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ON (m —n) PRODUCTS OF BOOLEAN ALGEBRAS
R. H. LA GRANGE

This discussion begins with the problem of whether or not
all (m —n) products of an indexed set {2.};.r of Boolean
algebras can be obtained as m-extensions of a particular
algebra & F. The construction of &~ » is similar to the
construction of the Boolean product of {¥;};.; however the &7,
are embedded in 7 in such a way that their images are
n-independent. If there is a cardinal number n’, satisfying
n<n <m, then (m —1n’) products are not obtainable in this
manner, For the case 1 = m an example shows the answer to
be negative. It is explained how the class of m-extensions of
7 is situated in the class of all (m — n) produets of {Us}ier.
A set of m-representable Boolean algebras is given for which
the minimal (m — n) produet is not m-representable and for
which there is no smallest (m — n) product.

These problems have been proposed by R. Sikorski (see [2]).
Concerning {,},.,, it is assumed throughout that each of these
algebras has at least four elements. m and n will always denote in-
finite cardinals with n < m. All definitions are taken from [2]. An
m-homomorphism is a homomorphism that is conditionally m-complete.
We denote the class of (m — n) products of {2,},., by P, and the class
of (m — 0) products by P. Let {{¢,},cr, <&} and {{j.}.r, €} be elements
of P. We say that

{{ickeer, ZY = {{Jibier ¢}

provided there is an ni-homomorphism % from € onto <£Z such that
hoj, = i, for te T. The relation “<” is a quasi-ordering of P. Two
(m — 0) products are isomorphic if each is < to the other.

The particular product, {{¢;},.r, F, *} of {.},., mentioned above
is defined as follows. For each te T let X, be the Stone space of 2,
and let g, be an isomorphism from 2, onto the field &, of all open
and closed subsets of X,. Let X be the Cartesian product of the sets
X., and for each te T and each be 2, set

(1) gi(b) = [ve X: a(t) € g.(0)} .
Let G, be the set of all subsets a of X which satisfy the following
condition:
a = ) g#(b) where b,e%,, SS T and S<u.
tesS

Finally, let 7, * be the field of subsets of X which is generated by
G,
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F, * is a base for the n-topology on X. ¢ is a complete iso-
morphism from 2, into &, *. The set {g;(2,)}, of subalgebras, is n-
independent.

A Boolean (m — un) product {{i.},c,, <2} is said to belong to E, if
and only if there is an m-isomorphism & (from &, * into <#’) such that
{h, &2} is an m-extension of 7 * and for each te T hog/ = 1,.

For every m-extension {h, <%} of #, *, {{hog/},cr, Z} € E,. Clearly
E, S P, and E, is not empty. m-extensions of .7, * seem to provide
the most natural examples of Boolean (m — 1) products.

1. LemMmA 1.1. Let {<7,},., be an n-independent set of sub-

algebras of a Boolean algebra A and let S and S be subsets of T
with S <mn and S <n. For eacht let a, and b, be nonzero elements
of #,. Then

(i) TMEsa, = T1E0b, if and only if a, < b, for each te S;

(i) MZsa, = 12, b, implies that a, = b, for teSNS, a, =1
for teS— 8, and b, =1 for tcS — S.

Proof. (i) Assume that for some ¢,€ S, a,, == b,. Define

e if teS and ¢t #t,,
o lay(=by) i =t

Set ¢ = [[Xse¢,, and note that ¢+ 0,¢ < [[Xsa, and c¢-[[Xsb, = 0.
The converse is clear.

To prove (ii) we define

Ja, if teS, q b, if te S,
r, = . an = .
‘TNt tes — S YTl iftes— 8.
Now
9 9 9 9
v, =1la, =11 b= 1l w.
teSus’ teS teS’ tes_oS’

and (ii) follows from (i).

LEMMA 1.2. Let {<£,},., be an n-independent set of subalgebras
of a Boolean algebra A. Let G be the set of all meets [[Ls a, such that
SST,S<n, and for each te S a, is a nonzero element of =7,. As-
sume further that G generates . Then G is dense in A,

Proof. First note that for g, ¢’ € G either g-g’ = 0 or else g-g’' € G.
Thus every nonzero element of U is a finite join of elements of the
form g-[T%, (—g,) with ¢, g; € G and & finite. (This notation is intended
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to include the special cases g and —g.) Now suppose g- HKk( 9;) =0,
so that g == 3., 9 We write a common form g = ¥ a, and for
each i < k g, = [I1%, a;, where S T, S <n, and for each te S a, and
a;,, are nonzero elements of .<%,. Since k is finite every Boolean algebra
is (k — n)-distributive (see [2], p. 62). We have

Hatiz Il a;,, = H > Wiy -

i<k teS 1[,-6.5 i<k

(Here S* denotes the set of all functions from # = {0,1, ---, k — 1}
into S.) Choose ¢ € S* such that [,.s@, == 3ici @;,55. We have, for
each se{g(?): 1 < k}, @, == Dsi5=s @i, Define
a, if teS — {g(3): 7 < k}
bi=1g,. - 3 au i tefp(i)i < 1}
Finally let b = [[¥X¢b,.. Clearly b=0,bcG and b<g. For each

te{p(t): i <k}, b,» D=t @i pr = 0, s0 that b-3. ., a; 5 = 0. It follows
that b-3;c, g; = 0, hence b < g-I[i<x (—9)).

