ON VISUAL HULLS

D. G. LARMAN AND P. MANI

The concept of visual hull has been introduced by G. H. Meisters and S. Ulam. In the following article we study a few of the problems arising from this notion and, in particular, establish (Theorem 3) a conjecture of W. A. Beyer and S. Ulam.

Let C be a set in R^n and $1 \le j \le n-1$. Then the j^{th} visual hull $H_i(C)$ of C is defined to be the largest set whose j^{th} projections are contained in those of C. Alternatively, $H_i(C)$ is the set of points x in R^n such that each (n-j)-flat through x contains a point of C. Let G_i^n denote the Grassmannian of j-subspaces in R^n with $\mu_i(G_i^n) = 1$ for the usual measure μ_i associated with G_i^n regarded as a metric 0_n factorspace. (For further information about μ_i compare, for example, [3]). The j^{th} virtual hull $V_j(C)$ of C is defined to be the set of points $x \in \mathbb{R}^n$ such that almost all (with respect to μ_{n-j}) (n-j)-flats through x contain a point of C. Thus, if $n=3, j=2, H_2(C)(V_2(C))$ corresponds to those points in R^3 which are photographically indistinguishable (with probability one) from C. A j^{th} minimal hull of C in \mathbb{R}^n is a minimal set in R^n whose j^{th} projections coincide with those of C. In [2] the announced purpose of the paper was to disprove the conjecture that $H_{i}(C)-C$ is connected to C, i.e., \ni disjoint open sets U, V such that $U \supset H_i(C) - C \neq \emptyset$ and $V \supset C \neq \emptyset$. To this we remark that a simple counterexample can be obtained by considering the closed set C formed by removing the relative interiors of alternate sides of a regular hexagon inscribed in a plane circle with centre a. The first visual hull $H_1(C)$ is then $C \cup \{a\}$.

2. Visual hulls of unions of polytopes.

THEOREM 1. Let A_1, \dots, A_{j+1} be spherically convex, closed subsets (not necessarily nonempty) of the sphere S^{n-1} , such that each (n-j-1)-subsphere of S^{n-1} has a nonempty intersection with $\bigcup_{i=1}^{j+1} A_i$. Then $A_1 \cap \dots \cap A_{j+1} \neq \emptyset$. (so, that, in particular, each set A_i is nonempty).

REMARK. S^{n-1} is the unit sphere of R^n and an (n-j-1)-subsphere of S^{n-1} is the intersection of an n-j subspace with S^{n-1} . A set $C \subset S^{n-1}$ is spherically convex if C is contained in an open hemisphere of S^{n-1} and, if $x, y \in C$ then C contains the minor arc on the 1-subsphere determined by x, y and 0 (the centre of S^{n-1}).

Proof. The case n=1 is trivial. We assume inductively that

the result is true for all n' < n and it remains to prove the result for j+1 sets on S^{n-1} . Assume on the contrary that there exist spherically convex closed subsets $A_1, \dots, A_{j+1} \subset S^{n-1}$ such that

$$T \cap (A_1 \cup \cdots \cup A_{i+1}) \neq \emptyset$$

for each (n-j-1)-subsphere T of S^{n-1} , and $A_1 \cap \cdots \cap A_{j+1} = \emptyset$. Let $A = A_1 \cap \cdots \cap A_j$. Then A, A_{j+1} are disjoint spherically convex closed subsets of S^{n-1} , and there exists an (n-2)-subsphere S' of S^{n-1} which separates A and A_{j+1} and such that $S' \cap A = \emptyset$, $S' \cap A_{j+1} = \emptyset$. Set $A'_i = A_i \cap S'$ ($1 \le i \le j$). Then each A'_i is a spherically convex closed subset of S' and, since $A_{j+1} \cap S' = \emptyset$, each (n-j-1)-subsphere of S' has a nonempty intersection with $A'_1 \cup \cdots \cup A'_j$. Hence by the inductive assumption $A'_1 \cap \cdots \cap A'_j = A \cap S' \neq \emptyset$; contradiction.

THEOREM 2. In R^n let C_1, \dots, C_{j+1} be j+1 compact convex sets. If $x \in H_j(\bigcup_{i=1}^{j+1} C_i)$ then either $x \in \bigcup_{i=1}^{j+1} C_i$ or there exists a halfline l emanating from x such that $l \cap C_i \neq \emptyset$, $1 \leq i \leq j+1$.

COROLLARY. In R^n let C_1, \dots, C_{j+1} be compact convex sets. Then as ufficient condition for $H_j(\bigcup_{i=1}^{j+1} C_i) = \bigcup_{i=1}^{j+1} C_i$ is that the sets do not have a common transversal.

Proof. On S^{n-1} define j+1 spherically convex closed subsets A_1, \dots, A_{j+1} so that $u \in A_i$ if $u \in S^{n-1}$ and the half line $\{x + \lambda u \mid \lambda \geq 0\}$ meets C_i . Then, as $x \in H_j(\bigcup_{i=1}^{j+1} C_i)$ each (n-j-1)-subsphere of S^{n-1} has a nonempty intersection with $\bigcup_{i=1}^{j+1} A_i$. And so, by Theorem 1, there exists $u \in \bigcap_{i=1}^{j+1} A_i$, i.e., the halfline $\{x + \lambda u \mid \lambda \geq 0\}$ meets each of C_1, \dots, C_{j+1} .

THEOREM 3. In \mathbb{R}^n let C_1, \dots, C_{j+1} be nonempty compact convex sets. Then the number of components of $H_j(\bigcup_{i=1}^{j+1} C_i)$ is at most j+1 with equality if and only if C_1, \dots, C_{j+1} are pairwise disjoint.

Proof. By Theorem 2, if $x \in H_j(\bigcup_{i=1}^{j+1} C_i) - \bigcup_{i=1}^{j+1} C_i$, then there exists a halfline $l = \{x + \lambda u \mid \lambda \ge 0\}$ such that l meets each of

$$C_1, \cdots, C_{i+1}$$
.

Then $x+\alpha_k u\in C_k$ for some $\alpha_k>0$. We set $\alpha=\min\{\alpha_k\,|\,1\le k\le j+1\}$ and want to show that $x+\lambda u\in H_j(\bigcup_{i=1}^{j+1}C_i)$ for all λ with $0\le \lambda\le \alpha$. Set $y=x+\lambda u$ and let P be an (n-j)-subspace. As $x\in H_j(\bigcup_{i=1}^{j+1}C_i)$ there exists i such that the (n-j)-flat x+P meets C_i at v, say. Set $z=x+\alpha_i u\in C_i$. Then, as y lies between x and z on l, there exists μ , $0\le \mu\le 1$, such that $y=\mu x+(1-\mu)z$. Then the (n-j)-flat y+P through y contains the point $\mu v+(1-\mu)z$ of C_i . As P

