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TENSOR PRODUCTS OF COMPACT CONVEX SETS

ISAAC NAMIOKA AND R. R. PHELPS

Suppose thai KL and K2 are compact convex subsets of
locally convex spaces Eγ and E2 respectively. There are
several definitions of new compact convex sets associated with
Kx and K2, each of which may reasonably be called a " tensor
product " of Ki and K2a We compare these different tensor
products and their extreme points in doing so, we obtain some
new characterizations of Choquefc simpiexes, another formu-
lation of Grothendieck's approximation problem and much
simpler proofs of known characterizations of the extreme
points of these tensor products. Most of these results are
obtained as special cases of theorems in the first half of the
paper which deal with the state spaces of tensor products of
partially ordered linear spaces with order unit.

!• T e n s o r p r o d u c t s of par t ia l ly o r d e r e d spaces. A partially

ordered, linear space with order unit is a triple (E, P, u), where the
linear space E is given the partial ordering induced by the cone P,
where P Π ( —P) = {0}? and where u is an order unit for P, i.e.,
P — u absorbs E. Given a partially ordered linear space (E, P), the
dual cone P * is the space of all linear functionals on E which are
nonnegative on P. The subspace of the algebraic dual of E which is
generated by P * is denoted by E* it is clear that E* — P * — P*.
The partially ordered linear space (E*, P*) is called the order dual of

If (EL, Pi, uλ) and (E21P2J u2) are two partially ordered linear
spaces with order units, then in the tensor product Ex 0 E2 the cone
generated by elements of the form xλ 0 x2 fa e P4) will be denoted by
Pi 0 P2. The triple (Eι ® E2, Pt® P2, uL® u2) is a partially ordered
linear space with order unit [3, 8].

Given a partially ordered linear space with order unit (E, P, u),
its state space S is the set of all / in P * such that </, u) = 1,
provided with the weak* ( = w(E*, E)) topology. Clearly, S is convex
compact and Hausdorff. It is possible for S to be empty (cf. [7, p.
26]). If S is the state space of (2£L 0 E2J PL 0 P2? uL 0 u2) and se S,
then there exists a related functional sλ on E1 defined by

<st, x,y = <s, x, 0 u2y , xL e E, .

It is clear that st is in the state space St of (E^ Px, u^), and it is
clear how to define the analogous state s2 in S2. In the reverse
direction, suppose that t{ is in the state space S{ of (Eif Pi? u{) and
define the functional tL 0 t2 on Eι 0 E2 by setting
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<ti 0 t2, xx 0 x2y = <tlf x,y<t2y x2y, x^e E, ,

and extending linearly. The functional tλ 0 t2 is clearly in the state
space S of (E, 0 £72, Pγ 0 P2, ̂  (g) w2).

It is known [l, 3, 4] that if Ŝ  and S2 are simplexes (see below),
then a state s of >S is an extreme point of S if and only if s — s1 0 s2,
and each s* is extreme in S*. Our first few results show the extent
to which this remains true without making any assumptions about the
sets S, and S2.

LEMMA 1.1. Let S}, S2 and S be the state spaces of the partially
ordered linear spaces with order unit (Eλ, Pu uj, (E2, P2? u2) and
(Eι (g) E2, Pi ® P2, ιιι (g) u2) respectively. If se S and if sλ is an extreme
point of Slf then s = ^ (g) s2.

Proof. Fix an element x2 of JE2, with 0 ^ x2 ^ u2, and define the
functional / on E, by </, x^ — (s, xλ 0 £2>. Since 0 ^ / ^ sx and
since sλ is extreme in Sx, there exists a constant (necessarily equal to
</> ̂ i» s u c ^ that / = </, w^Si. Thus, for any xλ in EΊ, we have
<s, xλ 0 a;2> = </, o;2> = </, u^s^ x^ = <s2, a^X^, ^>. It follov ŝ easily
from this that s — sγ 0 s2.

