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INTEGRAL DOMAINS THAT ARE NOT
EMBEDDABLE IN DIVISION RINGS

JOHN DAUNS

A class of totally ordered rings V is constructed having
the property 1 < ac V=1/ac V, but such that V cannot be
embedded in any division ring.

1. Inverses in semigroup power series rings. This note has only one
objective—to construct the above class of counterexamples (see [6]).

NortaTioN 1.1. Throughout I" will be a totally ordered cancell-
ative semigroup with identity e¢; R will denote any totally ordered
division ring. If a:I"= R is any function, then the support of «
is the set suppa ={sel |a(s) = 0}. The set V = V(I', R) of all
functions « such that suppa satisfies the a.c.c. (ascending chain
condition) form a totally ordered abelian group. If I" is cancellative,
then under the usual power series multiplication (see [3]), V is a
totally ordered ring.

1.2. Any 1< aecV with a(s) =0 for s > e may be written as
a = ae)(1 — ), where 1 < a(e) and N = I{N(a)a|a <e}. It will be
shown that

I—=N)"=1+N+M+ 0 =14+ 337 MaDMa()) - - Ma(n)) ,

where the finite sum 2’ is over all integers and over all distinct n-
tuples of I’ satisfying s = a(1)a(2) --- a(n) with each a(z) < e; the
sum X is over all s < e. To prove that 1/ac V it suffices to establish
conditions (a) and (b) below.

(a) For each sel', there are only a finite number of n with
A™(s) = 0;

(b) supp(l — A)* satisfies the a.c.c.

Assuming (a) and (b), the main theorem follows at once. By
adjoining an identity as in [8; p. 158] to the semigroup in [2] a
semigroup that actually satisfies the hypothesis in (ii) below can be
constructed.

MAIN THEOREM 1.8. If I" is a totally ordered cancellative semi-
group with identity e and R any totally ordered division ring, then
the power series ring V = V(I', R) has the following properties:

(i) 1<aeV and a(s) =0 for s >e=—1/ac V.

(ii) If in addition I’ cannot be embedded in a group, then V
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cannot be embedded in a division ring.

An already known result ([8; p. 135]) follows immediately from
1.3 ().

COROLLARY 1.4. If in addition I" is a group, then V(I", R) is o
division ring.

2. Proof of the main theorem. Assume 1.2 () or (b) fails.
Then a lengthy but elementary argument shows there exists a doubly
indexed matrix {a(z, j) esuppr|1 <7 < o0;1 < 7 < n(?)} such that the
products u(z) = a(, L)a(t, 2) -- - a(i, n(i)) of the rows form an infinite
properly ascending chain. Eventually a contradiction will be derived
from this. Without loss of generality assume I" < e.

DEFINITION 2.1. For any totally ordered semigroup I” with identity
¢ and any element a € I” with a < ¢, define a semigroup by

(@) = {gel'|3 an integer m >0, ¢" < a} .

LemMMA 2.2. With I' as above, for any a(l), «--, a(m) el with
each a(j) < e, set u = a(l)a(2) --- a(m) and define

a* = min {a(l), - -+, a(m)} .

Then I'(u) = ['(a*).

2.8. Consider a fixed subset L S all of whose elements satisfy
L < ¢ and where L satisfies the a.c.c., e.g., L = supp: < e. Consider
an array of elements A = [|a(s, 7)|] with {a(i, ) |1 =1 < 0,175
n(t)} & L, where repetitions in the a(z, ) are allowed. Assume all
n(%) = 2. Define u(i) = u(s, 4) by

u(z) = u(t, 4) = a(t, Da(, 2) «-- a(t, 7)) .

Let 2 be the set of all such A = ||a(s, 7)|| for which u(l) < u(2) <
cee < U(i) < -+ is strictly ascending at each 7. With each member
A = ||a(s, 7)|l € 2%, we next associate three objects

{a(@)*|1 =17 < o}, m = m(4), and G = G(4) .

Define a(?)* = min {a(?, 5) |1 =7 < n(7)}. Note that u(l) <u@2) < +--
implies that I'(a(1)*) S I'(a(2)*) S I'(a()*) S ---. Thus since L satisfies
the a.c.c., there is a unique smallest integer m = m(A4) such that the
semigroups G = I'(a(m)*) = I'(a(m + 1)*) = ... are all equal. The
following schematic diagram of all these quantities may be helpful.
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(1)) =I'l) w(l)=a(l,Da(l,2)---a(l)*--a(l, n(l))

I'a(2)*) = F(%r(u;)) wW(2)=a(2, Daf2,2) ++- a(2)* -+ a(2, n(2))

I'(a(m)*) = F(ur(]gn)) u(m) = a(m, La(m, 2) - -+ a(m)* - -+ a(m, n(m))
6 = Ium + 1)