was arbitrary we conclude that $y \in H_i(\bigcup_{i=1}^{i+1} C_i)$ and hence that x + i $\lambda u \in H_j(\bigcup_{i=1}^{j+1} C_i)$ for $0 \le \lambda \le \alpha$. Hence, if $x \in H_j(\bigcup_{i=1}^{j+1} C_i)$ then x is connected, via a line segment in $H_i(\bigcup_{i=1}^{j+1} C_i)$, to at least one of the sets C_i . Hence $H_j(\bigcup_{i=1}^{j+1} C_i)$ has at most j+1 components with equality only if the C_i 's are disjoint. If the sets C_1, \dots, C_{j+1} are pairwise disjoint then in order to show that $H_j(igcup_{i=1}^{j+1}C_i)$ has exactly j+1components it is enough to show that for each $k, 1 \leq k \leq j+1$, there exist disjoint open sets U_k , V_k such that $U_k \cup V_k \supset H_j(\bigcup_{i=1}^{j+1} C_i)$ and $U_k \supset C_k, \ V_k \supset \{C_1 \cup \cdots \cup C_{k-1} \cup C_{k+1} \cup \cdots \cup C_{j+1}\}.$ We suppose, without loss of generality, that k=1. For $i=2,\dots,j+1$ let H_i denote a hyperplane which strictly separates C_1 from C_i , and let H_i^0 be the open halfspace bounded by H_i and containing C_i . We can assume that the H_i 's are in general position. Set $U_1 = \bigcap_{i=2}^{j+1} H_i^0$, $V_1 = R^n - \bar{U}_1$. Then $U_{\scriptscriptstyle 1}$ and $V_{\scriptscriptstyle 1}$ are disjoint open sets, $C_{\scriptscriptstyle 1} \subset U_{\scriptscriptstyle 1}$, $igcup_{\scriptscriptstyle i=2}^{j+1} C_i \subset V_{\scriptscriptstyle 1}$. It remains to show that $H_j(\bigcup_{i=1}^{j+1} C_i) \subset U_1 \cup V_1$, and it is enough to show that $(\bar{U}_1 \cap \bar{V}_1) \cap H_j(\bigcup_{i=1}^{j+1} C_i) = \varnothing$. Since the H_i 's are in general position, their intersection $\bigcap_{i=1}^{j+1} H_i$ is an (n-j)-dimensional flat L. Let I be the j-dimensional subspace orthogonal to L. If M is any subset of R^n we denote by $\operatorname{proj}_I M$ the set of all points $x \in I$ for which the flat L_x , which is parallel to L and contains x, has a nonempty intersection with M. $\operatorname{proj}_{I} U_{1}$ and $\operatorname{proj}_{I} V_{1}$ are two open sets in I with common boundary $\operatorname{proj}_I(\bar{U}_1\cap \bar{V}_1)$. As $\operatorname{proj}_IC_1\subset\operatorname{proj}_IU_1$, $\operatorname{proj}_I\bigcup_{i=2}^{j+1}C_i\subset\operatorname{proj}_IV_1$ it follows that $(\operatorname{proj}_I(\bar{U}_1 \cap \bar{V}_1)) \cap (\operatorname{proj}_I \bigcup_{i=1}^{j+1} C_i) = \emptyset$. Now, if z is an arbitrary point in $\bar{U}_1 \cap \bar{V}_1$ it follows that $L_z \cap (\bigcup_{i=1}^{j+1} C_i) = \emptyset$, and since $\dim L_z = n - j$, we find, by the definition of H_j , that z does not belong to $H_i(\bigcup_{i=1}^{j+1} C_i)$. Therefore $(\bar{U}_1 \cap \bar{V}_1) \cap H_i(\bigcup_{i=1}^{j+1} C_i) = \varnothing$.

The proof of Theorem 3 also shows that any component of $H_i(\bigcup_{i=1}^{j+1} C_i)$ has the property that any two points of it can be joined by a broken line in it, consisting of at most 3 segments. Hence it is natural to ask: When are these components convex? (supposing now that the C_i 's are disjoint). In [1] W. A. Beyer has shown an example of three (nondisjoint) polytopes C_i in R^3 such that $H_2(C_1 \cup C_2 \cup C_3)$ is not a polyhedron. We don't know whether a similar construction would be possible with disjoint polytopes. Let us mention here a few more If M is any subset of \mathbb{R}^n , we denote by aff M the technical terms. affine hull of M and by conv M the convex hull of M, relint M means the interior of M with respect to the natural topology in aff M. the dimension $\dim M$ of M we understand the algebraic dimension of the flat aff M. A polytope is the convex hull of some finite set. $P \subset E^n$ is a convex set we denote by ext P the set of extreme points of P and by exp P the set of its exposed points. For an exact definition of these terms the reader may compare, for example, the introductory chapters of [4].

THEOREM 4. (i) In R^n let C_1 , C_2 be compact convex sets. Then $H_1(C_1 \cup C_2)$ is the union of at most two convex components which are polytopes whenever C_1 and C_2 are polytopes.

(ii) There exist in R^3 three disjoint polytopes such that one of the components of the second visual hull of their union is not convex.

LEMMA 1. Let C_1 , C_2 be n-dimensional polytopes in R^n . If $a \notin H_1(C_1 \cup C_2)$ there exists a hyperplane H such that

- (1) $a \in H$, H separates a from C_1
- (2) $H \cap C_i = \varnothing$ or H supports C_i (i=1,2)
- (3) aff $(H \cap (C_1 \cup C_2)) = H$.

Proof of Lemma 1. The case n=1 is trivial, and we assume $n \geq 2$. If there exists a hyperplane P through a which does not meet $C_1 \cup C_2$ and does not separate C_1 and C_2 then conv $(C_1 \cup C_2)$ is an n-dimensional polytope not containing a, and the lemma follows from standard results on polytopes. Hence it can be supposed that there is a hyperplane H for which (1) and also (2'): H separates C_1 and C_2 holds. We choose H in the set \mathfrak{F} of hyperplanes for which (1) and (2') holds. We assume that $h=\dim \operatorname{aff} T$ is maximal, where $T=H\cap (C_1\cup C_2)$. Obviously $h\geq 0$. If h< n-1, let $F\subset H$ be an (n-2)-dimensional hyperplane in H containing T, and denote by $\pi\colon R^n\to E$ the projection along F onto a 2-dimensional flat E orthogonal to F. It is easy to see that there is a line E in E such that: E0: the singleton E1 is contained in E2. The polygon E3 is contained in E4. The separates E4 is easy to see that there is a line E5 in E5 such that: E6 is not the polygon E6. The polygon E7 is contained in E8 in E9 and E9.

$$(\delta)$$
 aff $(L \cap (\pi(C_1) \cup \pi(C_2)) = L$.

(Notice that the conditions $(\alpha) - (\gamma)$ are fulfilled by $\pi(H)$). The hyperplane $\pi^{-1}(L)$ of E^n intersects $C_1 \cup C_2$ in a set S with dim aff S = h + 1. Since $S \in \mathfrak{F}$ this contradicts the maximality of h. Hence the lemma is established.