COROLLARY 1.3. If §>n, and for each teS,a, #1, then
II?ZS a; = 0.

THEOREM 1.4. Let {{i,}icr, &} e P,. There is one and only one
isomorphism h, from Z,* into <7 which satisfies the following
completeness condition:

(c) n(1‘[ gi(a)) = ﬁz(a) whenever SS T, S<n

a, e, and a, 0.

Proof. Let G be the set of all meets []/.s %.(a;) such that S T,
S <n, each a,e ¥, and a, = 0. Let A be the subalgebra of <Z which
is generated by G. For [[iis%.(a,)eG it is clear that [[Zs1.(a,) =
%si(a). By Lemma 1.2 G is dense in 2. Also G, is dense in .7, *.
For a € G, write & = N,.s g7 (a,) = ;Zg gi(a,). Define h(a) = [T%s7.(a,).
It is easily seen, using Lemma 1.1, that

(i) h is a one to one function from G, onto G;

(ii) for a,be Gy a <D if and only if h(a) < K(b).
It follows (see [2], p. 37) that % can be extended to an isomorphism
h, from & * onto A. h, is uniquely determined by condition (c) be-
cause G, generates .7, *.

COROLLARY 1.5. The product {{t,}
18 m-complete.

RYe E, if and only if hy

teT?
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Proof. Let {{i)},.,, #} e E,. There is an m-isomorphism f from
Z.* into <& such that for each te T, fog;f = 1,. f satisfles condition
(c) so f = hy.

COROLLARY 1.6. Assume T >n and that m=w >n. Then
P, N E, is emptly.

Proof. Let {{i},.,, <#} € P,. Consider the isomorphism A, from
F ¥ into <4 Choose SE& T, S = n*, and for each ¢ e S choose a, € ¥,
with a, # 0, a, = 1. By Corollary 1.3

gf(a) = 0.

tesS

However 0 # [[/ist(a;) = 11~ hyogf(a,) so that h, is not m-complete.
There is an interesting contrast between E, and P,, (under the

hypotheses of Corollary 1.6). Let {{¢},.,, &Z} and {{j},.,, €} be

elements of P, with {{1,},.,, &} < {{7:},.,» €}. It is known (see [2],

p. 179) that if {{i)},.,, <} € Py, then {{j},.,, €} € P,. On the other

hand if {{j},.,, €} € E, then we have {{¢,}, ., <&} E,.

ter? teT?

COROLLARY 1.7. Assume T >nand m >n. Then E,U P,. =+ P,

Proof. Let SS T with S =n*. Choose, for each te S, d,ec¥,
with d, = 0,d, #1. Let d = 597 (d,). Let % Dbe the field of
subsets of X which is generated by # * U {d}. Note that ¢; is a
complete isomorphism from 2, into A Let {f, €} be any m-extension
of Z. It is easily seen that {{f-yg/}, ., C}eP,.

Consider the isomorphism #&, from &, * into €. h,og; = fog; for
every te T. By Corollary 1.3 ]]t”:r; g.(d,) = 0. However [, hyogi(d,) =
f(d) # 0. Thus h, is not m-complete and {{f-g/},.,, €} ¢ E\.

In order to show that {{f-g¢},.,, €} ¢ P,, it suffices to show that
Iics fegi(—d,) =0. In particular suppose b = [[<s9:i(—d,) # 0.
Since b-d = 0 the definition of & enables us to write b = J;esb,-
gi(—d,) with b,e & *. Choose t,€S such that 0 = b,-g;(—d,) < b.
By Lemma 1.2 there is a nonzero element ¢ = (),.s g/ (a,) of G, such
that a &£ b,-9:(—d,). Now S’ <nand S =t and it follows that a £ b.
Thus [[7s9/(—d,) = 0 and since f is m-complete, [[ ¢ fogi(—d,) = 0.

We now consider the case n = m. It is known that E, =+ P if
m = W, (see [2], p. 190, Example D). In this example T is the two
element set {1, 2}, A, and A, are o-complete Boolean algebras which
satisfy the o-chain condition. The Boolean o-product {{¢,, 7.}, &} is
such that the subalgebra <7, of <& which is generated by 7,(21,) U %,(2,)
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is not a o-regular subalgebra of <Z Let {f, €} be any m-extension
of & It follows, using the o-chain condition on 2, and U, that
{{foi, foi}, € e P,. Since T is finite {{g7, 95}, F.*} is the Boolean
product of {¥,, A}, Let 2 be the homomorphism from .7 * into &%
such that hogf = 7, and hogy = 1,. Then & is an isomorphism from
Fu* onto Z,. Consider the isomorphism %, from & * into €, given
by Theorem 1.4. h, = foh since they agree on g(2,) U g5(2L). h, is
not m-complete because f(<%;) is not m-regular in €. Thus {{f-7,
foi,), Cle E,. We give a simple for the case m = 2%,