If iΓ is a nonempty compact convex subset of a locally convex
space E, let ikΓί"(jfiΓ) denote the space of all regular Borel probability
measures on K and let Q(K) denote the subspace of all maximal such
measures on K [9]. We denote by r the affine resultant mapping
from M;(K) onto K it is characterized by the equation

f(r(μ)) = ί fdμ, feE,μe M+(K) .
JK

The restriction rm of r to the maximal measures Q(K) is also onto,
and K is called a simplex if rm is one-to-one. We will say that K is
simplex-like if there exists an affine map σ : K—> Mΐ{K) such that
r σ is the identity map on K. (Note that we are not assuming any
continuity properties for the affine cross-section σ.) If K is a simplex,
then the inverse of rm is such an affine cross-section, so every sim-
plex is simplex-like. Eventually (Theorem 1.4), we will prove the
converse to this last assertion.

We denote the set of extreme points of a convex set K by dK.

THEOREM 1.2. Let S19 S2 and S be the state spaces of (EL, Ply uλ),
(E2, P2, u2) and {E1 0 E2, Pi 0 P2, uλ 0 u2) respectively. If S1 is sim-
plex-like, then for each s in dS we have s = s1 0 s2 and s* e dSi.
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Proof. Let σ be an affine cross-section for r. These maps can
be extended to linear maps r: MiSJ —* E? and σ: Ef —> M(S^ so that
r σ is the identity on Ef, r ^ 0 and σ 2> 0, where ikf^) is the space
of all signed regular Borel measures on St. Given any t in S, we can
define a linear map Tt:E2—*E? by <Γt(a?2), a?x> = <ί, ̂  0 #2>. This
map satisfies

(a) Tt ^ 0 and (b) Γt(Ma)( = ί1) e & .

Conversely, given any linear T:E2—+Ef which satisfies (a) and (b),
there exists a unique t in S such that T ~ Tt. The correspondence
t *~+ Tt is an affine isomorphism, so if s e dS, then Ts is extreme in
the set of operators from E2 to Ef which satisfy (a) and (b). Given
•8 in dS, then, let μ = aisJeMtiSJ, i.e., μ = σTs(u2). Let j be the
injection map L"(S l f ju)-> Af^) defined by j(f) = fμ (feL^S^μ)).
Since ^ 2 is an order unit, given #2 in E2 there is a positive number m
such that —mu2 ^ x2^ mu2 and hence —mμ ^ <?jΓs(*τ2) ^ m//. By the
Radon-Nikodym theorem there is a unique element L(x2) of L^iS^ μ)
such that L(x2)μ = jL(x2) = σTs(x2). The map L: E2-+L^iS^ μ) is
clearly linear, positive and L(^2) = 1.

We wish to show that sλ e dS^ If not, then s1 = l/2(^ + ίί)> where
A Φ t[ and ίlf ί{ 6 iSi. Define linear maps Γ, Γ' from E2 into ^ by
Tα;2 = rlLix^σity)], T% = f[L(x2)σ(t[)]. (Since 0 ^ σ(ίx) g 2μ, for in-
stance, L(xJ}σ(tύ is well-defined.) Clearly, 5P, Γ' ^ 0 and Γ(u2) = tu

T(u2) = ίj. Thus, Γ and 3P satisfy (a) and (b), and T(u2) Φ T'iμύ, so
T Φ T. Moreover, for every x2 in E2, 1/2(Γ+ Γ0(a?a) = r l L i ^ c r ^ ) ] =
r[I/(^2)/^] = fά[!Γβ(a?2)] = Ts(x2), contradicting the fact that Ts is extreme.
We now know that sx e dSlf and Lemma 1.1 shows that $ = 8 x 0 s2. It
is straight-forward to check that s2edS2, so the proof is complete.

The following proposition was proved in [1, 3, 4] under the
additional hypothesis that each Sx was a simplex.

PROPOSITION 1.3. Let Sί9 S2 and S denote state spaces as in
Lemma 1.1. // s< e dSi (i = 1, 2), £&βw sL ® s2 G 3S.

