative multiplicative semigroup with identity
that contains an element % in the center such that k™ == k" for all
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distinet positive integers m and n. For a,bel’, define a = b if a =
kb for some integer n =0 where k°=1. Then a straightforward
computation shows that I" is a strictly po-semigroup and a root system;
in fact, I" is the join of disjoint totally ordered sets each of which
is countable.

6.4. In the multiplicative abelian semigroup I" generated by a,
b, k with k° = 1, define a’b’k™ > a*b’%k™ provided one of the following
four cases holds.

Case 1. © > p.

Case 2. 1 =p=20,7 =¢q, but n > m.

Case 3. i =9 >0 and 5 > q.

Case 4. 1 =p> 0,7 = q, but n > m.
Note that the subsemigroup {a'd’k" | ¢ = 1} is lexiographically ordered.
Aside from being a strictly po-semigroup and a root system, I" has
two noteworthy features. It is not the union of disjoint chains such
that the elements from distinct chains are incomparable, and it has

no convex semigroup ideals.
In conclusion we list some questions we could not answer.
(a) Can the partial order of each ~-field be extended to a total

order?
(b) If F is an <~-field in which each square is positive, then is

F an o-field?
(¢) Does each <~-field contain a unique maximal totally ordered

subfield?
(d) When can a lattice order of a commutative integral domain

be extended to a lattice order of its field of fractions?
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