Proof of Theorem 4. (i) We first prove the result when C_1 , C_2 are *n*-dimensional polytopes. If $C_1 \cap C_2 \neq \emptyset$ then

$$H_1(C_1 \cup C_2) = \operatorname{conv}(C_1 \cup C_2)$$
,

which is a polytope. We suppose therefore that $C_1 \cap C_2 = \emptyset$. Let $\{H_i\}_{i=1}^m$ be the finite set of those hyperplanes which do not contain an interior of C_j (j=1,2) and for which $\dim(H_i \cap (C_1 \cup C_2)) = n-1$. By C_j^* we denote the (finite) intersection of those closed half spaces which contain C_j and whose bounding hyperplane is amongst $\{H_i\}_{i=1}^m$, j=1,2. Then C_j^* is polyhedral and, since C_j , C_j are compact, C_j^* is a polytope,

j=1,2. We show that $H_1(C_1\cup C_2)=C_1^*\cup C_2^*$. Suppose that $x^*\notin C_1^*\cup C_2^*$. Then there exist closed halfspaces H_1^* , H_2^* with bounding hyperplanes H_1 , H_2 amongst $\{H_i\}_{i=1}^m$ such that $x^*\notin H_1^*\supset C_1$, $x^*\notin H_2^*\supset C_2$. If

$$x^* \in H_1(C_1 \cup C_2), H_1$$
 and H_2

must separate C_1 and C_2 . Consider H_1 and the two disjoint compact sets $H_1 \cap C_1$, $H_1 \cap C_2$ in H_1 . There exists an n-2 dimensional flat L in H_1 which strictly separates $H_1 \cap C_1$ and $H_1 \cap C_2$. By slightly rotating H_1 about L in the appropriate direction we obtain a hyperplane H'_1 which strictly separates C_1 and C_2 as well as x^* and C_1 . Similarly we can obtain a hyperplane H'_2 which strictly separates C_1 and C_2 , and x^* and C_2 . We may suppose that H'_1 , H'_2 are not parallel and so $H'_1 \cap H'_2$ is an n-2 flat. Suppose, without loss of generality, that $H'_1 = \{x \mid \langle x, \xi \rangle = \alpha > 0\}$, $H_2 = \{x \mid \langle x, \eta \rangle = \beta > 0\}$. Then

$$C_{\scriptscriptstyle 1} \subset \{x \mid \langle x, \, \xi \rangle > \alpha\} \cap \{x \mid \langle x, \, \eta \rangle > \beta\}$$

$$C_{\scriptscriptstyle 2} \subset \{x \mid \langle x, \, \eta \rangle < \alpha\} \cap \{x \mid \langle x, \, \eta \rangle < \beta\}.$$

Consider the hyperplane $H: \{x \mid \langle x, \lambda \xi + (1-\lambda)\eta \rangle = 0\}$, where $\lambda \alpha + (1-\lambda)\beta = 0$ and $0 < \lambda < 1$. Then $x^* \in H$ and, using the above inequalities, $C_i \cap H = \emptyset$, i = 1, 2. Hence x^* is not in $H_1(C_1 \cup C_2)$, and we have $H_1(C_1 \cup C_2) \subset C_1^* \cup C_2^*$. Conversely, if $x^* \in C_1^* \cup C_2^* - H_1(C_1 \cup C_2)$, suppose without loss of generality that $x^* \in C_1^*$. Then, by Lemma 1, there exists a hyperplane H amongst $\{H_i\}_{i=1}^m$ which does not contain x^* and which separates x^* from C_1 . Then, if H^* donotes the closed halfspace containing C_1 whose bounding hyperplane is $H, x^* \notin H^*$ and so $x^* \in C_1^*$; contradiction. And so $H_1(C_1 \cup C_2) = C_1^* \cup C_2^*$, which is the union of two polytopes. If C_1 , C_2 are compact convex sets we choose decreasing sequences $\{P_1^n\}_{n=1}^\infty$, $\{P_2^n\}_{n=1}^\infty$ of polytopes such that $C_i = \bigcap_{n=1}^\infty P_i^n$, i=1,2. Then, using the above notation,

$$H_{\scriptscriptstyle 1}(C_{\scriptscriptstyle 1}\cup C_{\scriptscriptstyle 2})=igcap_{\scriptscriptstyle n=1}^{\infty}P_{\scriptscriptstyle 1}^{\,n\,st}\capigcap_{\scriptscriptstyle n=1}^{\infty}P_{\scriptscriptstyle 2}^{\,n\,st}$$
 .

(ii) Let W be the cube $\{x=(x_1,\,x_2,\,x_3)\,|\,-1\leqq x_i\leqq 1,\,i=1,\,2,\,3\}$ in R^3 , and denote by W_i the facet of W defined by $x_i=1$. Set $C_1=W_1$, $C_2=2W_2,\,C_3=3W_3$. Let $B_i(1\leqq i\leqq 3)$ be the components of $H_2(\bigcup_{i=1}^3 C_i)$, where the indices are chosen such that, for all $i,\,C_i\subset B_i$. Clearly $(0,\,0,\,0)\in B_1$ as does, of course, the point $(1,\,-1,\,-1)\in B_1\cap C_1$. However we show that the line segment $m\colon\{x=\lambda(1,\,-1,\,-1)\,|\,0<\lambda<1\}$ is not in B_1 . Now $C_1\cup C_2$ is contained in the halfspace $\{x\,|\,\langle x,\,(0,\,1,\,1)\rangle\geqq 0\}$ whose bounding hyperplane P passes through the points $(0,\,0,\,0)$, $(1,\,-1,\,1)$ and $(-1,\,-1,\,1)$; $P\cap$ aff W_1 is a line in direction $(0,\,-1,\,1)$. If $y\in m$, then $y=\mu(1,\,-1,\,-1)$ for some $\mu,\,0<\mu<1$. Consider the line $l=y+\{\lambda(0,\,-1,\,1)\,|\,\lambda\, {\rm real}\}$. If $z=(z_1,\,z_2,\,z_3)\in l$ then $z_1=\mu<1$,

i.e., $z \notin C_1$. Also $\langle z, (0,1,1) \rangle = -2\mu < 0$ which means that $z \notin C_1 \cup C_2$. Therefore l does not meet $C_1 \cup C_2 \cup C_3$, m does not belong to B_1 , and B_1 is not convex.

In [6] V. L. Klee proved that if all j^{th} projections of a compact convex body C in R^n (j fixed ≥ 2) are polytopes, then C is a polytope. As a partial analogue to this for unions of two convex bodies we prove

THEOREM 5. Let C_1 , C_2 be two disjoint compact convex bodies in R^n such that each j^{th} projection of $C_1 \cup C_2$ (j fixed ≥ 2) is the union of two polytopes. Then (i) $\text{ext}(C_i) = \exp(C_i)$ and $\exp(C_i)$ is countable (i = 1, 2) but (ii) $\exp(C_i)$ is not necessarily finite.