Proof. Suppose that ί is a linear functional on JSΊ® JSi, that ίx

and ίa are defined in the obvious way, and that sx ® s2 ± ί e S; we
want to show that £ = 0. Since sx € 3 ^ and since 81±t1eS19 we see
that tγ = 0. Suppose that â  e J5Ί, with 0 ^ x^ ux. If x2 e P2, then
0 ^ ^i Θ 2̂ ̂  ^i ® ^2 and hence

0 ^ Oi ® s2, a?x ® x2y ± <ί, a?! ® £2>
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Since s2 is extreme (and since (t, xλ 0 u2y = 0), this shows that
<£, Xi 0 x2y = 0 for all #2 in JÊ . Finally, since Eλ 0 i?2 is generated
by elements of the form xλ 0 a?2, where ίt̂  e P%, we conclude that ί = 0.

[The special case of [3; Th. 3.1], where all the Γa are trivial,
follows easily from Theorem 1.2 and Proposition 1.3. By a very small
modification of Theorem 1.2, one can prove Theorem 3.1 of [3] in its
full generality. We leave such a modification of Theorem 1.2 (and its
proof) to the reader.]

Given two partially ordered linear spaces with order unit (Eί9 Pu u^)
and (E2, P2, u2), there is a second ordering one can introduce on EL 0 E2

(cf. [3, 8]) which may be described as follows: Note first that the
spaces E1 0 E2 and Ef 0 E2* are paired by (the linear extension of)
the obvious rule </x 0 f29 xλ 0 x2y = ζf19 x}y </2, x2y. We define a second
cone P Λ by

P Λ - {.τ G ^ ® E2: </, ,τ> ^ 0 for all / in P * 0 P*} .

It is clear that P1^) P2a PA and that ux 0 %2 is an order unit for P Λ

(since it is one for Pλ 0 P2). Let S and SA be the state spaces of
(Eλ 0 JE72, P, 0 P2, ^ 0 u2) and (£/, 0 E2, P Λ , ^ 0 %2) respectively. It
is evident that SΛ c S, and the following theorem gives conditions
under which SA = S. The validity of " (c) implies (a)? ? was suggested
to us by E. Effros.

THEOREM 1.4. Let S1 he the state space of (Eίy Ply u^\ then the
following assertions are equivalent

(a) SL is a simplex.
(b) Si is simplex-like.
(c) For any partially ordered linear space with order unit

(E29 P2, u2), the two state spaces resulting from the two orderings on
Eλ 0 E2 coincide.

Proof, We have already noted that (a) implies (b). Denoting the
two state spaces by S and SA as above, Theorem 1.2 shows that if
Si is simplex-like, then every extreme point of S is of the form ^ 0 s2.
Since such functionals are clearly in SΛ, we have dS a SA a S. By
the Krein-Milman theorem, then, S — SA. It remains to prove that
(c) implies (a). Let E — R\ let ei9 e2. ez be the usual unit basis vectors
and let P be the cone in E generated by the vectors elf e2, e3 and
î + e2 — β3. For an order unit u we may choose any point in the

interior of P (e.g., u = e1 + e2). The order dual (£7*, P*) is again
isomorphic to R% and if du d2i dz are basis vectors dual to elf e2, e3ΐ

then P * is generated by d19 d29 di + d39 d2 + d3. (Equivalently, P is the
intersection of the half-spaces through the origin defined by these four
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functional.) Let S and >SΛ be the state spaces of (E^E, P^P,
uλ ® u) and (JEΊ ® E, P A , uλ 0 u) respectively, and suppose that S = SΛ.
We will show that {Ef, Pf) is a vector lattice, which is equivalent to
showing that S1 is a simplex (c.f. [9].).

