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STABILITY THEOREMS FOR LIE ALGEBRAS
OF DERIVATIONS

CHARLES B. HALLAHAN

Let A be a finite dimensional algebra over a field F of
characteristic zero and let L be a completely reducible Lie
algebra of derivations of A. If A is associative, then there
exists an L-invariant Wedderburn factor of A. If A is a Lie
algebra, there exists an L-invariant Levi factor of A. If A
is a solvable Lie algebra, there exists an L-invariant Cartan
subalgebra of A. This paper deals with the uniqueness of such
L-invariant subalgebras. For the associative case the assump-
tion of characteristic zero can be dropped if we assume that
the radical of A is L-invariant.

2* Preliminaries* If A is a finite dimensional associative algebra
over a field F with radical R such that AIR is separable (that is,
semisimple and remains so under every field extension of F), then the
Wedderburn principal theorem states that there exists a separable
subalgebra S such that A = S + R, S Π R = {0}. S is called a Wed-
derburn factor of A. Since R is nilpotent, for r in j?, (1 — r)"1 =
1 + r + + τn~\ where rn = 0. Let d_ r be the inner automorphism
of A defined by conjugation by the invertible element 1 — r. The
Malcev Theorem states that if S is any separable subalgebra of A and
T is a Wedderburn factor of A, then there exists r in R such that
C!_ r(S)ϋ T. Thus, the Wedderburn factors of A are just the maximal
separable subalgebras. See [4] for the above information. In § 3 it
is shown that if L is completely reducible (every L-invariant subspace
of A has a complementary L-invariant subspace), F arbitrary, R L-
invariant, and S, T two L-invariant Wedderburn factors of A, then
there exists an element r in R such that CΊ_r(S) = T and D(r) = 0
for all D in L. Such an element r is called an L-constant.

If A is a Lie algebra over a field F of characteristic zero and R
is the radical (maximal solvable ideal) of A, then the Levi theorem
states that A = S + R, S Π R — {0}, where S is a semisimple subalgebra
of A isomorphic to A/R. S is called a Levi factor of A. The Malcev-
Hanish-Chandra theorem states that any two Levi factors of A are
conjugate by an automorphism exp (Adx), where x is in N, the nil
radical (maximal nilpotent ideal) of A. In § 4 it is shown that for
L completely reducible and S, T L-invariant Levi factors of A, then
there is an L-constant x in N such that exp (Adx)(S) = T.

If A is a solvable Lie algebra over a field F of characteristic zero,
then any two Cartan subalgebras are conjugate by an automorphism
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of the form exp (Adx), for a; e A" = Πϊ=i A*, see [2]. In §5, we
show that for L completely reducible and S, T L-invariant Cartan
subalgebras of A, then there is a L-constant x in A°° such that
exp (Adx)(S) = T.

In [8] Mostow considered the situation where G, a completely
reducible group of algebra automorphisms, acts on a finite dimensional
algebra A over a field F of characteristic zero. For each of the three
cases for A mentioned above, Mostow shows that there exists the
corresponding kind of G-invariant subalgebra. One can use an algebraic
group argument, see [1], to conclude the corresponding existence of
L-invariant subalgebras. The problem of relating G-invariant subal-
gebras has been studied by Taft [9], and uniqueness in that case is
given via automorphisms defined by fixed points of G. The uniqueness
results for L-invariant subalgebras (in terms of L-constants) can be
shown directly, and also, for characteristic zero, can be shown to
follow from the results of Taft. It should be noted that if x is an
L-constant (G-fixed) then CL_X centralizes L (or G) so that if S is an
L (or G) invariant subalgebra, so is C^X(S).

Let F have characteristic zero. The relationship between the
situations of L acting on A and that of G acting on A is given by
the correspondence between a linear algebraic group and its associat-
ed Lie algebra, see Chevalley [3]. In particular, if G is an algebraic
group of algebra automorphisms of A, then its associated Lie algebra
will consist of derivations of A. Also, complete reducibility is preserv-
ed in the algebraic group-Lie algebra correspondence. The following
lemma follows easily from the definition of the Lie algebra of an
algebraic group. We state it for reference.

LEMMA 2.1. Let V be a finite dimensional vector space over a
field F. Let G be an algebraic group of automorphisms of V and g
its associated Lie algebra. If x in V is a fixed point of G, then
X(x) =z 0 for all X in g.

The author would like to express his appreciation to Professor
Earl Taft who suggested these problems and acted as thesis advisor
during the preparation of this material.