Proof. Let a be an extreme point of C_1 and we suppose, without loss of generality, that a=0, the origin of \mathbb{R}^n . Then, to prove (i) it is enough to prove that the convex cone K of outward normals to C_1 at 0 is n-dimensional. We assume that dim $K \leq n-1$ so that K is contained in an (n-1)-subspace P_1 , and seek a contradiction. Let P_2 be an (n-1)-subspace which supports C_1 at 0. Of course $P_1 \neq P_2$. We can choose an (n-1)-subspace P_3 so that there exists a translate of P_3 which strictly separates C_1 and C_2 and such that the normal to P_3 at 0 intersects P_1 only at 0. Then $P_2 \cap P_3$ is a subspace of dimension at least n-2 and we choose an n-j subspace Q in $P_2 \cap P_3$. The orthogonal complement S of Q in R^n is a j-dimensional subspace which meets P_1 in a (j-1)-subspace. The projection of $C_1 \cup C_2$ onto S is the union of two polytopes. Further, as $P_3 \cap C_2 = \emptyset$, 0 is at positive distance from proj C_2 . As 0 is an extreme point of proj C_1 , it follows that 0 is a locally polyhedral extreme point for $\operatorname{proj} C_i$. Hence, in S, the cone of outward normals to proj C_1 at 0 is j-dimensional. Further, any (j-1)-plane H of support in S to proj C_1 at 0 can be extended to an (n-1)-plane of support H+Q in R^n to C_1 at 0. Also, the outward normals to these planes form a j-dimensional convex cone lying in S. Hence $j = \dim(K \cap S) = \dim(P_1 \cap S) = j-1$; contradiction. And so (i) is proved.

To prove (ii) we construct an example in R^3 of two convex bodies C_1 , C_2 , both of which have a countable infinity of extreme points but, nevertheless, each 2-projection of $C_1 \cup C_2$ is the union of two convex polygons. Let $l = \{x \mid x_1 = x_2 = 0, -1 \leq x_2 \leq 1\}$ be a line segment and $S = \{x \mid (x_1 - 1)^2 + x_2^2 = 1, x_3 = 0\}$ a plane circle. By T we denote the set of those points on S with x_2 -coordinate $^{\pm}(1/n)$ for $n = 1, 2, \cdots$. We take $C_1 = \text{conv}\{l \cup T\}$, which is a compact convex body in R^3 with extreme points $T \cup \{(0, 0, -1), (0, 0, 1)\}$. It is easily seen that there is precisely one 2-projection of C_1 which is not a convex polygon, and that is in the direction (0, 0, 1). Further the only limit point of extreme points of this projection is (0, 0, 0). Define C_2 as a disjoint copy of

 C_1 formed by placing C_2 above C_1 in such a way that their respective major lines pierce the centres of their respective circles. From above, every 2-projection of $C_1 \cup C_2$ is the union of two convex polygons and and both C_1 and C_2 are compact bodies with a countable infinity of extreme points.

3. Visual hulls of more general sets. The following problem can be formulated.

Is the visual (virtual) (minimal) hull of a borel (analytic) set in R^n necessarily borel (analytic)?

The answer is affirmative (Theorem 6) for virtual hulls and negative (Theorem 7) for minimal hulls. Whilst it is not true (Theorem 8) that the j^{th} visual hull of a borel set is necessarily borel, we have been unable to decide whether or not the j^{th} visual hull of a borel or of an analytic set is always analytic, except in the cases covered by Theorem 9. It is possible also that the j^{th} visual hull of a convex borel (analytic) set is a borel (analytic) set, and we include some partial results (Theorem 9) in this direction. As before we denote by G_j^n the Grassmannian of j-subspaces of R^n and by μ_j the invariant (with respect to 0_n acting in the usual way on G_j^n) measure normalised so that $\mu_j(G_j^n) = 1$.

LEMMA 2. Let A be an analytic set in R^n and denote by A^* the set of those j-subspaces in G_j^n which meet A. Then

- (i) A^* is an analytic set in G_j^n and hence A^* is μ_j measurable.
- (ii) If $\mu_j(A^*) > a$ then there exists a compact subset A' of A such that $\mu_j(A'^*) > a$.
- (iii) If $A_1 \subset A_2 \subset \cdots$ is an increasing sequence of analytic sets in R^n then $\mu_j(\bigcup_{i=1}^{\infty} A_i)^* = \lim_{i \to \infty} \mu_j(A_i^*)$.
- (iv) If $A_1 \supset A_2 \supset \cdots$ is a decreasing sequence of analytic sets in R^n then $\mu_j(\bigcap_{i=1}^{\infty} A_i)^* = \lim_{i \to \infty} \mu_j(A_i^*)$.

Proof. (i) Let I be the set of irrational numbers in [0,1] and, if $i=(i_1,\dots,i_n,\dots)$ is a typical member of I expressed as a continued fraction, set $i\mid n=(i_1,\dots,i_n)$. Then, as A is analytic, it can be represented as $A=\sum_{i\in I}\bigcap_{n=1}^{\infty}A(i\mid n)$ where the sets $A(i\mid n)$ form, for each fixed i, a decreasing sequence of compact subsets of R^n . Then $A^*=\sum_{i\in I}\bigcap_{n=1}^{\infty}A^*(i\mid n)$. As each $A^*(i\mid n)$ is a compact subset of G_{j}^n , we conclude that A^* is an analytic set.

(ii) If $\mu_j(A^*) > a + \delta$ with $\delta > 0$, then we can choose $m_1, 1 \le m_1 < \infty$, such that if I_1 denotes the set of irrational numbers

$$i = (i_1 \cdots i_n \cdots)$$

with $1 \leq i_1 \leq m_1$ and $A_1^* = \sum_{i \in I_1} \bigcap_{n=1}^\infty A^*(i \mid n)$ then $\mu_j(A_1^*) > a + \delta$.

Proceeding by induction we may define natural numbers m_p , $1 \leq p < \infty$, such that if I_q denotes the subset of those irrationals i with $1 \leq i_p \leq m_p$ for $p = 1, \dots, q$, and $A_q^* = \sum_{i \in I_q} \bigcap_{n=1}^\infty A^*(i \mid n)$ then $\mu_i(A_q^*) > a + \delta$. Let I' be the compact subset of [0, 1] defined as the set of those irrational numbers i for which $1 \leq i_p \leq m_p$ for $p = 1, 2, \dots$, and

$$A'^* = \sum_{i \in I'} \bigcap_{n=1}^{\infty} A^*(i \mid n)$$
 .

Then $\bigcap_{q=1}^{\infty} A_q^* = A'^*$ and so $\mu_j(A'^*) \geq a + \delta > a$. Also

$$A' = \sum\limits_{i \in I'} igcap_{n=1}^{\infty} A(i \mid n)$$

is a compact subset of A, as I' is a compact subset of I.

- (iii) $\mu_j(\bigcup_{i=1}^{\infty} A_i)^* = \mu_j(\bigcup_{i=1}^{\infty} A_i^*) = \lim_{i=\infty} \mu_j(A_i^*).$
- (iv) Clearly $\mu_j(\bigcap_{i=1}^{\infty} A_i)^* \leq \lim_{i\to\infty} \mu_j(A_i^*)$. Now set $\mu_j(\bigcap_{i=1}^{\infty} A_i)^* = a$ and suppose $\lim_{i\to\infty} \mu_j(A_i^*) > a + \varepsilon$, for some positive number ε . By (ii) we find a compact set $B_1 \subset A_1$ such that $\mu_j(B_1^*) \geq \mu_j(A_1^*) \varepsilon/2$. Now we have $A_2^* = (B_1 \cap A_2)^* \cup (A_2^* B_1^*)$, where

$$A_2^*-B_1^*=\{F\in G_j^n\,|\, F\cap A_2
eqarnothing$$
 , but $F\cap B_1=arnothing\}$.

