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ZERO SQUARE RINGS

RICHARD P. STANLEY

A ring R for which x2 = 0 for all x e R is called a zero-
square ring. Zero-square rings are easily seen to be locally
nilpotent. This leads to two problems: (1) constructing finitely
generated zero-square rings with large index of nilpotence,
and (2) investigating the structure of finitely generated zero-
square rings with given index of nilpotence. For the first
problem we construct a class of zero-square rings, called free
zero-square rings, whose index of nilpotence can be arbitrarily
large. We show that every zero-square ring whose generators
have (additive) orders dividing the orders of the generators
of some free zero-square ring is a homomorphic image of the
free ring. For the second problem, we assume Rn Φ 0 and
obtain conditions on the additive group R+ of R (and thus
also on the order of R). When n = 2, we completely charac-
terize R+. When n > 3 we obtain the smallest possible number
of generators of R+, and the smallest number of generators
of order 2 in a minimal set of generators. We also determine
the possible orders of R.

Trivially every null ring (that is, R2 = 0) is a zero-square ring.

From every nonnull commutative ring S we can make S x S x S into

a nonnull zero square ring R by defining addition componentwise and

multiplication by

(x19 ylf Zj) x (x2, y2, z2) = (0, 0, x,y2 - x2y,) .

In this example we always have J?3 = 0. If S is a field, then R is
an algebra over S. Zero-square algebras over a field have been in-
vestigated in [1].

2» Preliminaries* Every zero-square ring is anti-commutative,
for 0 = (x + y)2 ~ x2 + xy + yx + y2 = xy + yx. From anti-commutativity
we get 2iϋ3 = 0, for yzx — y{ — xz) = — (yx)z = xyz and (yz)x = — x(yz),

so 2xyz = 0 for all x, y, ze R. It follows that a zero-square ring R
is commutative if and only if 2R2 = 0.

If R is a zero-square ring with n generators, then any product
of n + 1 generators must contain two factors the same. By applying
anti-commutativity we get a square factor in the product; hence
βn+i = Q# j n particular, every zero-square ring is locally nilpotent.

If G is a finitely generated abelian group, then by the fundamental
theorem on abelian groups we have

(1) G = Cβl 0 0 Can, a, I α i+1 for 1 ^ i ^ k - 1 ,
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where Ca. is a cyclic group of order a{. If X = {x19 , xn) generates
G and if there is some decomposition (1) for which xt generates Ca.,
1 <^ i <* n, then we call X a standard set of (group) generators for
G. Now let R be any finitely generated ring with a minimal set of
ring generators Xf — {x19 , xn). Let <X'> denote the additive group
generated by X' (whose elements are considered now as group, not
ring, generators), and let X be a standard set of generators for ζJX'y.
Then X generates R as a ring since it generates <(X'̂ > as a group.
Such a set X will be called a standard set of ring generators for i?,
and it follows that every finitely generated ring has a standard set
of ring generators.

3* Free zero-square rings* For every positive integer n and
every w-tuple (aly , α j , where a{ \ ai+1 for i = l,•••,& — 1, and
α^+i = = an = °o, we define the free zero-square ring RF(aγ, , an)
and derive its basic properties. Free zero-square ring are constructed
from combinations of indeterminates called special monomials.

DEFINITION 3.1. Let a19 — ,an be integers ^ 2 or oo, such that
for some k ^ n, a{ \ ai+1 for i = 1, , k — 1, while ak+1 — = an— oo
and let »!,•••,»* be indeterminates. We say that xiyxi2 Xi is a
special monomial if 1 ^ ^ < ΐ2 < < iq ^ n, and if α ί : is even or
oo whenever q > 2.

Thus the special monomials consist of

a&{ , 1 <^ i <L n

XiXj , 1 ^ i < i ^ π

KijXiz ' χiq > Q = 3 and α ί χ even or co .

Now let ylf y2, -",yr denote the r distinct special monomials (in
some order) corresponding to au α2, , an. If yά — xiίxh xiq is a
special monomial, we define

a, , if q = 1 or 2

k 1 if „ 6 3 .
Let RF(au « ,α%) denote the set of formal sums

RF(au , αΛ) = J Σ CiVi \ 0 g c5 < bό if δ, Φ oo ,

— oo < c jf < oo if b0 — oo I .