It is clear that the algebraic dual of E1 0 E can be identified
with E[ 0 Έ* (where E[ is the algebraic dual of Eλ) by means of the
usual pairing between EX^E and E[ 0 U7*, and each element of
E[ 0 £7* can be represented uniquely as /x 0 dλ + /2 0 d2 + /8 0 d3,
where /̂  e £7. Such an element is in (Pi 0 P)* if and only if /< ̂  0
(ΐ = 1, 2, 3) and f + /2 — /3 ^ 0. It is immediate from the definition
of P Λ and the separation theorem that (PΛ)* is the w(j&ί 0 E*, JSΊ 0 £7)-
closure of P * (g) P * in JE? 0 E*. We claim that P? 0 P * is, in fact,
w(J57ί 0 i?*, £Ί 0 ϋ7)-closed. Indeed, an arbitrary element of Px* 0 P *
may be written (not uniquely) in the form gx 0 ^ + g2 0 c?2 + g3 0
(di + cZ8) + g 4 0 (d2 + rf3), where ^ e P 2 (i = 1, 2, 3, 4). Suppose that
there is a net {ga} = {gΐ ®d1 + g%(£)d2 + gζ 0 (^ + d3) + g? 0 (d2 + d3)}
of such elements, converging to /i 0 d̂  + /2 0 eZ2 + /8 0 ŝ i n the
w(£i 0 £7*, £Ί 0 E) topology. Then gf + g$ converges to /,. in the
weak* topology in Ef, hence (in particular) <(^, u^} + <^, u^—+ζfl9 u^.
Since 0 <; <^, w^, the net {^?, w^} is eventually bounded. But the
set {f:feP19 </, ̂  ^ M} is weak* compact, and hence {#?} has a
convergent subnet. Without loss of generality we may assume that
lim g" = g1 exists. It then follows easily that lim g? — gι exist for
ί = 1, 2, 3, 4, and since Px* is weak* closed, gi e Px* (ΐ = 1, 2, 3, 4).
Thus, lim ga = g^ d, + g2<g> d2 + g3® (dλ + <£>) + g, 0 (d2 + d3) is in
Px* 0 P*, which shows that the latter is w(E[ 0 £7*, ̂  0 Enclosed.
Consequently, (PΛ)* = Pf 0 P*.

Now, since S = SΛ, we have (Px 0 P)* = (PΛ)* = P * 0 P*. Thus,
given flf /2, /3 in Px* such that /3 ^ /x + /2, there exist elements &, sr2,
5r3, g4 in P2* such that

Λ 0 i i + / 2 0 ̂ 2

= (Λ + 0s) 0

This shows that A = g, + &, f2 = g2 + g, and fz = g3 + gA, i.e., the
space (£Ί*, P2*) has the Riesz decomposition property (cf. [7, p. 27]).
The following lemma then completes the proof.

LEMMA 1.5. Let (E, P) be a partially ordered linear space such
that E = P — P. Then (i?*, P*) is α vector lattice if and only if it
has the Riesz decomposition property.

Proof. Every vector lattice has the decomposition property, so
we want to prove the converse. By a standard argument, the decom-
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position property implies that if g19 g2 ^ fuf2 in # * , then there exists.
h in E* such that gly g2^h^ f, f2. Thus, if f19 f2 e P*, then the set
A — {g: 0 ^ g <; f,f2) is directed by ^ . For each x in P, the net
K#, #>: g e A} is monotone and bounded, hence lim {<#, αf>: # e A} exists.
Since P — P = E, the net {gf ^eA} converges point wise to a positive
functional on E, which is readily verified to be /L Λ /2. This suffices
(cf. e.g., [9, p. 60]) to show that E* is a lattice.

2* Tensor products of compact convex sets* Suppose that K
is a compact convex set (always assumed to be a nonempty subset of
some locally convex Hausdorff space) and let A(K) (or simply A) de-
note the space of all real-valued continuous affine functions on K. If
A+ denotes the cone of nonnegative functions in A and 1 denotes the
function identically equal to 1, then (A, A+, 1) is a partially ordered
linear space with order unit. Now A is a Banach space under the
supremum norm and the order dual of (A, A+) is precisely the space
A* of all continuous linear functionals on A, ordered in the usual way
(cf. [7, p. 45]). Under the evaluation mapping, K is affinely homeo-
morphic to the state space of (A, A+, 1).

Suppose that Kx and K2 are compact convex subsets of locally con-
vex Hausdorff spaces, let A; = A{Ki) and consider the partial orderings
on Aλ ® A2 induced by the cones At ® At and P Λ defined in § 1. Let
K, • K2 denote the state space S of (Ax(g) A2, At <g) At, 1 (g) 1) and
let KtAK2 denote the state space SΛ of (AL(g) A2, P Λ , 1 (g) 1). As
noted before, the inclusion Kλ Δ K2 c JKί • iΓ2 is always valid.