Since $A_2^* \subset A_1^*$ we derive further $A_2^* \subset (B_1 \cap A_2)^* \cup (A_1^* - B_1^*)$, or $\mu_j(A_2^*) \leq \mu_j(B_1 \cap A_2)^* + \varepsilon/2$. Since $B_1 \cap A_2$ is analytic there exists, again by (ii), a compact set $B_2 \subset (B_1 \cap A_2)$ such that

$$\mu_j(B_{\scriptscriptstyle 2})^* \geq \mu_j(B_{\scriptscriptstyle 1}\cap A_{\scriptscriptstyle 2})^* - \varepsilon/4$$

and consequently $\mu_j(B_2)^* \geq \mu_j(A_2)^* - (\varepsilon/2 + \varepsilon/4)$. Continuing this process we obtain a decreasing sequence $\{B_i\}_{i=1}^{\infty}$ of compact subsets of R^n such that $B_i \subset A_i$, $i=1,2,\cdots$, and $\mu_j(B_i^*) \geq \mu_j(A_i^*) - \sum_{p=1}^i \varepsilon/(2^p)$. Then $\bigcap_{i=1}^{\infty} B_i^* = (\bigcap_{i=1}^{\infty} B_i)^* \subset (\bigcap_{i=1}^{\infty} A_i)^*$, and $\mu_j(\bigcap_{i=1}^{\infty} B_i^*) = \lim_{i \to \infty} \mu_j(B_i^*) \leq a$; but also $\lim_{i \to \infty} \mu_j(B_i^*) \geq \lim_{i \to \infty} \mu_j(A_i^*) - \varepsilon$. Combining the last two inequalities we find $\lim_{i \to \infty} \mu_j(A_i) \leq a + \varepsilon$, a contradiction.

THEOREM 6. Let C be a borel (analytic) set in R^n . Then the j^{the} virtual hull $V_j(C)$ is a borel (analytic) set.

Proof. Suppose first that C is a borel set in R^n , and we need to show that $V_j(C)$ is a borel set. If D is a subset of R^n and $x \in R^n$, let D[x, n-j] denote the set of those n-j subspaces F in G^n_{n-j} such that $(x+F) \cap D \neq \emptyset$. If $0 < \lambda < 1$ let $D(n-j,\lambda)$ be the set of all x in R^n such that $\mu_{n-j}(D[x, n-j]) > \lambda$. Let B denote the largest family of subsets of R^n such that $D \in B$ if (i) D is a borel set in R^n . (ii) $D(n-j,\lambda)$ is a borel set for all $\lambda, 0 < \lambda < 1$. We shall prove that B coincides with the family of borel subsets of R^n , and it is enough.

to show that B contains the open sets and is closed under the operations of increasing union and decreasing intersection. If D is an open subset of R^n , then it is easy to see that $D(n-j,\lambda)$ is open for all $\lambda, 0 < \lambda < 1$, and so B contains all the open sets. Now suppose that $\{E_i\}_{i=1}^{\infty}$ is an increasing sequence of sets in B and set $E = \bigcup_{i=1}^{\infty} E_i$. We want to show that for each λ , $0 < \lambda < 1$, the equality $E(n-j,\lambda) = \bigcup_{i=1}^{\infty} E_i(n-j,\lambda)$ In order to do this we observe the following equivalences: $x \in E(n-j,\lambda) \leftrightarrow \mu_{n-j}(E[x,n-j]) > \lambda \leftrightarrow \lim_{i \to \infty} \lambda_{n-j}(E_i[x,n-j]) > \lambda \to \lim_{i \to \infty} \lambda_{n-j}(E_i[x,n$ $x \in \bigcup_{i=1}^{\infty} E_i(n-j,\lambda)$. Here the first equivalence holds by definition, the second one follows directly from Lemma 2, (iii), if we observe that this lemma remains true if M^* denotes, for each $M \subset \mathbb{R}^n$, the set M[x, n-j] ($x \in \mathbb{R}^n$ fixed). (The lemma itself is stated for the special case where x is the origin of R^n .) The last equivalence again follows immediately from the definitions, we only have to observe that the sequence $\{E_i\}_{i=1}^{\infty}$ is increasing. Now suppose that $\{H_i\}_{i=1}^{\infty}$ is a decreasing sequence of subsets of B and set $H = \bigcap_{i=1}^{\infty} H_i$. Suppose λ fixed, $0 < \lambda < 1$, and let m be a natural number such that $\lambda + 1/m < 1$. Then, using (iv) of Lemma 2, we find by an argument analogous to the one above, $H(n-j,\lambda) = \bigcup_{p=m}^{\infty} \bigcap_{i=1}^{\infty} H_i(n-j,\lambda+1/p)$. $H(n-j,\lambda)$ is a borel set, and $H \in B$. Therefore, B is the family of borel subsets of R^n and so, in particular, $C \in B$. Further $V_i(C) =$ $\bigcap_{p=2}^{\infty} C(n-j, 1-(1/p))$ and so $V_j(C)$ is a borel set.

To show that $V_j(A)$ is analytic whenever A is analytic, we use the well known result that there exists an $F_{\sigma\delta}$ set K in R^{n+1} such that A is the orthogonal projection proj K of K into R^n (see, for example, [8]). Call an (n-j+1)-subspace H of R^{n+1} upright if H has the form $\{\hat{H}+\lambda(0,\cdots,0,1)|-\infty<\lambda<\infty\}$ where $\hat{H}\in G^n_{n-j}$. Let U_{j+1} be the set of upright (n-j+1)-subspaces in R^{n+1} with the measure μ' induced by μ_{n-j} in the obvious manner. We can define $U_{j+1}(C)$ of a set C in R^{n+1} as the set of all those points x in R^{n+1} such that almost all (with respect to μ') upright (n-j+1)-flats through x meet C. As above, it can been shown that $U_{j+1}(C)$ is a borel set whenever C is a borel set. Clearly proj $U_{j+1}(K) = V_j(A)$ and, since the projection of a borel set is analytic, we conclude that $V_j(A)$ is an analytic subset of R^n .

THEOREM 7. Let C be an open convex subset of R^n . Then assuming the continuum hypothesis, C contains a minimal j^{th} hull D such that every analytic subset of D is countable.