We define addition and multiplication on RF as follows:
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Addition. Define

r r

y i CiUi i y i a%y% -

where e{ = c< + d; (mod b{), 0 ^ e{ < b{ if &; =£ oo 9 #. = ^ + ^ if ^ = 00.
We are adding the ίth components mod 6̂ .

Multiplication. We first define multiplication of special monomials.
If y{ and 2/y have a factor &s in common, define y3yi — y{yά = 0. In
particular, x\ = 0. If y{ — xs, yά — xt with s < t, define (ay^ibyj) =
ab xsxt; where if b{φ 00, then ab is defined by ab = ab (mod δ;), 0 ^ ab < 6̂ ,
while if 6i = ex), then ab — ab. If we think of a and b as representatives
of the congruence classes mod bι and 6y, then since 6̂  | bά the product
α& always represents the same element mod b{ regardless of the choice

of a and b. Similarly define (by^ayi) = — ab(xsxt). If y{ and yά do
not have a factor xs in common, and if at least one of y{, y5 contains
at least two distinct factors xs and xt, then define (ay^φyά) — cyu

where yt is obtained by rearranging the factors xh of y{ and yό in
ascending subscript order and defining

c =

0, if aq is odd

0, if aq is even or co and ab is even

1, if aq is even or 00 and ab is odd ,

where aq is the order of the indeterminate xq with least subscript
appearing in yx.

We now define in general

V i * / \ 3 ° / i,3 % J J '

where this sum is to be rearranged according to the previously defined
rules of special monomial multiplication and of addition.

We call this set RF(a19 - — ,an), together with the operations of
addition and multiplication just defined, the free zero square ring
RF(aι, , an).

T H E O R E M 3.2. RF(a19 * ,α Λ ) is a zero-square ring.

Proof. All the desired properties follow from the definitions
except associativity of multiplication and the zero-square property.

It follows from the definition of multiplication that we need only
to verify associativity for monomials chyh9 where ch is a constant
between 0 and bh — 1 for bh Φ oo, while — oo < ch < oo for bh = oo,
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and yh is a special monomial. But if either of yh>yi, y3- contain an
indeterminate xs of odd order, then (chyh)(Ciyi)(c3y3) — 0 upon any as-
sociation, while if all orders are even or oo, then

0, if two of yh, y{1 y3 contain

a common factor xe

0, if any of ch, c{, c3- is even

\y31 otherwise

upon any association.
It remains only to show ( Σ CiViY = 0. Now

( Σ CiViY = Σ CiCjiyMj + yάyύ + Σ c\y\ .
i<3

The latter sum is 0 by definition of special monomial multiplication.
If y{yj is the product of more than two indeterminates, then

CiCAViVi + ViVi) = ZCiCjyiVj = 0 ,

since either y^a — 0 or 2cicj is taken mod 2. This completes the proof.

THEOREM 3.3. If anφ oo and i is the least integer for which a{

is even (except that if an is odd, put i = ri), then RF(alf , an) has
order

Proof. In general there are (V* ~ i) distinct special monomials

with k factors such that j is the least subscript appearing among
the factors. Such a monomial has order a3- if k ^ 2, while if k > 2
the monomial has order 2 when aά is even and vanishes when a3 is
odd. Thus the order of RF is given by

as asserted.
The next theorem elucidates the " f ree" nature of RF.

THEOREM 3.4. If R is a zero-square ring with a standard set
of ring generators x[, , xr

n of orders a[, , a'n, and if RF(alf , αn)
is a free zero-square ring with a\ \ a{ for 1 ̂  i ^ n (with the convention
that every integer and oo are divisors of oo), then R is a homomorphic
image of RF(alf , an).
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Proof. Let xly •••,#„ be the indeterminates (generators) of RF.
Let yu , yr be the special monomials of RF and y[, , y'r the cor-
responding monomials of R, so that if y{ = xiχ α^, then τ/ = a^ x'ig.
(Of course for some i we may have y[ — 0.) We then claim that the
mapping φ\ X C;?/; —• Σ ĈT/ is the desired homomorphism.