If a* G Z;, then (as before) xx ® #2 is defined to be the element in
i ^ Δ i ^ c i ^ Π ^ which satisfies <^ (g) x2, f, (g) /2> = Λ ^ ) / ^ ) , (/4 e Ai).
The following theorem is a consequence of Theorem 1.2 and Proposition
1.3. A complete description of the extreme points of Kt • K2 remains
an open problem.

THEOREM 2.1. If XiβdKi (i — 1,2), ί/iew α ^ ® ^ is extreme in
Kt • iΓ2. // Kι is a simplex, then any x in d(Kx • K2) is of the
form x = xx§§x2, where x{ e dK{.

Theorem 1.4 yields the following result. (The implication " (d)
implies (a)" is contained in the proof of Theorem 1.4)

THEOREM 2.2. The following assertions about a compact convex
set Kλ are equivalent:

(a) Kγ is a simplex.
(b) Kγ is simplex-like.
(c) JKi Π K2 — Kx Δ K2 for every compact convex set K2.
(d) Kt Π K2 — Kx Δ K2 if K2 is a two-dimensional square.
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Denote by BA(Kγ x K2) (or simply by BA) the space of all
continuous real-valued biaffine functions on K1 x K2, i.e., those which
are continuous and affine in each variable. The space BA is, in a
natural way, a partially ordered linear space with order unit, and the
corresponding state space in its order dual is denoted by Kγ 0 K2.
(This is the protective tensor product of Kγ and K2 defined by Semadeni
[11].)

If A 0 A e A(κi) ® A(K2) = A, 0 A2y then we can regard A <E> A
as an element of BA{Kγ x K2) by

This embedding of the generating elements of Aι 0 A2 extends to a
linear embedding of A X 0 A2 into BA(Kλ x 1Q; we will henceforth
regard Ax 0 i 2 as a subspace of BA. Note that this subspace
contains the constant functions and separates points of Kx x if2. The
partial ordering on Aι 0 A2 defined by the cone PA is easily seen to
be the same as that induced by BA, i.e., Σu?=i fΐ ® fl £ PA if a n d o n l y
if Σ /K îX/KO ^ 0 for all (α̂ , x2) e K, x K2. Note, too, that the order
duals of each of these spaces coincide with their duals as normed
linear spaces, using the supremum norm. Let p: BA{KYxK2Y —*
[A(iQ 0 A(K2)\* denote the restriction mapping. If s e Kγ 0 K21 then,
p(s) e Kλ Δ ^2 It is readily verified (using the extension theorem for
positive functional, cf. [7, p. 8] that p is an affine map of Kγ 0 K2 onto
KX^K2 and is continuous in the weak* topologies. Let ω: Kx x ί 2 - >
UL 1 0JK 2 denote the evaluation mapping: If feBA, then < α>( ,̂ x2),
f > = f(%19 %2) for all (x19 x2) eKxx K2. Clearly, ρω(xlf x2) = a?x 0 α?2 €

KX/\K2. The two tensor products ULX 0 K2 and ^ Δ i^2 will be iso-
morphic if p is a bisection; the conditions under which this can occur
are considered below. We first investigate further the extreme points
of all three tensor products. This has been done before [1, 3, 4], but
except for [3] it was assumed that both sets were simplexes.

THEOREM 2.3. Every extreme point of Kx Δ K2 [or of Kx 0 K2]
is of the form xL 0 x2 [of the form ω(xu x2)], where x€ e dKif i — 1, 2.
If (χι> χz) e d-SΓi x dK2, then x10 x2 is extreme in Kx • K2 and in Kγ Δ -SΓ2,
and (ύ(xγ, x2) is extreme in Kγ 0 K2.

Proof. Suppose that Mis a subspace of C(KX x K2) (the continu-
ous real valued functions on Kx x K2) which contains the constants,
so that M is (in the natural ordering) a partially ordered space with
order unit. A standard argument shows that every extreme state on
M is the restriction of an extreme state on Ci^ x iΓ2), hence is
evaluation at a point (xly x2) in Kx x K2. If the functions in M are
biaffine and separate points, then xt e dKίf i = 1, 2. By applying this
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observation to M = At(& A2 and to M = BA, we obtain the first part
of the theorem.