Proof. We assume the continuum hypothesis and let Ω be the

¹ As the referee pointed out, Theorem 7 may be a special case of a much more general theorem on effective constructions.

first uncountable ordinal. Let $\{A_{\varepsilon}\}_{{\varepsilon}<\varrho}$ be an enumeration of the analytic subsets of R^n of (n-j)-dimensional measure zero; let $\{H_{\varepsilon}\}_{{\varepsilon}<\varrho}$ be an enumeration of the (n-j)-flats which meet C. Let F be a fixed (n-j)-subspace of R^n and denote by α a fixed set, which is not a point of R^n . We now choose a set $E=\{M_{\varepsilon}\}_{{\varepsilon}<\varrho}$ and a collection of translates $\{F_{\varepsilon}\}_{{\varepsilon}<\varrho}$ of F inductively as follows. Take $M_1\in (H_1-A_1)\cap C$ and let F_1 be a translate of F through M_1 . Suppose now that M_{ε} , F_{ε} , have been defined for all ${\varepsilon}'<{\varepsilon}$, where ${\varepsilon}$ is some ordinal proceeding ${\varrho}$. If ${\varepsilon}$ is a translate of ${\varepsilon}$ we take ${\varepsilon}$ is an acconsider two possibilities:

- (a) If $\exists \xi' < \xi$ such that $M_{\xi'} \in H_{\xi}$ then we take $M_{\xi} = \alpha$.
- (b) If $\exists \xi' < \xi$ such that $M_{\xi'} \in H_{\xi}$ we choose M_{ξ} in the set $(H_{\xi} (\bigcup_{\xi' < \xi} H_{\xi'} \cup \bigcup_{\xi' < \xi} A_{\xi'})) \cap C$. Such a choice is possible as $H_{\xi} \cap C$ has positive (n-j)-dimensional measure whereas $H_{\xi} \cap (\bigcup_{\xi' < \xi} H_{\xi'} \cup \bigcup_{\xi' < \xi} A_{\xi'})$ has zero (n-j)-dimensional measure, being a countable union of sets of measure zero. If H_{ξ} is not a translate of F we find, by similar arguments, that the set $(H_{\xi} (\bigcup_{\xi' < \xi} H_{\xi'} \cup \bigcup_{\xi' < \xi} A_{\xi'} \cup \bigcup_{\xi' < \xi} F_{\xi'})) \cap C$ is not empty. We choose M_{ξ} in this set and let F_{ξ} be the translate of F through M_{ξ} . We claim that the set $D = E \alpha$ is a j^{th} minimal hull for C which meets each analytic subset in at most a countable number of points. To show that all j^{th} projections of D coincide with those of C, it is enough to show that the j^{th} visual hull of D contains C. Let x be a point of C and let P be an (n-j)-flat through x. Then P is amongst $\{H_{\xi}\}_{\xi < 0}$, say $P = H_{\xi'}$. If $M_{\xi'} \neq \alpha$ then $M_{\xi'} \in D \cap H_{\xi'}$. If $M_{\xi'} = \alpha$ then $\exists M_{\xi''}, \xi'' < \xi'$, such that $M_{\xi''} \in D \cap H_{\xi''}$. In either case P meets D and so $x \in H_j(D)$.

If D is not minimal then there exists M_{ε} , $\xi < \Omega$, such that

$$H_i(D-M_{\varepsilon})=C$$
.

But, projecting C and $D-M_{\varepsilon}$ onto the orthogonal complement of F we see that by construction $\operatorname{proj} C \cap \operatorname{proj} F_{\varepsilon} \neq \emptyset$, but $\operatorname{proj} (D-M_{\varepsilon}) \cap \operatorname{proj} F_{\varepsilon} = \emptyset$. Hence D is a j^{th} minimal hull for C. Finally, suppose that B is an uncountable analytic subset of D. If B has positive j-dimensional measure then it is possible to find an uncountable analytic subset of B of zero j-dimensional measure. Hence it can be supposed that B has zero j-dimensional measure and so $B = A_{\varepsilon}$ for some ${\varepsilon} < \Omega$. But $A_{\varepsilon} = A_{\varepsilon} \cap D \subset \bigcup_{{\varepsilon}' < {\varepsilon}} M_{{\varepsilon}'}$, which is countable; contradiction.

Of course, if G is an open or compact set in R^n then $H_j(G)$ will accordingly be an open or compact set. Apart from these cases it does not seem entirely trivial to determine the nature of $H_j(G)$ for a given subset G of R^n . Here we prove the following

THEOREM 8. (i) There exists, in the plane R^2 , a borel set C such that $H_1(C)$ is analytic but not borel.

(ii) If D is an F_{σ} -subset of R^n then $H_j(D)$ is the complement of an analytic set.

REMARKS. We note that by (i) if C is analytic then $H_1(C)$ is not necessarily the complement of an analytic set. To disprove the statement that whenever A is analytic then $H_j(A)$ is analytic, it would be enough, using (ii), to find an F_σ -subset D of R^n such that $H_j(D)$ is not borel. (Notice that, a subset, M of R^n is borel if and only if M and $R^n - M$ are both analytic. Compare, for example, [5]).

- *Proof.* (i) As already observed, every analytic set in R^1 can be represented as the projection into R^1 of some $F_{\sigma\delta}$ set in R^2 . Let A be an analytic subset of R^1 such that A is not a borel set and let B be an $F_{\sigma\delta}$ set in R^2 such that proj B=A. Take C to be the union of B and the "y-axis" $(R^1)^{\perp}$. Then it is easily seen that $H_1(C)$ is the union of all lines which are parallel to $(R^1)^{\perp}$ and contain a point of C. However this is not a borel set as $H_1(C) \cap R^1 = A \cup \{(0,0)\}$ is not a borel set.
- (ii) We define a complete separable metric space Ω , whose points are the (n-j)-flats of R^n , as follows. For each (n-j)-flat F in R^n let y be the nearest point of F to 0 and set $F \cap (S^{n-1}+y)=\widehat{F}$. Then the distance $\rho(F,F')$ of two (n-j)-flats in Ω is defined as the Hausdorff distance of \widehat{F} , \widehat{F}' in R^n . Let $D \subset R^n$ be an F_σ set, say $D = \bigcup_{i=1}^\infty D_i$ with $D_i \subset D_{i+1}$, each D_i compact, $i=1,2,\cdots$. Let D_i^* , $i=1,2\cdots$ denote the closed subsets of Ω such that $F \in D_i^*$ if F meets D_i in R^n . Similarly defined, relative to D_i is D^* . Then $D^* = \bigcup_{i=1}^\infty D_i^*$ and so D^* is an F_σ subset of Ω . Hence ΩD^* is a G_i set and so, in particular, ΩD^* is an analytic subset of Ω . Set

$$arOmega - D^* = \sum\limits_{i \, \in \, I} igcap_{p=1}^{m{lpha}} A(i \, | \, p)$$
 ,

where the A(i | p), $p = 1, 2, \dots$, form a decreasing sequence of compact subsets of Ω , for each $i \in I$. Set

$$B_m = \{x \mid x \in \mathbb{R}^n, -m \leq x_i \leq m, i = 1, \dots, n\}$$
.