Since αj | α<, the ring of integers mod α is a homomorphic image
of the ring of integers mod a{. It follows from its definition that φ
preserves sums and products. It remains only to verify that φ is onto
R, i.e., that every element of R occurs among Σ c ^ , 0 ^ Cι < b{ if
^ ^ oo} — oo < d < oo if 6i = oo. This, however, is an immediate con-
sequence of the fact that R is anti-commutative and satisfies Rn+1 = 0
and 2i23 = 0, and that the order of an anti-commutative product cannot
exceed the g.c.d. of the orders of its factors. This completes the
proof.

In general, a subring (or ideal) of RF(aly , an) need not be free.
For instance, if n > 2 and each a{ is even, then jβ^n/2)+1] is a null
ideal with more than one generator.

If RF = RF(a19 « ,αΛ) is a free zero-square ring such that i is
the least integer for which a{ is even or oo, and if n — i ^ 1, then
it is easily verified that RF has index of nilpotence n — i + 2. Thus
free zero-square rings provide examples of zero-square rings with
arbitrarily large index of nilpotence.

4* N o n n u l l finite zero-square rings* In this section we charac-
terize the additive groups of nonnull finite zero-square rings and as
a corollary characterize the orders of such rings. For this purpose
we introduce a function f(G) of a finitely generated abelian group G.

DEFINITION 4.1. If G is a finitely generated abelian group, define
f(G) = max {n: R is a zero-square ring, Rn Φ 0, G is isomorphic to
the additive group R+ of R}.

It follows from the local nilpotence of zero-square rings that f(G)
is finite. In this section and the next we assume G is finite to avoid
looking at a large number of cases. The results can easily be extended
to arbitrary finitely generated G.

THEOREM 4.2. Let G be a finite abelian group. Then f(G) 2> 2
if and only if either of the following hold:

( i ) The dimension of G is greater than two; or
( ϋ) G = C O 1 φ Cα2, where at \ a2 and either (a2/au aλ) Φ 1 or aι is

divisible by a square > 1. (This condition on αx and α2 is equivalent
to aL\a2 and the existence of an integer 6,0 < 6 < α 2 , such that
α21 b(a19 &).)
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Proof. We first prove sufficiency of (i) and of (ii). Assume that
G = C a i φ C β 2 0 0 Can, with at I ai+ί and n ^ 3. Let Z be the null
ring with additive group Ctt4 0 Cαg 0 0 Cα%. Let xl9 x2 be generators
for the free ring RF(a2,a3), and let J be the ideal of RF generated
by α ^ ^ . Then it is easily seen that the ring (RF/J) 0 Z is a nonnull
zero-square ring with additive group isomorphic to G. This proves the
sufficiency of (i).

The equivalency of the two conditions in (ii) can be verified
straightforwardly. To prove the sufficiency of (ii), assume that G =
Cai 0 Ca2 where αx and a2 satisfy the conditions of (ii). In view of
Theorem 3.4 we need to prove that if RF(aίy α2) is generated by x19 x2,
then the ideal J generated by xλx2 — bx2 does not contain xλx21 where
b is defined in (ii). Assume to the contrary that xtx2eJ. Then for
some y e RF and some integer c,

xγx2 — c(x1x2 — bx2) + y(xλx2 — bx2) .

Since y(xλx2 — bx2) contains no term in x29 we must have cbx2 = 0. This
means α21 be. The remaining way an xλx2 term can appear is for
y = dxγ. Thus we get

xxx2 — (c — bd)x1x2

We therefore have (aly c — bd) = 1, since the order of xxx2 in RF(au a2)
is αlβ This implies (αx6, be — b2d) = b. We have just proved a2 \ be, and
from α21 b(alf b) we get a2 \ afi and a2 \ b2. Thus α21 (αxδ, 6c — b2d), or α21 6,
contradicting 0 < b < α2. This proves the sufficiency of (ii).

If G has one generator, then R is clearly null. Hence to prove
necessity, we need to show that if R is generated by xly x2 of orders
au a2 with αjα2 and R2 Φ 0, then αx and α2 satisfy the conditions in
(ii). Let

xxx2 = btxx + b2x
2x2

in iί. Without loss of generality it may be assumed that 0 ^ bx < a19

0 ^ 62 < α2.
Assume first that 62 = 0. Then xλx2 — bλxly so 0 = xλx\ — bιxιx2 —

blx^ hence ax \ b\. If aλ is divisible by a square > 1, we have satisfied
one of the conditions. Otherwise 6X = 0 since b, < α1# In this case R
is null, a contradiction.