If (xlf x2) e dKx x dK2, then xγ (g) x2 is extreme in Kt • if2 by
Theorem 2.1. Since α̂  (g) £2 e ! £ Δ ^ c iξ. Π ^2, we also have x1 (g) a?2

extreme in i ^ Δ iζ> Since the map p: Kt (g) K2 —> Kλ Δ K2 is a weak*
continuous affine surjection, p~1(x1®x2) contains an extreme point of
Kγ <g) K2. By the first part of the theorem, this functional is evalu-
ation at some point of K1 x K2 which, since At (g) A2 separates points
of Kγ x iΓ2, is precisely the point (xu x2).

DEFINITION. A Banach space E is said to have the approximation
property [2] if for each compact convex subset C of E and each
€ > 0, there exists a continuous linear transformation (or equivalently,
affine transformation) T: E —> E such that T(E) is finite dimensional
and || Tx — x \\ < ε if xe C. It remains open whether every Banach
space has the approximation property.

THEOREM 2.4. The restriction mapping p: Kx (g) K2 —> ifL Δ iζ> is
one-to-one for every pair of compact convex sets Kx and K2 if and
only if every Banach space has the approximation property.

The proof of this proceeds by a series of simple lemmas. Note
that the restriction mapping p is a linear operator from BA(Kλ (g) K2)*
onto (ALQAZ)* which is the adjoint of the embedding of At (g) A2 into
BA(Kγ x K2). Consequently, p will be one-to-one on BA(KX x K2)* if
and only if Ax (g) A2 is dense (in the supremum norm topology) in
BAiKj. x K2). Since BA(K± x K2)* is generated by Kx (g) iΓ2, <o is one-
to-one on BA* if and only if it is one-to-one on Kλ 0 K2.

LEMMA 2.5. Let Kx be a compact convex set. If the Banach
space AiKj) has the approximation property, then A(K^) (g) A(K2) is
dense in BA(Kt x K2), for every compact convex set K2.

Proof. Suppose that Kx and K2 are compact convex sets and let
A[K21 AiK^] denote the space of all affine continuous mappings
F: K2^A{KX) with noπn||2?Ί| - sup{||F(x2)||: x2eK2}. If feBA&xKJ,
then (Fx2)(xλ) = f(x19 x2)(Xi e Kt) defines an element of A[K2i A(Kύ\, and
it is readily verified that the correspondence /—>F is a linear isometry
between these two spaces. Furthermore, under this isometry the sub-
space A(iQ (g) A(K2) corresponds to the set of those elements in
A[K2, A(K^j] having finite dimensional range. Suppose, now, that
A{K^ has the approximation property. Given / in BA(KX x K2), with
corresponding function F, let C = F(K2). This is a compact convex
subset of A(iQ, so for any ε > 0 there exists a continuous linear
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operator T: A{K^) —• A(1Q such that the range of T is finite dimen-
sional and || Tg — g\\ < ε for each g in C. It follows that ToF is in
A[K2, A(Kj)]9 has finite dimensional range, and satisfies || ToF — F\\ < e,
so Ai ® A2 is dense in BA.

COROLLARY 2.6. If Kx is a simplex and K2 is any compact
convex set, then Kt 0 K2 is affinely homeomorphic to Kλ A K2.

Proof. It is known [10] that if Kγ is a simplex, then A{K^)* is
an abstract (L)-space. From a theorem of Grothendieck [2], it follows
that A(K^ has the approximation property, so the above lemma and
preceding remarks show that p is a homeomorphism.

This corollary is also an immediate consequence of a result of
Lazar [5, Lemma 3.1; 6].

LEMMA 2.7. If A(K^ ® A(K2) is dense in BA(K, x K2) for each
compact convex K2, then for each compact convex CdA(K^) and each
ε > 0, there exists a finite dimensional subspace MczA{K^) and an
affine map φ\ C —> M such that \\φ{c) — c\\ < ε for each c in C.