Let $K_m(i \mid p)$ be the closed subset of B_m such that $x \in K_m(i \mid p)$ if x is contained in an (n-j)-flat F with $F \in A(i \mid p)$. Similarly, we define $K_m \subset B_m$ relative to $\Omega - D^*$. Then $K_m = \sum_{i \in I} \bigcap_{p=1}^{\infty} K_m(i \mid p)$ is an analytic subset of R^n and so, therefore, is $K = \bigcup_{m=1}^{\infty} K_m$. We claim that $H_j(D) = R^n - K$. If $x \in K$ then $x \in K_m$ for some m and so x is contained in some (n-j)-flat F which is contained (in Ω) in some set $\bigcap_{p=1}^{\infty} A(i \mid p)$. Hence $F \in \Omega - D^*$ which means that F does not meet D; i.e., $x \notin H_j(D)$. Therefore $R^n - K \supset H_j(D)$. Conversely if $x \notin H_j(D)$ then there exists an (n-j)-flat F through x such that F does not meet D. Hence $F \in \Omega -$

 D^* and so $F \in \bigcap_{p=1}^{\infty} A(i \mid p)$ for some $i \in I$. Hence $x \in \bigcap_{p=1}^{\infty} K_m(i \mid p)$ for some positive integer m, i.e., $x \in K$. Therefore $R^n - K \subset H_j(D)$ and so $H_j(D) = R^n - K$ is the complement of the analytic set K.

DEFINITION. An irregular point x of some closed convex set C in R^3 is an extreme point x of C such that x lies in two distinct 1-faces l_1 , l_2 of C, with neither of l_1 , l_2 being contained in a 2-face of C. Let C be a closed subset of a simple closed curve in the plane OXY. We say that a set $B \subset C \times (-\infty, \infty)$ is vertically convex if every line which is perpendicular to OXY meets B in a (possibly empty) line segment. We shall make use of the following immediate corollary to a theorem of K. Kunugui [7].

LEMMA 3. (Kunugui) Let B be a vertically convex borel set in $C \times (-\infty, \infty)$. Then the projection of B into C is a borel set.

As an immediate consequence of Lemma 3, we have

LEMMA 4. Let B be a vertically convex borel subset of some vertically convex closed subset D in $C \times (-\infty, \infty)$. Then the set $D \cap \{(\operatorname{proj}_{\cdot} B) \times (-\infty, \infty)\}$ is a vertically convex borel set.

In [9] the authors have derived properties of visual hulls for the class of convex sets. Our contribution in this direction is

THEOREM 9. (i) If C is a convex borel (analytic) set in R^3 then $H_2(C)$ is a borel (analytic) set.

(ii) If C is a convex borel (analytic) set in R^3 and \bar{C} does not have irregular points then $H_1(C)$ is a borel (analytic) set.

Proof. (i) We first show that if C is a convex borel (analytic) set in R^2 then $H_1(C)$ is a borel (analytic) set. If dim C=1 then the result is trivial and so it can be supposed that dim C=2. Note that $C^0 \subset H_1(C) \subset \overline{C}$. Let the 1-faces of \overline{C} be $\{F_i\}_{i=1}^\infty$. Then

$$H_{\scriptscriptstyle
m I}(C)\cap (ar C-igcup_{i=1}^\infty F_i)=C-igcup_{i=1}^\infty F_i$$
 ,

which is a borel set. Let $\{F_{i_{\nu}}\}_{\nu=1}^{\infty}$ be the 1-faces of \overline{C} which meet C. Then relint $F_{i_{\nu}} \subset H_1(C) \cap F_{i_{\nu}}, \nu = 1, 2, \cdots$. The two endpoints of $F_{i_{\nu}}$ may, or may not, be in $H_1(C)$. Nevertheless, $H_1(C)$ differs from the borel set $(C - \bigcup_{i=1}^{\infty} F_i) \cup \bigcup_{\nu=1}^{\infty}$ relint $F_{i_{\nu}}$ by at most a countable number of points. And so $H_1(C)$ is a borel set. Similarly, if C is a convex analytic set in R^2 , then $H_1(C)$ is an analytic set. Suppose now that C is a convex borel set in R^3 . If dim $C \leq 2$ then $H_2(C) = C$, and so

it can be supposed that $\dim C=3$. Let $\{F_i\}_{i=1}^{\infty}$ be an enumeration of the 2-faces of \bar{C} . Then each F_i is closed and $H_2(C)\cap(\bar{C}-\bigcup_{i=1}^{\infty}F_i)=C\cap(\bar{C}-\bigcup_{i=1}^{\infty}F_i)$, which is a borel set. As $H_2(C)\subset\bar{C}$, it is now enough to show that $H_2(C)\cap F_i$ is a borel set for $i=1,2,\cdots$. Let $H'_1(C\cap F_i)$ denote the first visual hull of $C\cap F_i$ relative to aff F_i . Then, from above, $H'_1(C\cap F_i)$ is a borel set. Let $\{F_{i_j}\}_{j=1}^{\infty}$ be an enumeration of the 1-faces of F_i . Then $H_2(C)\cap(F_i-\bigcup_{j=1}^{\infty}F_{i_j})=H'_1(C\cap F_i)-\bigcup_{j=1}^{\infty}F_{i_j}$ which is a borel set K_i , say. Let $\{F_{i_j}\}_{j=1}^{\infty}$ be the 1-faces of F_i which meet C and have the property that the only plane of support to \bar{C} which contains $F_{i_{j\nu}}$ is aff F_i . Then relint $F_{i_{j\nu}}\subset H_2(C)$ and the end points of $F_{i_{j\nu}}$ may or may not be in $H_2(C)$. Hence $H_2(C)\cap F_i$ differs from the borel set $K_i\cup(\bigcup_{\nu=1}^{\infty} \operatorname{relint} F_{i_{j\nu}})\cup(\bigcup_{j=1}^{\infty} (F_{i_j}\cap C))$ by at most a countable number of points. Therefore $H_2(C)\cap F_i$ is a borel set, and so, therefore, is $H_2(C)$. Similarly, it can be shown that if C is a convex analytic set in R^3 then $H_2(C)$ is an analytic set.

(ii) Again we shall prove the result for convex borel sets, and indicate at the end the modifications required for convex analytic sets. Let $\{r_i\}_{i=1}^{\infty}$ be an enumeration of the rational numbers and let P_{ik} denote the 2-flat $\{x \mid x_k = r_i\} \ k = 1, 2, 3; \ i = 1, 2, \cdots$. For each i, j, k, let B(i, j, k) denote the closed set formed by the point set union of all maximal line segments in $\bar{C} - C^{\circ}$ which meet both both P_{ik} and P_{jk} . Let $\{G_m\}_{m=1}^{\infty}$ be the 2-faces of \bar{C} . If a 2-face G_m of \bar{C} meets B(i, j, k) then G_m meets $C_i(C_i = (\bar{C} - C^{\circ}) \cap P_{ik})$ and $C_j(C_j = (\bar{C} - C^{\circ}) \cap P_{jk})$ in line segments 1_{im} and 1_{jm} respectively. Let $1_m^1, 1_m^2$ denote the (at most) two maximal line segments in G_m such that each segment contains an endpoint of 1_{im} and 1_{jm} but 1_m^1 and 1_m^2 do not intersect except possibly at end points. Set $C^* = (\bar{C} - C^{\circ}) \cap P$, where P is a plane parallel to P_{ik} and lying strictly between P_{ik} and P_{jk} . Then G_m cuts C^* in an interval I_m . Let 1_m denote the subinterval of I_m with endpoints $1_m^1 \cap C^*, 1_m^2 \cap C^*$, and let 1_m^0 be the relative interior of 1_m . Then