3* The associative algebra case*

THEOREM 3.1. Let A be a finite dimensional associative algebra
over a field F of characteristic zero and let L be a completely re-
ducible Lie algebra of derivations of A. If S is an L-invariant
semisίmple subalgebra of A and T an L-invariant maximal semisim-
ple subalgebra of A, then there exists an L-constant r in R, the ra-
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dical of A, such that Ci_r carries S into T.

Proof. Given L, let L be its algebraic hull, i.e., the smallest
algebraic Lie algebra containing L, and let G be the unique connect-
ed algebraic group of algebra automorphisms with Lie algebra /. Then
G is also completely reducible. We can apply Theorem 2 of Taft [9]
to get r in R such that CΊ__r(S) C T and r is a fixed point of G. By
Lemma 2.1 we have that X(r) = 0 for all X in L, and L^L implies
that r is an L-constant.

COROLLARY 1. Let A and L be as in Theorem 3.1. Then any
two L-invariant Wedderburn factors of A are conjugate under an
inner automorphism of the form CΊ_r, where r is an L-constant in
R. Also, we may write d_ r in the form exp (Ady), where y is an
L-constant in R.

Proof. The first statement follows immediately from Theorem 3.1.
Let y = log (1 - r) = -r - r2/2 - r3/3 - . Then X(y) = 0 for all
x e L and d-r = Ccxpilos(ι-r}) = exp (Ad (log (1 - r))) = exp (Ady).

COROLLARY 2. Let A and L be as in Theorem 3.1. Then any
L-invariant semisimple subalgebra S of A is contained in an L-
invariant Wedderburn factor.

Proof. Let T be any L-invariant Wedderburn factor. By Theorem
3.1 there exists an L-constant r in R such that d _ r ( S ) S Γ . Thus,
S S ί C J ^ Γ ) = C^y(T)f where y = -r - r2 - r - . Thus y is
an L-constant in R. If t e T, then d_y(ί) = (1 + 2/ + + 2/n)ί(l - 2/),
where yn+1 = 0. For D in L, DC^y(t) = C^y(D(t)) since 2/ is an L-
constant. Thus, C^T) is L-invariant,

If we drop the assumption of characteristic zero in Theorem 3.1,
then the uniqueness result can be proven directly with the additional
hypothesis that R be L-invariant. (This is always true for charac-
teristic zero.) The technique used in Theorem 3.1 whereby the situa-
tion involving derivations of A is carried over to the situation involv-
ing algebra automorphisms of A does not, in general, carry over to
the case when F has characteristic p Φ 0. It is possible to have an
algebraic Lie algebra of derivations of a finite dimensional associative
algebra A over a field F of characteristic p > 0 which is not the Lie
algebra of an algebraic group of algebra automorphisms of A. This
cannot occur in characteristic zero. For example, let G be a cyclic
group of order p and F an algebraically closed field of characteristic
p. Let A = F(G), the group algebra of G over F. Then {1, g, , gp~1}
is a basis for A over F and {g — 1, , gp~l — 1} is a basis for the
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radical R of A. Define a map D of A by D: g — * 1 and extend D to
a derivation of A. The smallest restricted Lie algebra L of linear
transformations of A containing D is algebraic, see [5]. Since the Lie
algebra of all derivations of A is restricted, L consists of derivations
of A. If G is any algebraic group of automorphisms of A with Lie
algebra L, then G cannot consist of algebra automorphisms of A. If
so, then R would be G-invariant, and, hence, L-invariant, which is
not the case.

THEOREM 3.2. Let A be a finite dimensional associative algebra
over a field F of arbitrary characteristic. Let R be the radical of
A and assume AIR is separable. Let L be a completely reducible Lie
algebra of derivations of A and assume R is L-invariant. If S is
an L-invariant separable subalgebra of A and T is an L-invariant
Wedderburn factor of A, then there exists an L-constant x in R such
that CL_X carries S into T.

Proof. We consider two cases:
Case 1. R2 = {0}. Let z in R be such that C ^ ( S ) g T. z exists

by the Malcev theorem. We claim that D(z) eR Π C, for all D e L,
where C is the centralizer of S in A. Given D e L, define AdD{z), a
linear map of A, by AdD(z): a-+D(z)a — aD(z), for aeA. Using the
facts that R2 = {0} and R is L-invariant, we have that

AdD(z) = DC^Z - C,_ZD .