Proof. Let geBA^x C) be defined by g(xλ1 c) = c(xx). By
hypothesis there exists / in A{K^) (g) A(C) such that \\f — g\\ < ε. If
φ and ψ denote the elements of A[C, A{KX)] corresponding to / and g
respectively, then φ has range contained in a finite-dimensional sub-
space M of A{K^) and ψ is the inclusion map C-^AiKJ. Hence for
each c in C, || <p(c) — c \\ = \\ φ(c) - ψ(c) || < ε.

LEMMA 2.8. Suppose that E is a normed linear space and that
C is a nonempty compact convex subset of E. Suppose that ε > 0
and that there exists a finite dimensional subspace MczE and a con-
tinuous affine map φ: C —> M such that || x — φx || < ε for each xeC.
Then there exists a continuous affine map ψ:E—+M such that
|| x — ψx || < 2s for each x in C.

Proof. Let xly , xn be a basis for M; then there are continuous
real valued affine functions φι,φ2,* *,φn on C such that φ(x) =
Σφi(χ)χi f ° r B Ξ C By [9, p. 31] we can choose continuous affine
functionals ψu , ψn on E such that | φ^x) — ψi(x) \ < εQj II %i II)"1

for x in C. It follows that if ψ(x) = X Ψi(%)%i for x in E, then
|| φx — α/ro; || < ε for xeC, hence || ψx — x \\ < 2ε if x e C.

This result, together with Lemma 2.7, shows that under the
density hypothesis of Lemma 2.7, A(K^) has the approximation
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property.

LEMMA 2.9. Suppose that A(K) has the approximation property,
for each compact convex set K. Then every Banach space B has the
approximation property.

Proof. Let K denote the unit ball of i?*, in its weak* topology*
It is easily verified that if B x R is normed by || (x, r)|j — \\x\\ + \r\,
then the correspondence between (x, r) and the functional on K defined
by k —• ζx, ky + r is an isometric isomorphism between B x R and
A{K). Thus, if C is a compact convex subset of BczB x R and ε > 0,
then there exist a finite dimensional subspace M of B x R and a
continuous linear map T: B x R —* M with || Tx — x\\ < ε for xeC.
If P denotes the natural projection P(x, r) = x of B x R onto B, then
| | P | | = 1 and the range of Po T is finite dimensional in B. Further-
more, if x e C then || P(Tx) - x || = || P(Tx - x) || ^ || Tx - x \\ < e.

This completes the proof of Theorem 2.4.

It has been shown by Lazar [4] and by Davies and Vincent-Smith
[1] that if Kγ and K2 are simplexes, then Kx 0 K2 is a simplex. (It
follows from Corollary 2.6 and Theorem 2.2, of course, that in this case
all three tensor products are the same.) The next result shows that
the converse is valid. We first require a definition.

A subset F of a compact convex set K is called a face if F is
compact convex and if x, y e F whenever x, ye K and ax + (1 — a)y e F
for some 0 < a < 1. It is readily seen that the cone in A(K)*
generated by F is a "hereditary" subcone of the cone generated by
K, hence (cf. [9, p. 64]) if K is a simplex, then so is the face F.

PROPOSITION 2.10. If Kγ and K2 are compact convex sets and if
any of the sets Kx 0 K2, Kx Π K2 or Kx /\K2 is a simplex, then Kγ

and K2 are simplexes (and the three tensor products are the same).

Proof. Since a face of a simplex is a simplex, it suffices to show
that Kλ is affinely homeomorphic to a face of each of the tensor
products. Choose x2 in 3K2 and let F — {x §§ x2e Kt\Z\ K2: x e iΓJ. It
is clear that F is affinely homeomorphic to Kx\ we will show that it
is a face of K1\Z\K2. Suppose, then, that x 0 x2 6 F and that
x 0 χ2 = as + (1 — a)t, where 0 < a < 1 and $, t e Kγ • K2. We have
x = asL + (1 — a)t1 and x2 = αs2 + (1 — oc)t2. Since #2 is extreme, s2 =
$2 = ί2. By Lemma 1.1, this implies that s = sL 0 $2 and £ = £L 0 #2,
which shows that F is a face of Kx • iΓ2. It is clear that F c Kx Δ
-K̂  c iΓL • UL2, so F is also a face of iΓx Δ K2. Finally, the inverse
image of F under the restriction map p: Kγ 0 K2 —• irx Δ K2 is a face
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of Kλ (g) K2 which is easily seen to be affinely homeomorphic to Kt; it
equals {ω(x, x2): xeKJ. The last assertion of the proposition was
noted abave. (By "the same," we mean that ζ Δ ^ ^ ^ i D K2 and
that the map p is a homeomorphism between iζ ® K2 and Kx A K2.)

