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SEMI-SQUARE-SUMMABLE

FOURIER-STIELTJES TRANSFORMS

I. GLICKSBERG

For G a locally compact abelian group with dual Γ, let μ
be a (finite regular Borel) measure on G with Fourier-Stieltjes
transform β. Doss has recently shown that when Γ is
(algebraically) a totally ordered abelian group and β is square
integrable on the negative half Γ- of Γ then its singular com-
ponent a has o = 0 on Γ~\ in particular μE = 0 for each com-
mon null set E of the analytic measures (those with transforms
0 on Γ~), such E being Haar-null.

In the similar (but usually distinct) case in which Γ is
partially ordered by a nonzero homomorphism ψ\ Γ —> R with
Γ- — ψ~ι{—co, 0] the common null sets E are known, and our
purpose is to note in this setting how function algebra results
apply to show μE — 0 when β e L2(ΓS), and when β satisfies
sometimes weaker (but more obscure) hypotheses.

Doss' results appear in [2], and the function algebra results we
apply are those in [4, §1], [5, §2], with which we shall assume the
reader familiar. The common null sets mentioned above are given in
[1, 5].

THEOREM 1. Let ψ, Γ- be as above and let φ: R-+G be the
homomorphism dual to ψ. If

(1)

then μ vanishes on all Borel E a G for which

(2) {t e R: x + φ(t) e E} has linear measure 0,

for all xeG, i.e. (by definition [3, §2]) μ is absolutely continuous
in the direction of φ.

Proof. Let Ga be the Bohr compactification of G, with dual Γd,
the discrete version of Γ. Dual to ψ: Γd-^R we have a map of R

into Ga, the composition R —̂ -> G —* Ga, which we still call φ. Note
that each Borel E in G is Borel1 in Ga, and if Ed G satisfies (2) for x e G
it does for all x in Ga (the set is void for xeGa\G). As in [5] we
are forced to transfer our attention to Ga to apply the function algebra
results.

1 We take the σ-ΐing generated by compacta as our Borel sets.
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368 I. GLICKSBERG

Let A be the closed span of Γ+ = ^ [ O , oo) in C(Ga), a subalgebra
of C(Ga). As usual we can shift μ to a measure on Ga carried by its
subset G [6] with the same Fourier-Stieltjes transform as before. Let
/ be the element μχ of L2(Γ), where χ is the characteristic function
of ΓL, and2 / the element of L2(G) corresponding to /.

For any trigonometric polynomial p = Σc*7i *n A (i.e., with
Ξ> 0) we have

(vμ)A{Ί) = \ppdμ = Σ c<j8(7 - 7,) - (Σ c ^ r <

and since

(Σ *δ_ r .)*/(7) = Σ C$(7 - 7ί)χ(7 - 7,)

- Σ ^ ( 7 - 7,) - (pμ)Hy)

if ^(7) ^ 0, we have

or

(3)

Now (3) continues to hold for any a e A in place of p e A: for if
pn—>a in A then (pnμ)A —• (aμ)A uniformly, so that for any compact

whence | | (αμ) Λ χ| | 2 ^ | |/ | |2 | |α|U. Indeed this clearly follows whenever
\\Pn\\co^ HαlU a n d (pnμ)A-> (aμ)A u n i f o r m l y .

Let 7 be a fixed element of Γ with ^(7) > 0, and let μ = v + σ
be the Lebesgue decomposition of μ relative to Mr (the probability
measures on Ga orthogonal to 7A, cf. [4, § 1]), with v < Mr, σ Mr-
singular. By the argument of the last paragraph of [5, §2], v vanishes
on Borel sets in Ga satisfying (2), so we can complete our proof by
showing σ = 0. As in [4] a is carried by U K%, where Kn is a com-
pact ikfr-null set.

By the abstract Forelli Lemma [4, 1.2] (applied to the algebra
C + ΊA) and dominated convergence we have {αj in the unit ball of
A for which anμ —• σ in norm, so (anaμ)A —• (aσ)A uniformly and again
we conclude that ||(ασ)Λχ||2 ^ | | / | | 2 | |α |U for aeA.

2 It should be noted that when G is compact fBL\G) and the result follows
trivially from [1]; for then v(dx) = μ(dx) — f(x)dx defines an analytic measure.
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Now by [5, § 2] each measure τ on Ga orthogonal to A has τKn — 0
for each K% and thus by [3, 4.8] Kn is an intersection of peak sets
of A, and an interpolation set for A; using the regularity of σ one
then concludes3 there is a sequence {α̂  } in the unit ball of A for which
aάσ —*\σKn\ i n norm. So again | | | ( 7 ^ | Λ χ| |2 ^ | | / | | 2 1, which of course
implies \<?K%\A eL2(Γ) since the absolute value of this function is even.
Because μ is carried by the subset G of Ga, the same is true of its
restrictions σ and σKn and so, as a measure on G with square summ-
able transform, | σκ% | is absolutely continuous by the elementary argu-
ment given by Doss [2, Th. 1]. Hence σ is absolutely continuous.

To complete our proof we can show σ = 0 by showing σ is carried
by a Haar-null set. And since σ is carried by a <7-compact set, it
suffices to show σH+v is carried by a Haar null set for each x0 e G and
some compact symmetric neighborhood V of the identity. But σ and
each λ G Mr are mutually singular, so it suffices to show there is a
λ in Mγ equivalent to Haar measure on x0 + V, and, for example,
with m Haar measure

XE = Γ f χ«0+2r(& ~ φ(t))dxp{t)dt

defines such a measure if

p{s) =

0 elsewhere .