For seS, AdD{z)(s) = DC^z(s) - CL_,D(s) e T since S and T are L-
invariant and Cι_z(S)ξ^T. By assumption, D(z) e R, so AdD(z)(S) e R.
Hence, AdD(z): S -> T Π R = {0}. Thus, D(z) eRnC. R Π C is an L-
invariant subspace of R, so by complete reducibility we have R =
(R Π C) 0 U, where U is an L-invariant subspace of R. Write z =
y + x, where y eR Π C and xeU. Thus x = z — y and for D e L,
D(x) = D(z) - D(y) G (R Π C) Π U = {0}. Hence, x is an L-constant,
and x = z — y where y eC implies that C^X(S) = C^Z(S) C T.

If R2 Φ {0}, we proceed by induction on the dimension of A. Since
R is L-invariant, we have that L is a completely reducible Lie algebra
of derivations of R, T + R2, and A/R\ all of which have dimension
less than that of A. Let a-^a = a + R2 denote the natural homomor-
phism of A onto A = A/R2. Then A has radical R and S is an L-
invariant separable subalgebra of A while T is an L-invariant Wed-
derburn factor of A. By induction, there exists v e R such that
C^(S)^T and D(v)eR2 for all D in L. J?2 is an /-invariant sub-

1—v

space of R, so by complete reducibility, we have R = R2 0 [/, where
£7 is L-invariant. Let v = z + u, z e R2, u e U. Then M is an L-constant
and ΰ — v. Consider the algebra T + R2. It has dimension less than
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that of A, has radical R2, C^U(S) is an L-invariant separable subalgebra
of it (since u is an L-constant and S is L-invariant) and T is an L-
invariant Wedderburn factor of T + R2. By induction, there exists r
in R2 such that D(r) = 0 for all DeL and C^rC^u(S) S T. Let & =
w + r - ur. Then for DeL, D(x) = D(u) + D(r) - D(u)r - uD(r) = 0.
So x is an L-constant and C^X(S) = C^C^iS) S T.

COROLLARY. Lβ£ A am? L δe as m Theorem 3.2. 7%βw every
L-invariant separable subalgebra of A is contained in an L-invariant
Wedderburn factor of A.

The assumption that R be L-invariant is needed in the above
theorem. An example can be given of a semisimple derivation D of
an associative algebra A over a field of characteristic 3 such that D
leaves invariant more than one Wedderburn factor of A and D(r) = 0
for r eR, the radical of A, implies that r = 0. Let F be any field
of characteristic 3 containing roots of the polynomial x^ + x + 1. Let
G be a cyclic group of order 3, G = <#)>, ^ = 1, and form the group
algebra F(G) of G over .F. Let Q be the quaternion algebra over F,
i.e., Q has basis {1, i, j , k} over F and ί2 = j 2 = &2 = —1, and ΐj1 =
& = - Λ jk = ί = -kj, ki = j = -ifc. Let A = F(G) (g)*. Q. Then A
is an associative algebra over F of dimension 12. A can also be thought
of as the algebra of 2 x 2 — matrices with entries from F(G). If we
write for example, gί for the element g (g) i of A, then A has basis
{1, gl, <721, i, giy g2i, j , gj, g*j, k, gk, g2k}. {1, ΐ, i, A} forms a basis for a
Wedderburn factor W of A and {.gl — 1, .g2l — 1, gί — i, g2i — i, gj — j ,
ί72i — i, <7̂  — k, g2k — &} forms a basis for the radical R of A. Then
iΓ = {0}. Let reR where r = α(gl - 1) + /9(g2l - 1) + y(g2k - k) and
βy — ay = y — 1, a, β, y e F. Consider the Wedderburn factors of A
obtained by applying Cλ_r to W. We get the following bases for the
resulting Wedderburn factors:

{1, (1 + y2)i + y2gi + y2g2i + j + (1 - y)gj

+ (l + y)g2j, -i + (7 - l)flrί + ( - 7 - l)gH

+ (1 + 72)i + 72#i + 7Vi, fc} = {1, bl9 62, fc} .

The polynomial X 3 + X + l has three distinct roots in F and for each
distinct root γ we define a distinct Wedderburn factor of A by the
above. Define a map D of A as follows:

- 0, i?(flfl) - gl, D(g2l) = - < f l ,

= gί + # 2i, 2?(^2i) = -Q2i + i , D ( i ) = -gί ,

- - f l ^ i + flfi, ^ (Λ") = - i - flf2i, 2>(fc) - 0 ,

- gk, D(g2k) = -g2k
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and extend linearly to all of A. Then D defines a derivation of A,
and it is easy to check that for r eR, D(r) = 0 implies that r = 0.
Also, R is not ^-invariant since D(gl — 1) = gl and (giy = 1 g R.
Also D is semisimple. Consider the Wedderburn factors with bases
{1, 6χ, δ2, k) obtained before, where γ3 + 7 + 1 = 0. Then a direct check
shows that D(bγ) = (7 + l)δ2 ahd D(b2) = - (7 + l)δlβ So all three
Wedderburn factors of A are D-invariant, and they cannot be con-
jugate by a D-constant in R since the only such constant is 0.