2.4. Among the elements of 57, let .+~ < .5 be all those 4 =
lla(i, )|| such that this associated G = G(A) is as big as possible and
call this particular G = M. If 2 # @, also .4+ # @. Define @ =
max {a (m)*| Ae 2", m = m(A)}. Pick and element B = ||b(s, j)|| € A4~
Then by our choice of M, I'(@) = M. Thus M = G(B) = I'(b(¢)*) =
', 3)) = ') = I'@) for 1 = m(B) = m. Finally, with each element
B of _#7 we associate an integer » = r(B). Since @ € I"(u(m)), there is a
unique smallest integer » = 7(B) = 1 such that a" < u(m) < @

2.5. By omitting some of the rows of B and renumbering the
remaining ones, it may be assumed as a consequence of the a.c.c.
without loss of generality that m = 1, and also that b(1)* = s(2)* = ---
is not ascending. FEach u(7) is of one of the following three forms:

(1) u(?) = q(@)b()* ,
(2) u(®) = b(@)*w(@) ,
(3) u(@) = q(i)b()*w() ,

where the ¢(7), w(i) are certain products of the b(7, 7). If there are
an infinite number of w%(?) of the forms (1) or (2), then since

w(t + 1) = q(@ + 1)b(¢ + 1)* > u(i) = q(1)b(?)*, b(z + 1)* < b(9)*
= q(i + 1) > q(3) ;

it follows (after omitting some rows and renumbering) that there is
a properly infinite ascending chain:

Case 1. q(1) < q(2) < +-+;
Case 2. w(l) < w(2) < +--.

If neither Case 1 nor Case 2 applies, then

(@ + 1) = q(@ + 1)b(E + L)*w(@ + 1) > q(@)b()*w(5)
and b(1 + 1)* < b(3)*

implies that one of the inequalities q(¢ + 1) > q(?) or w(z + 1) > w(z)
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must necessarily hold. It is asserted that there is a subsequence
{t(k) |k = 1,2, ---} such that

Case 3. either (a): q(i(1) < q(@(2)) < ---
or (b): w@EQ) < w(E?2) < +--.

For if not, then the a.c.c. must hold in both the sets {g(7)} and
{w(7)}. Then by omitting some rows and renumbering the remaining
ones it may be assumed that we have an element B in .4~ with
1) =z ¢2) = --- and w(l) = w(2) = ---. However, then

qL)b1)*w(1) = 9(2)b2)*w(2) = - -

gives a contradiction.

2.6. We may assume ¢q(1) < q@2) < +-+ or w(l) <w(@).-- are
properly ascending, depending on which of the Cases 1, 2, 3(a) or 3(b)
is applicable. Set ¢t = #(B), so that a* < u(m) = u@) < u().

2.7. It is next shown that either q(i) = @ or w(z) = @~ holds
for all 7. Suppose that the following holds.

Case 1. q(1)b(1)* < q(2)b(2)* < +++;
q(1) < q(2) < vee
BO* = B = .-

Then @' < (1) < u(4) = q(?)b(z)*, and @ = b(7)* implies that
o = q(1) = q(0) .
(For if @** > q(i), then @ = b(7)* implies that @’ > ¢q(3)b(3)*.) (f t =

1, then @ = e.) Similarly, in Case 2 also @' < w(1) =< w(3).
Only Case 3(b) will be proved, since 3(a) is entirely parallel.

Case 3(b). q)d(1)*w(1) < ¢2)b2)* w(2) < - +;
w(l) < w2) < ooy
BO* = b = e

Then again @ < (1) < u(?) = q(¥)b(2)*w(t) and @ = b(¢)* = q(1)b(¢)*
imply that @' < w(l) < w(t). (Otherwise, if @' > w(¢), then a® >

q(@)b(2)*w(i).)

The bagic idea motivating the proof is that for Be._#; a new
Ce .+ can be constructed with »(C) < »(B) — 1.
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2.8. Thus either ¢(1) < ¢(2) < --- and all ¢q(¢t) = a**; or w(l) <
w(2) < --- and all w(7) = @', Assume the latter. Let

C = lle(s, j)ll e &~

be defined by taking as its ¢-th row all the b(i, j) appearing in w(z).
(In view of w(l) < w(2) < -+, there does not exist an infinite number
of rows of C containing only one element. By omitting a finite number
of rows it may be assumed that all rows of C contain two or more
elements of L.) Define ¢(¢)* = inf {¢(%, 5) | = 1}. Since b(0)* < c(1)* = @,
it follows that

M=Tb6)Y) ST e *ST@) =M.

Consequently, G(C) = M and Ce._#. Since w(l) = a"*, r(C) =t — 1.
By repetition of this process, we may reduce the = to one so that
finally @" = @ < w(l) < w(2) ---. Since all ¢(4, j) € L satisfy ¢(3, j) < e
and since w(i) is a product of these, it follows that @ = c¢(?)* = w(3).
Thus @ = w(l) = w(2) = ... gives a contradiction. Thus 2% = @ and
the main theorem has been proved.
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