$$C'=B(i,j,k)\cap \left(C^*-igcup_{m=1}^\infty 1^{\scriptscriptstyle 0}_m
ight)$$

is a closed subset of C^* . If $x \in C'$, let \widehat{x} denote the unique maximal line segment in B(i,j,k) which passes through x and meets C_1 and C_2 . Let X denote the closed set formed by the point set union of the line segments $\widehat{x}, x \in C'$, and set $Q(i,j,k) = \{y \mid y \in X, \exists x \in C', \widehat{x} \cap C \neq \emptyset, y \in \widehat{x}\}$. We now show that Q(i,j,k) is a borel set. Every point y of X can be given a coordinate vector $y = \langle x, h \rangle$, where $y \in \widehat{x}$ and h is the height, relative to the j^{th} coordinate, of y above C^* . Because \widehat{C} does not have irregular points, the number of points y in X which receive two different coordinate vectors is countable. Let Φ be the mapping $X \to C^* \times (-\infty, \infty)$ defined by taking $\Phi(x, h) = (x, h), x \in C'$. Then K is a borel subset of X if and only if $\Phi(K)$ is a borel subset of the

closed set $\Phi(X)$. Hence $\Phi(C \cap X)$ is a vertically convex borel subset of $C' \times (-\infty, \infty)$. Hence the set $D = X \cap \{\operatorname{proj} \Phi(C \cap X) \times (-\infty, \infty)\}$ is a convex borel set and so $Q(i,j,k) = \Phi^{-1}(D)$ is a borel set. Hence the set $R(i,j,k) = Q(i,j,k) - \bigcup_{m=1}^{\infty} G_m$ is a borel set. Consider now the set $S = \bigcup_{i,j,k} R(i,j,k)$ and consider the borel set T defined as the point set union of all 1-faces of \bar{C} which are not contained in some 2-face of \bar{C} . We assert that the set $H_1(C) = H_1(C) \cap (T - \bigcup_{m=1}^{\infty} G_m)$ equals S. For if $y \in H_1^1(C)$ then, because C does not have any irregular points, there exists a unique 1-face l, not contained in $\bigcup_{m=1}^{\infty} G_m$, such that $y \in l$. Then $y \in H_1(C)$ if and only if $l \cap C = \emptyset$, which happens if and only if $l \subset Q(i, j, k)$ or in other words $y \in R(i, j, k)$ for some Hence $H_1(C) = S$. Let V denote the borel set of exposed points of \bar{C} and $H_1^2(C) = V \cap H_1(C)$, $H_1^3(C) = \bigcup_{m=1}^{\infty} (H_1(C) \cap (G_m - V))$. Now $H_{\scriptscriptstyle \rm I}(C)=H_{\scriptscriptstyle \rm I}^{\scriptscriptstyle \rm I}(C)\cup H_{\scriptscriptstyle \rm I}^{\scriptscriptstyle 2}(C)\cup H_{\scriptscriptstyle \rm I}^{\scriptscriptstyle 3}(C)$. $H_{\scriptscriptstyle \rm I}^{\scriptscriptstyle \rm I}(C)=S$ is a borel set and, since $H_1^2(C) = V \cap C$, $H_1^2(C)$ is a borel set. Hence it is enough to show that $H_1(C) \cap (G_m - V)$ is a borel set for all m. Now let $\{G_{m_j}\}_{j=1}^{\infty}$ be those 2-faces of \bar{C} which meet C. Then relint $G_{m_{\nu}} \subset H^3(C)$ for all ν . Let $\{G_{m_{\nu}n}\}_{n=1}^{\infty}$ be the 1-faces of $G_{m_{\nu}}$. Then either relint $G_{m_{\nu}n} \subset H_1^3(C)$ or relint $G_{m_{\nu}^{n}}\cap H^{s}_{1}(C)=\varnothing$. Then the endpoints of $G_{m_{\nu}^{n}}$ may or may not be in $H_1^3(C)$. Let H_m be the countable set of those endpoints of $\{G_{m_{\nu}n}\}_{\nu=1}^{\infty}$ which lie in $H_{\scriptscriptstyle 1}^{\scriptscriptstyle 3}(C)$ and let $\{G_{m_{\nu}n_{\mu}}\}_{\mu=1}^{\infty}$ be the 1-faces of $G_{m_{\nu}}$ whose relative interiors are contained in $H_1^3(C)$. We have $G_{m_{\nu}} \cap H_1^3(C) =$ relint $G_{m,} \cup (\bigcup_{\mu=1}^{\infty} \text{ relint } G_{m,n}) \cup H_{m,}$, which is a borel set. If, on the other hand, a 2-face of C does not meet C, its intersection with $H_1^3(C)$ is empty. Therefore $H_{\scriptscriptstyle 1}^{\scriptscriptstyle 3}(C)\cap G_{\scriptscriptstyle m}$ is a borel set for all m, and $H_{\scriptscriptstyle 1}(C)$ is a borel set.

For the case when C is an analytic set, say $C = \sum_{i \in I} \bigcap_{n=1}^{\infty} C(i \mid n)$ in the usual representation, the only modification required to the above proof is to show that the set Q(i,j,k) is an analytic set. With the previous notation, $Q(i \mid n) = \{y \mid y \in X, \exists x \in C', \hat{x} \cap C(i \mid n) \neq \emptyset, y \in \hat{x}\}$. Then $Q(i \mid n)$ is a closed set and $Q(i,j,k) = \sum_{i \in I} \bigcap_{n=1}^{\infty} Q(i \mid n)$. Therefore Q(i,j,k) is an analytic set.

REFERENCES

- 1. W. A. Beyer, *The visual hull of a polyhedron*, Proceedings of the Conference on Projections and related Topics, Clemson University, Clemson, South Carolina, 1968.
- 2. W. A. Beyer and S. Ulam, Note on the visual hull of a set, J. of Comb. Theory 2 (1967), 240-245.
- 3. N. Bourbaki, Eléments de mathématique, livre VI, Paris, 1963.
- 4. B. Grünbaum, Convex Polytopes, Wiley, 1967.
- 5. W. Hurewicz, Zur Theorie der analytischen Mengen, Fund. Math. 15 (1930), 8.
- V. L. Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79-107.
- 7. K. Kunugui, Sur un problème de M. E. Szpilrajn, Proc. Imp. Acad. Tokyo, 16 (1940), 73-78.

- 8. C. Kuratowski, Topologie I, 4th ed., Warszawa 1958.
- 9. G. H. Meisters and S. Ulam, $On\ visual\ hulls\ of\ sets,\ Proc.\ Nat.\ Acad.\ Sci.\ {\bf 57}\ (1967),\ 1172-1174.$

Received March 12, 1969, and in revised form May 15, 1969. The first author was supported by a Harkness Fellowship of the Commonwealth Fund and the second author by a Fellowship from Swiss National Foundation.

UNIVERSITY COLLEGE, LONDON, ENGLAND AND UNIVERSITAET BERN, SWITZERLAND