4* The Lie algebra case*

THEOREM 4.1. Let A be a finite dimensional Lie algebra over a
field of characteristic zero and N its nil radical. Let L be a com-
pletely reducible Lie algebra of derivations of A. If S is an L-
invariant semisimple subalgebra of A and T is an L-invariant Levi
factor of A, then there exists an L-constant x in N such that
exp (Adx) carries S into T.

Proof. The proof is similar to that of Theorem 3.2, and the
theorem also follows by using Lemma 2.1 and Theorem 4 of [9], where
uniqueness is given in this situation in terms of fixed points of a
group of automorphisms of A.

5* Solvable Lie algebras*

THEOREM 5.1. Let A be a finite dimensional solvable Lie algebra
over a field of characteristic zero. Let L be a completely reducible
Lie algebra of derivations of A. If S and T are L-invariant Cartan
subalgebras of A, then there exists x in A°° such that x is an L-con-
stant , and exp (Adx)(S) = T.

Proof. An analogous proof to the theorem for groups in [9] can
be given. Also the result follows by Lemma 2.1 and Theorem 6 of [9].

If F has characteristic p Φ 0, there are examples of solvable Lie
algebras with Cartan subalgebras of different dimensions. For arbitrary
characteristic Winter [10] has shown that if G is a completely reducible
group of automorphisms of a solvable Lie algebra A and G has no
nonzero fixed points, then A has at most one G-invariant Cartan sub-
algebra. If L is a completely reducible Lie algebra of derivations of
a solvable Lie algebra A over a field of arbitrary characteristic, then
one can adapt Winter's proof to show that if A has no nonzero L-
constants, then A has at most one L-invariant Cartan subalgebra.
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6* A counter-example* Let A be a finite dimensional semisim-
ple Lie algebra over an algebraically closed field of characteristic zero
and let s be a semisimple automorphism of A. Jacobson [6] shows
that there exists an s-invariant Cartan subalgebra in this situation.
The question arises as to whether or not a uniqueness result holds in
the sense dealt with previously, i.e., given two s-invariant Cartan
subalgebras of A, are they conjugate by an automorphism t of A such
that t commutes with s? An example will be given to show that
uniqueness in this sense need not hold. Let A and s be as above.
Recall that s is an invariant automorphism if it is a product

exp (Adx,) exp (Adxm) ,

where each Adx{ is a nilpotent derivation of A. By a result in Borel-
Mostow [2] there exists a Cartan subalgebra H of A which is point-
wise fixed by s when s is also an invariant automorphism. This follows
from the fact that if a regular element is left fixed by S, then the
Cartan subalgebra it determines is left pointwise fixed. So let s be
an invariant automorphism of A such that H is a Cartan subalgebra
of A left pointwise fixed by s. Given any other s-stable Cartan sub-
algebra T of A, if uniqueness held we would have an automorphism
t of A such that t:H-+T and st = ts. Then it follows that T is
also pointwise fixed by s. However, the following example shows that
a semisimple invariant automorphism s of a semisimple Lie algebra A
need not leave every s-stable Cartan subalgebra pointwise fixed. Let
A be the simple Lie algebra of n x ^-matrices of trace 0 over an
algebraically closed field of characteristic zero. Then A has dimension
n2 — 1 with Cartan subalgebras of dimension n — 1. Let H denote
the diagonal matrices of trace 0. Then H has dimension n — 1 with
basis Xi9 2 fg i rg n, where X{ has 1 in the (1, Imposition and —1 in
the (i, ^-position with zeros elsewhere. Let M be the invertible nxn-
matrix with Γs in the (ΐ, i + Imposition, 1 ^ i ^ n — 1, l i n the (n, Im-
position, and zero elsewhere. Define an automorphism s of A by s: N—>
M~XNM. for neA. Then s is an invariant automorphism of A, Jacob-
son [7, p. 283]. Since Mn = /, s has order at most n, and so s is
semisimple. Thus by the result of Borel-Mostow we know that there
exists a Cartan subalgebra of A left pointwise fixed by s. One checks
directly that s acts on H as follows: s(Xi) = Xi+ι — X2 for 2 ^ i <^ n — 1
and s(Xn) = — X2. Thus, H is not pointwise fixed by s, and it also
follows that s has order exactly n.
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