Now consider the remaining case xγx2 = bιxι + 6 A , 62 =£ 0. Let e
be the order of xγx2. Then from 0 — exγx2 — cb1x1 + cb2x2, we get
0 = ebγxx — eb2x2, so α21 cδ2. Moreover, 0 —x\x2 = b2xιx2 gives c|62. Thus
α21 62. But djXjXz = ^62^2 gives α21 aλb2. Then from α21 b\ and α21 afi2

we deduce α21 b2(aly b2). Since 62 ^ 0, we can take b = 62. This com-
pletes the proof.
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COROLLARY 4.3. There exists a nonnull finite zero-square ring
of order r if and only if r is divisible by a cube.

COROLLARY 4.4. The smallest nonnull zero-square ring has
order 8.

A simple direct proof of Corollary 4.4 is given in [2], (see also
Th. 5.7.) It can be shown that there are exactly two nonisomorphic
nonnull zero-square rings of order 8. One of these is RF(2, 2).

5* Additive group structure of finite zero-square rings* In this
section we extend Theorem 4.2 by considering conditions on G which
make f(G) ^ n for n > 2. Theorem 5.5 gives some necessary conditions,
while Theorem 5.6 provides a converse.

R will denote a finite zero-square ring and R+ its additive group,
while G denotes a finite abelian group and G2 its Sylow 2-subgroup.
Let x19 x2, , xn be a fixed standard set of ring generators of R. Let
x denote the element xγxt xn and Έl the element xλx2 Xi-ιXi+ι xn.
More generally, if y = xhxh - - xim, ix < i2 < « < im, then y denotes
the element xJ1xJ2 %jn_m, 3ι< 3i< < i»_», such that the i's and
i ' s include all the integers 1,2, «««, w. When n > 2 note that yy = x.
If x Φ 0, we call m the length of y, denoted by \y\. Note | y | + | y | — n.
If 3 G R, then c(z) denotes the additive order of z.

LEMMA 5.1. Every symmetric matrix of odd order over GF(2)
with 0's on the main diagonal is singular.

The proof is a straightforward application of the definition of the
determinant and will be omitted.

LEMMA 5.2. // a matrix E has the form

IE, 0\

E2
rp

v EJ
where the Ek are square matrices and some E5 is singular, then E
is singular.

Proof. This is a special case of the well-known result det E =
(detE,) . . . (detE t).
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The next theorem reduces the problem of evaluating f(G) to the
case where G is a 2-group.

THEOREM 5.3. If G is a finite abelian group and f(G) Ξ> 3,
thenf(G) = f(G2).

Proof. Let R be a finite zero-square ring with Rn Φ 0, n ^ 3. By
anti-commutativity the elements Rf of R whose additive order is
a power of two form a subring. If ZtβR,! ^ i ^ n, such that

Ziz2 ... znφ 0, where c(zt ) = a{2
h\ a{ odd, then afc e Rf and

(a^ia.z,) (anzn) Φ 0

since 2z,z2 zn = 0. Hence (Rr)n Φ 0, so /(G2) ̂  /(G).
Conversely, assume i?w Φ 0 and i£+ is a 2-group. If G is a finite

abelian group with G2~R+, write G = G2ξ& H, and let S be the null
ring with S+ ~ H. Then (R © S)+ = G and (ί2 φ S)n Φ 0, so that
/(G2) ^ /(G). Thus /(G) = f(G2) and the theorem is proved.

We can now assume in what follows that the additive group R+
of R is a 2-group.

LEMMA 5.4. Lei R be a finite zero-square ring (with R+ a 2-group)
with n ^ 3 elements xly , xn satisfying x = xλ * - xn Φ 0.

( i ) There exists a standard set of group generators for R+
containing every special monomial yd in the x{ of length 3^\yj\<,n — 2.

(ii) The group generated by those yά satisfying 1 ̂  | y3- \ ̂  n — 2
is generated irredundantly by them {though not necessarily standardly).

(iii) // we assume xί9 , xn is a standard set of ring generators
for the ring Rf they generate, then there exists a standard set of
group generators for R'+ containing every special monomial yά in the
Xi satisfying 1̂ -1 = 1 or 3 g | y5 \ g n — 2.