3* Problems and remarks. There remain a few open questions.
Although every point of the form xι ® x2 (with (x19 x2) e dKx x dK2) is
extreme in Kγ Π K2, there will be additional extreme points if neither
of the sets is a simplex and (for instance) one of them is a square.
(These additional points are easily seen to be outside of the set
{x1 (g) x2: (xl9 x2) e ifi x iQ.) Is there a simple description of these
points?

Another question is related to the characterization of simplexes
in terms of affine cross-sections for the resultant map. Suppose that
such a cross-section σ exists for the compact convex set K (so that
K is a simplex); must σ coincide with the inverse of rm? Equivalently,
does σ map K into the maximal measures Q(if)? [Since σ(x) is
necessarily the maximal measure ετ whenever x e dK, we have <7(conv dK) c

It should also be noted that it is possible that Ky Δ K2 is always
a face of Kλ • K2. This is suggested by the fact (Theorem 2.3) that

We have dealt solely with tensor products of two spaces (or of
two convex sets). Those results which can be formulated for finite
tensor products can, however, be readily proved by appropriate in-
duction arguments and can then be extended by standard methods to
infinite tensor products. The techniques for doing this are well known
[1, 3, 4] so we have restricted ourselves to the simplest case in order
to exhibit the essential ideas of the proofs. Similarly, these results
can be extended fairly easily to sets of states which are invariant
under appropriate actions of semigroups, as was done in [3]. (The
extension of Theorem 1.4 to more than two spaces requires that all
but one of the state spaces be simplexes.)

We wish to thank Professors A. Lazar and E. Effros for several
helpful conversations on the subject matter of this paper.

BIBLIOGRAPHY

1. E. B. Davies and G. F. Vincent-Smith, Tensor products, infinite products and
projectίve limits of Choquet simplexes, Math. Scand. 22 (1968), 145-164.
2. A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Memoirs
Amer. Math. Soc. 16 (1955).

1 Added proof: Hicham Fakhoury proved that an affine cross-section, if it exists,
is unique. [C. R. Acad. Sci. Paris, 269 Serie A (1969), 21-24].



480 I. NAMIOKA AND R. R. PHELPS

3. A. Hulanicki and R. R. Phelps, J. Functional Analysis 2 (1968), 177-201.
4. A. Lazar, A fine products of simplexes, Math. Scand. 22 (1968), 165-175.
5. , Spaces of affine continuous functions on simplexes, Trans. Amer. Math.
Soc. 134 (1968), 503-525.
β. , Affine functions on simplexes and extreme operators, Israel J. Math. 5
(1967), 31-43.
7. Isaac Namioka, Partially ordered linear topological spaces, Memoirs Amer. Math.
Soc. 24 (1957).
8. A. L. Peressini and D. R. Sherbert, Ordered topological tensor products, Proc.
Lond. Math. Soc. (1968).
9. R. R. Phelps, Lectures on Choquet's theorem, D. Van Nostrand, Princeton, N. J.,
1966.
10. Z. Semadeni, Free compact convex sets, Bull. Acad. Polon. Sci. Ser. Sci., Math.,
Astr. et Phys. 13 (1964), 141-146.
11. — --, Categorical methods in convexity, Proc. Colloq. on Convexity, Copenhagen,
1965, 281-307.

Received October 4, 1968. Research on this paper supported in part by NSF
Grants GP 8348 and GP 7164, respectively.

UNIVERSITY OF WASHINGTON