Indeed

^ v ; y v ;V ί/2 / -

so λ ^ 0 and

λ(7) -

as is easily verified; so λ vanishes off ^~"1( — IKΎ), ^(Ύ)) whence λ is
orthogonal to 7A, the span of {/S e Γ: ^(/S) ^ f (7)}. And XE = 0 implies

= 0

for some ί0 with 9>(ί0) e V since /o(ί) > 0 a.e., φ(0) e V and φ is con-

3 By regularity there is a peak set (an intersection of countably many such)
Fn ^ Kn for which σFn = σKn, and if / peaks on Fn then fk -> 1 a.e. | σ^ I, -> 0 a.e.
I aκ> |. If σ^ = p I σ .̂ |, | p | ^ 1, then we have fk in the unit ball of C(Kj) for which
fk-*p a.e. k # J , hence bk in the (1 + ε)-ball of A for which fo — fk on ίΓw, whence
bkfkσ-+\σκ I by dominated convergence.
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tinuous, so if Ed xQ + V we have E — <p(t0) c x0 + 2V, and therefore

0 = \ XXo+2v(x - φ(to))dx = \ Idx = mE .
}E JE

Hence mXQ+2V < λX().h2F; the reverse is obvious (and actually unnecessary)
and our proof complete.

Variants of theorem 1 can be obtained from the same argument,
but seem to require more artificial hypotheses. For example

THEOREM 2. With γy Γ_ as before, suppose the continuous func-
tion f = f* G L\G) Π L i(Γ)Λ never vanishes on4 G, and μ is a measure
for τυhich for some k

( 4 ) (pμ)A(l)f(β - Ί)dΊ dβ ^ k\\p\\

for all trigonometric polynomials p — ΣΓ=i Gffί with ψ(7i) ^ 0. Then
μE = 0 for each Borel E(zG satisfing (2).

We argue exactly as before that if pnμ—»aμ and H p J L ^ | |α |U,
ae A, one has

dβ-g. k\\a\l

for K compact, so (4) holds for p an arbitrary element of A,
With μ = v + σ as before we again obtain (4) for pe A and σ in

place of μ, and then for 1 = pe A and \(?κn\ = τ ίn place of σ. But
since τ( — i) = τ(τ) the finite integral

( 5 )

coincides with

- Ί)dΊ dβ

( 6 ) τ(-Ί)f{β - Ί)dΊ dβ =

Γ+

dβ

dβ

so that, by Minkowski, τ*fe L2(Γ). Trivially one verifies that the
transform of the finite measure fτ [on G is τ*/: thus fτ is absolutely

4 When such an / exists this contains the preceding result. For when μχeL2(Π
so is (pμ)~χ and always of norm ^ h \\p\\o* as we saw in the proof of Theorem 1.

B u t t h e n \\(pμΓχ*f\\2^ \\ (pμΓχ \\z \\f\h ^ k \\ p | μ | | / | | i w h i c h i s (4).
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continuous, so τ = \ σKn | is since / never vanishes; again σ is singular
with respect to Haar measure, and σ — 0 follows.

THEOREM 3. Suppose there are ΎneΓ for which εn=\\ jnμ\\A*—*0,
where the norm is that ofjnμ as a functional on A = span/V Then
μE = 0 for every Borel E in G satisfying (2).

We are supposing that \(aμ)A(jn)\ ^εn\\a\\co for each aeA, where
εn—*0. As before we have aά e A, \\a5\\ 5g 1, with ajμ—^σ, where a
is the ikP-singular component of μ, so

( 7 ) | ( α < 7 ) Λ ( τ . ) | ^ ε J | α | U

follows since (αi α/^)A —> (aσ)Λ uniformly. Now we have σ carried by
U K3; Kj a compact Λfr-null set, and as before an intersection of peak
sets of A and an interpolation set for A. So exactly as before (cf.
footnote 3) we have {ak} in the unit ball of A for which akσ —> j n \σKj |,
whence by (7)

\(Ύn\σKj\Π7n)\ = \σκ.\(l) - \\σκ.\\^ε%

for all n, so σκ. = 0, σ — 0, completing our proof as before.
As a final remark, we note that for any measure μ vanishing on

all E satisfying (2), i.e., for μ absolutely continuous in the direction
of φ, if I ψ(jn) I —• oo, we (at least) have 7nμ —> 0 weakly.5 Indeed since
Γμ — {jμ: y e Γ} is conditionally weakly compact we need only see any
weak cluster point of {jnμ} must be 0, so it suffices to show

(ΊnμY(Ί) = β(Ύ + ΎJ — 0 .

But this follows directly from the following easy "Riemann-Lebesgue
lemma": // μ is absolutely continuous in the direction of φ then for
any ε > 0 there is an N for which \ μ(j) \ < s if \ ψ(y) \ > N.

By [3, 2.4] μ translates continuously in the direction of φ, i.e.,
| | ^ - ^ | | < ε if \t\<δ, where μtE = μ(φ(t) + E). Thus for an
appropriate continuous f on R vanishing off ( — δ, 3) we have

ilΛ*/~ μ\\ < e ,

where

= \μtf(t)dt

5 Thus for any measure μ on G one has an analogue of a well known lemma of
Helson: if \f(γn)\->00, any weak cluster point v of {γnμ} is carried by a subset E
of G satisfying (2), i.e., null in the direction of φ in the terminology of [3]. (For v
is necessarily a weak cluster point of {γnσ}, where σ is the M^-singular component of
μ, as always.)
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can be interpreted as, say, a Riemann integral. But

(μ*f)A(Ύ) =

= \\(x-φ(t),7)μ(dx)f(t)dt

= μ(y)\(φ(t), Ί)f(t)dt

t, Ψ(Ύ))f(t)dt =

which shows (μ*f)A has the desired property by the Riemann-Lebesgue
lemma applied to /. As a uniform limit of such functions μ of course
has the same property.
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