Proof. ( i ) If G is a finite abelian p-group and tίy , ts e G,
then tu •••, ts extend to a standard set of group generators for G if
and only if the following two condition are satisfied:

(1) For any integers a19 , αβ,

biU = pz

for some integers bu , bs.
( 2 ) For any integers au , αs,

s

Σ aiti — 0 ==> diti = 0, all i .
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To prove (1) in our case, assume

( 3 ) Σ diVi = 2z .

Since 2y{ = 0 when | y{ | ^ 3, we can take a{ = 0 or 1. Let yά be a
special monomial of minimal length satisfying a3- = 1. Then from (3)
we get

a = ¥i Σ α<2/* = 2(y~,z) = 0 ,

since y]z e Rs when | yi | ^ w — 2. This contradicts x =£ 0 and proves (1).
To prove (2), assume

( 4 ) Σ *iVi = 0 ,

where at least one α ^ Φ 0. As in (1), let y3- be of minimal length
such that a3y3 Φ 0. Multiplying (4) by y~3 gives the contradiction
x = 0, and completes the proof of (i).

(ii) We need to prove that

( 5 ) Σ α»2/< = 0 => a* = 2b{ all i .

Letting yό be of minimal length such that a{ Φ 2bi for any integer
&i, an argument similar to those used in (i) leads to a contradiction.

(iii) We must show (1) and (2) hold, where the t/s are the y/s
satisfying | ̂  | = 1 or 3 ̂  | y3- \ < n — 2, and p = 2. The proof of (1) is
similar to the proof of (5). To prove (2), assume that

n

Σ a&i + Σ bjy3- = 0 .

By (1), each bόyά = 0. It follows that each a^ — 0 since x, , xn

is a standard set of ring generators. This completes the proof of the
lemma.

We can now give necessary conditions for f(G) ^ n >̂ 4.

THEOREM 5.5. Let G be a finite abelian 2-group.

( i ) // f(G) ^ n ^ 4, ί/z,e% ίfeβ dimension of G is at least
2n - 2[(n + 2)/2], i.e., everi/ generating set of G has at least 2n - 2[(n + 2)/2]
elements. (Brackets denote the integer part.)

(ii) If f(G) ^ n ^ 4, £/*,<m αί ίβαsί 2% - n(n + l)/2 - 2[(w + 2)/2]
generators in a standard set of generators for G have order 2.

Proof, (i) Suppose R is a zero-square ring with Rn Φ 0 and
R+ = G, and that α?^ xn Φ 0 in i?(π ^ 4). Let R be the subring
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of R generated by x19 x2, , xn. Since dimR'+ ^ d i m i ? + , it suffices
to show dim R'+ ^ 2n - 2[{n + 2)/2]. By Lemma 5.4 (ii), dim R'+ is equal
to at least the number of special monomials yt in the indeterminates
x19 , xn satisfying 1 ^ | yi \ <^ n — 2. The number of such special

monomials is ( V'λ + ( %) + \-( n

 o) = 2n-n-2. Hence to com-
V 1 / \ Δ / \ n ~ £j

plete the proof of (i) we need only to prove that when n is odd, we
cannot have dim R'+ = 2n — n — 2.

Assume that n is odd and R+ has 2n — n — 2 generators, Rrn Φ 0.

By Lemma 5.4 there is a standard set of group generators for R\

containing (1) x19 , xn9 (2) all special monomials yό in the xi satisfying

3 ^ I Vj I ίg n — 2, and (3) a standard set of generators y[, , y'Jm = ί g ))

for the group generated by all T/̂  of length 2. Since this accounts

for 2n — n — 2 generators, these in fact generate all of Rr

+. In particular

the special monomials ~xu , ~¥n of length n — 1 can be written as

( 6 ) Σ

where δ^ is an integer. (This representation may not be unique since
the 7/i's of length 2 need not be standard generators.)

We show that h{i is even. Let yk be a term appearing on the
right side of (6) whose coefficient bkj is odd, such that no y{ of smaller
length has an odd coefficient. Then we get 0 = xβyk = bkjyky~k — x, a
contradiction, so every bi5 is even. In particular, the terms δ ^
with I yi I ̂  3 vanish since 2Rn = 0. If we re-express x} as a linear
combination of the standard generators given above, then the terms
bijyi with 1^1 = 1 remain the same. Since 2x~ό — 0 when n > 3, we
have bi:j = 1/2 c(^) or 6^ = 0 whenever 1^1 = 1. (This is where the
argument fails for n = 3.) Hence we can rewrite (6) as

where

= Σ

and where hi5 = 0 or 1.
We claim that the matrix H = (hiό) over GF(2) is nonsingular.