ExAMPLE 1.8. Assume m = 2%0 and let T be a set of power ..
For each ¢t ¢ T let 2, be a Boolean algebra having exactly four elements.
Let <#Z be the free Boolean m-algebra on Y, nm-generators, (D,:te T}.
&% is not m-representable (see [2], p. 134). For each te T choose
d, to be one of the atoms of 2,. Let 4, be the isomorphism from
A, into =# such that i,(d,) = D,. Then {{i,},.,, &} € P,. By Lemma
1.2 &, * is atomic, the atoms being all sets of the form .., ¢/ (a.),
where for each ¢te T a, is an atom of 2,. Denote the set of atoms
of & * by {C,: re R}, then R = 2%, We consider the isomorphism

“m

h, from & * into <Z. For each reR, h (c,) is an atom of = To

m
show this we define

A = {be.z: for each r € K either b-h,(c,) = 0 or h,(c,)<b} .

It is easily seen that ¥ is an m-subalgebra of <& which includes
{D,:te T}. Hence A = <. Finally, h, is not m-complete. For other-
wise >tz h,(c,) =1, and <% would be atomic and hence isomorphic
to an m-field of sets.

2. We now consider the problem of the existence of a smallest
element of P, relative to the quasi-ordering ‘“<’’. A minimal element
of P always exists and can be constructed as follows. Let {{f.},.,, €}
be a Boolean product of {},., and let {k, <&} be an m-completion of
€. Then {{hof},.,, &} is a minimal element of P. We shall show
that this product need not be a smallest element of P. Hence P need
not have a smallest element.

ExaMPLE 2.1. Let mt be any infinite cardinal. Let 7 = }§, and
suppose that for each te T 9, is a four element Boolean algebra. For
each te T choose a, to be one of the atoms of ,. € is a free Boolean
algebra of power ¥, one set of free generators being {fi(a,):te T}.
<% has a countable dense subset, in particular <Z satisfies the
countable chain condition. Thus <& is complete. It follows that <&
is isomorphic to the quotient algebra .& /4, where & 1is the o-field
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of Borel subsets of the unit interval I = {x: 0 < < 1} of real numbers
and 4, is the ideal consisting of those Borel sets which are of the
first category.

To show that {{hof},.,, &Z} is not a smallest element of P we
. construct another (m-0) product as follows. Let G be the set of all
halfopen intervals of the form {x:0 < @ < 7} such that » is rational
and 0 < r < 1. & is o-generated by G. The subalgebra &, of &
which is generated by G is denumerable and atomless. Hence & is
isomorphic to € (see [1], p. 54). Let g be an isomorphism from €
onto .#,. Let 4, be the ideal of & consisting of those Borel sets
having Lebesgue measure 0. We note that &, N 4, = {0}. Finally for
each tc T let h, be the isomorphism from 2, into & /4, defined by
hoa) = [gofi(a)]d,. It is easily seen that {{r}, ., & /4]}¢ P.

Now assume {{hof},.,, Z} =< {{h},.,» F /4, Then there is an
m-homomorphism p from & /4, onto & /4,. Since & /4, satisfies the
countable chain condition the kernel of p is a principal ideal. & /4,
is isomorphic to a principal ideal of % /4,. However & /4, is homogeneous
(see [2], p. 105). Thus .& /4, is isomorphic to .&# /4,, which is a
contradiction.

Next we consider the problem of the existence of a smallest
element of P,. Let {9, 2} be an m-completion of & *. Then
{{g°9/},cpy &'} is a minimal element of P. Also it is known (see
[2], p. 183) that if all the %, are m-representable then there is an
(m-n) product {{i,},.,, €} for which € is m-representable. We give an
example of {2}, , for which &7 is not m-representableand {{g - ¢/'},.,, &'}
is not a smallest element of P .

EXAMPLE 2.2. Assume that m = 209, Let T = n* and for each
te T let A, be a four element Boolean algebra. We show that <Z is
not n*-distributive. Choose, for each te¢ T, a, to be one of the atoms
of 2A,. Then

ez (gegi(@) + —gogi(a)) =1.
However for each function e H” (here H = {+1, —1}) we have

—
—n

tl;[T () -gi(a) =0.
This follows from Corollary 1.8. Thus [, 7(t)-g°g#(a,) = 0. This
proves <& is not n*-distributive and hence not m-representable.
To show that {{g-g/},.,, &} is not a smallest element of P,
let {{t.},.,, €} be any (m-n) product of {2}, , such that € is m-
representable. <# is not an m-homomorphic image of €. Thus the

inequality
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{{go97},.,, Z} = {{u),.,, €}

does not hold.

REFERENCES

1. P. H. Dwinger, Introduction to Boolean algebras, Wurzburg, 1961.

2. R. Sikorski, Boolean algebras, Second Edition, Springer Verlag, 1964.

" Received July 19, 1968.
UNIVERSITY OF WYOMING

731