If H were singular, then if we regard 1/2 c(xd)Xj as indeterminates
over GF(2), we can elinϊinate them from (7) and get a relation of the
form

+ 2^) = 0 ,
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where some ry = 1. But then

n

x = Xj Σ r^όζ + 2s4) = a?yθ = 0 ,

y

ί — l

a contradiction. Hence H is nonsingular.

Therefore we can solve (7) for the n unknowns l/2c(^i)xi over

GF(2) to get

( 8 ) i - φ y ) ^ = 2 Σ β<^ + Σ eijΰl » i = 1, , ft ,
2 i=i *=1

where each eo = 0 or 1. If E denotes the matrix (ei3) over GF(2),

then E = if"1, so i? is nonsingular.

We will now reach a contradiction by showing that E is singular.

We first show ejd = 0. We have

0 = — φ,-)^ = 2 X βî iίc^ + Σ e»i^»i = ^ .
2 <=i *=i

Since cc Φ 0, β y i = 0.

Define sly s2, , s t by

c(^) = c(x2) = . . . = c(α;βl)

< c(a?βl+1) = c(xSjL+2) = = c(xS2)

< < c(^Sί_1+1) = = c(xH) ,

where st = n. Let Ek be the square submatrix of E defined by
Ek = (eiS), sk_x + 1 ^ i, j <̂  sΛ, for A: — 1, 2, , ί. (Here s0 is taken
to be 0.) We show that each Ek is symmetric. Assume eid — 1 for
some sA;_1 + 1 ^ i, i ^ sA. Then from (8) we get 1/2 c(xo)xixύ — x, so
1/2 c(x3)xixύ Φ 0. But 1/2 c(xά) = 1/2 c(^), as sifc_1 + 1 ^ i, j ^ sΛ. Hence
1/2 cix^XiXj Φ 0. From (8) we again get 0 Φ 1/2 cix^Xj — ejtx9 so
βji = 1. This proves that Ek is symmetric. Moreover, Ek has 0?s on
the main diagonal since each eά5 = 0.

We now show that if for some k we have i ^ sk, j > sk, then
eiS = 0. As in the previous paragraph we have

( 9 ) — c(xά)x%xά = eiάx .
Δ

Since i ^ sk,j > sk we have c(Xi) < c(xj). Therefore 1/2 c(Xi)XiXj Φ 0.
But from (4), lβc{x^)xixj = e^x, so cix^XiXj ~ 2eHx = 0 (since 2a; — 0).
But c(Xi) < c(Xj) implies c(Xi) ̂  1/2 c(xά), so 1/2 c(a;i)a;ίxi — 0. Comparing
with (9) shows eί3 — 0, as asserted.

This shows that E has the form given in Lemma 5.2. Since the
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sum of the orders of the Ed must be the order of E, some Ek has
odd order. Then by Lemma 5.1 Ek is singular, so by Lemma 5.2 E
is singular, a contradiction. This completes the proof of (i).

(ii) Using the notation of part (i), it follows from 2Rn = 0 that
every special monomial y{ satisfying 3 ^ | y{ | rg n — 2 has order 2.

There are ( J ) + ( j ) + . . . + (^ ™ 2 ) - 2 - n(n + l)/2 - (rc + 2)
such 7/i, and by Lemma 5.4 they extend to a standard set of group
generators for R+. Moreover, we have just shown that when n is
odd, there is at least one y5 with \yd\ = n — 1 which cannot be ex-
pressed in the form yd — Σisι^ιsn-2 s^. Exactly as in the proof of
Lemma 5.4 it follows that the set of all y{ satisfying 3 :g \y{\ <? n — 2,
along with yd, extend to a standard set of group generators for R+.
Thus we have found 2n - n(n + l)/2 - 2[(n + 2)/2] generators of
order 2, proving (ii) and completing the proof of the theorem.

The following theorem shows that the results of the previous
theorem are best possible.

THEOREM 5.6. Let n ^ 4 be an integer.
( i ) Given any integer N ^ 2n — 2[(n + 2)/2], there exists a finite

abelian 2-group G of dimension N, such that f(G) = n.
(ii) Given any integer M ^ 2n - n(n + l)/2 - 2[(w + 2)/2], ίΛβre

exists a finite abelian 2-group G with precisely M generators of order
2 (in a standard set of generators), such that f(G) = n.

Proof. Clearly to prove both (i) and (ii) it suffices to construct
a finite zero-square ring R with Rn Φ 0(n ^ 4), such that R+ has
precisely N~2n — 2[(n + 2)/2] standard group generators, with precisely
M = 2n - n(n + l)/2 - 2[(π + 2)/2], of these generators of order 2. Let
m = [w/2] and let iϋ^o^ = 8, α2 = 8, , an = 8) be a free ring with
generators x19 , xn (as defined in §3). If n is even let J be the ideal
generated by {xL-4x2, x2-4x19 Xs-Ax,, x, - 4x3, , »n_1-4a?w, «n - 4»n_1},
while if n is odd let J be generated by {^ — 4$2, ^2 — 4^, ,
xn_2 — 4a?Λ-1, x%_1 — 4a;%_2}. Let R=RF/J. Then i? is generated by the
images of all yt satisfying 1 ^ | yt \ <; n — 2 when w is even; with the
additional generator xn when π is odd. This gives a total of
2n — 2[(n + 2)/2] generators, as desired. Moreover, when n is even,
a standard set of group generators for R+ has n + 1 elements of
order 8, 2m2 — m — 1 elements of order 4, and exactly Λf elements of
order 2. When n is odd, there are n + 1 elements of order 8, 2m2 + m — 1
elements of order 4, and exactly M elements of order 2. Hence it
remains to prove that the image of x in RF/J is not 0, i.e., that
xί J. We treat only the case when n is even; the case n odd is
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almost exactly the same.
Assume xe J. Then

x = zι(xι - Ax2) + z2(x2 - Ax,) + + zn(xn - Axn_,)

+ b^x, - Ax2) + b2(x2 - Ax,) + + bjβn - Axn_x) ,

where Zi£RF, b{ = 0 or 1. Hence we need at least one z3- = xj9 say
zλ = xι% We then also get the term — Axxx2J which can only be cancelled
by z2 — x2, giving another — Axtx2. But this also gives another x9 and
x + x = 0. Hence x&J, and the theorem is proved.

REMARK. The proofs of Theorems 5.5 and 5.6 are not valid for
n = 3, basically because from 1^1 = ^ — 1 we cannot deduce 2y{ — 0.
If Theorem 5.5 (i) were false for n = 3, then there would be a 2-group
G with three generators such that f(G) = 3. Although this seems
highly unlikely, the question remains open. Clearly G cannot have
less than three generators. Note that Theorem 5.5 (ii) is trivially
satisfied for n = 3. Finally, Theorem 5.6 is easy to verify for n = 3
(though in part (ii) we of course must have M^ 0).

It is considerably simpler to get results on the order of zero-square
rings satisfying Rn ^ 0 .

THEOREM 5.7. Assume n > 2. Then there exists a zero-square
ring of order r satisfying Rn Φ 0 if and only if 22>n~1 \ r.

Proof. Assume Rn φ 0. We know from the proof of Theorem
5.3 that there are elements x19 - *,xn in the Sylow 2-subgroup R2 of
R+ such that xx xn Φ 0. Let y19 y2, , y2n^ be the special monomials
in the xi9 Claim that the 22"-1 elements of the form ΣT=Ίι δ<2/<, 6̂  = 0
or 1, are all distinct, otherwise we would have a relation of the form

Σ biVi = 0 ,

with at least one 6̂  = 1. Let yό be a special monomial of shortest
length such that 6̂  — 1. Then multiplying (6) by yό gives x = 0, a
contradiction. Hence R2 has order at least 227l~\ so that 22n~ι\\R2\.
Hence 22%~ι | r.

Conversely, if 22n"1 s = r, then we take R+ to be CT~ι@Cs. If
we impose the free ring RF(2, 2, •••,2) on CT~ι and the null ring on
Ca, then Rn Φ 0.

Finally we have the result of [3].

COROLLARY 5.8. The smallest zero-square ring R satisfying Rnφ0,
n > 1, has order 22%~ι.
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