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A NOTE ON HANF NUMBERS

SAHARON SHELAH

We show that for every ¢ < (2¢)*, there is a theory T and
set of types P in a language of power x, such that there is a
model of T which omits every p< P of power Zif and only if
2= 2:t. We also disprove a conjecture of Morley on the ex-
istence of algebraic elements,

The results which are proved here appear in [5].
1. On %

DerFINITION 1.1. 7%, will be the first cardinal such that for every
language L, |L| < &, and set of types {p:peP} (in L) if T has a.
model of power =7, which omits all the types in P, then T has such
models in every power =|T|. (A type is a set of formulas with the:
variables x,, ---, ¢, only for some » < w. A model omits p if there:
does not exist a, +--, a, in the model such that o(z,, ---, x,) € p imp-
lies M E @la,, « -+, a,].)

Chang showed in [2], by methods of Morley from [4] that 7. <
2[(27)*]). He also in [1] asked what is .. We shall show that 7. =
2[(2%)*]. For this it is sufficient to prove that for every & < (29~
there exists a theory 7 and a set of types P (in a language L = L(T)
of power =<rx) such that T has a model of power N which omits all
the types in P if and only if M < 2..

The following theorem appears in many articles which deals with
finding lower bounds for Hanf numbers.

THEOREM 1.1. If there exists a theory T,|L(T)| <k, and a set
of types P in L(T), such that every wmodel of T which omits every
pe P is well ordered in an order type <& and it has such a model
whose order type is &, then 7, > 3.

Proof. We adjoin to L the predicates @.(x), Q(x), © €y, the con--
stants ¢,, # < @ and the function F(x), and we get a language
L,|L | k. Wedefine T, = {v% e T} [v? is + relativized to @, that
is instead of (Ixr)p we write (3x)(Q(x) A®) and instead of (Vz)p we:
write (V2)[(Q(x) — @)]. We also define P, = {p% pec P}U{q}, p° = {p%
pep), ¢ ={Q@}IU{x#cn < 0}

We add to T, an axiom of extensionality

P, = (Yay)l(Va)[zex —zeyl — 2 = y]
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and an axiom saying that F(x) is the rank of x
P, = (Y2)Q(f(2), @5 = (Yay)lz e y — F(2) < F(y)]
and an axiom saying that Q,(z) if and only if the rank of x is minimal
P = (YO)[Q,(®) — —~ AY)(F(y) < F(2))]

and T, = T\U{p::t =1, 4}.

Let M be a model of T, which omits every type in P. It is
clear that QY is well ordered by <¥ in an order type <Z. Assume
QY ={a;:1 <1, <&}, where ¢ <j implies a; < ¥a;. Let us define
A; = {a: F¥[a] = a;}, and a function f, f(a) = {be M:be” a}. As M is
a model of ¢;; f(a) = f(b) if and only if ¢ = b, and as M is a model
of @, and @, if a € A; then fla)cU;«; 4;. From this it is clear that
[A; | =[{f(e):ac A}] < 2Yi<i4j!, Tt is also clear that |4, = 2,. From
this it is easy to prove by induction that |U,.; 4;| < 2, and so
M| = U<, 4] = 2.

On the other hand it is not hard to see that T, has a model of
power 3, which omits every pe p..

So it is clear that 7. > 2..

THEOREM 1.2. For every & < (297", there is a theory T, |L(T)| <k,
and a set of types P (in the language L) such that for every model
M of T which omits every pe P its set of elements is well ordered
by <", and its order type is <& Also T has a model which omits
every pe P, and the order type of the set of its elements 1s £.

Proof. For simplicity suppose |&| = 2¢ (it is clear that this is
gufficient for proving 7. = 3,x+).

Let S be the set of subsets of £ = {i:7 < k}. As |S|=2=|¢]
we can order S in an order of type & S = {a;:7 < &}

Let us define the language L. It will have £ one-place predicates
Q. 7 < k, and an order predicate <, and the equality sign. We define

Do = {(Qz(xo) hand Q'L(xl) 1< /‘} U {900 e xl} .
For every 7,1 < &,

P =, = 2 U{@u@o): hesU{ -@u@o): h€s;, h < Kk} U
{Qu(@): hes;}U{ Qi) hes;, h <k}.

We define P = {p,} U{p"i:j <1< &L

If M is a model, which omits every pe P, we define a function
f from the set of elements of M to S by f(a) = {h:h < k, acQ}}.
As M omits p, a #= b= f(a) # f(b), and as M omits p*>? for every
J <1 <§g, it is clear that a <”b if and only if f(a) <¥f(®). So it is
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clear that T = { } and P satisfies the conclusion of the theorem.
THEOREM 1.3. 7. = (29".
Proof. Immediate.

2. On algebraic elements. Morley in [4] conjectured that if T
is a complete denumerable theory in a language L, p a type in L,
and T has a model omitting p of power £ if and only if £, > £ = W,
and £, > W, then T has exactly W, algebraic elements, where:

DEFINITION 2.1. (1) In a model M an element a is algebraic if
there is a formula ¢@(x) such that M E ¢la] and |[{beM: M E=
P} < No-

(2) A complete theory T has )\ algebraic elements if every model
of T has \ algebraic elements.

We shall disprove this conjecture.

DEFINITION 2.2. K(T, p) is an infinite cardinal such that T has
a model of power £ which omits p if £ < K(T, p), £ = |T|, and has
no such model of power =K(T, p), K(T, p) = - if there is no such
cardinal.

Claim 2.1. Let T be a complete theory, p; is a type in the
variables x,, +--, ,._, for 1 =0, ---, m, and T has a model of power
£ omitting p,, -+, P, if and only if £, > £ = |T|.

Then there exists a complete theory T, |T.|=|T| + ¥, and a
type p in the variable z, such that K(T,, p) = &, and T, has algebraic
elements if and only if T has algebraic elements.

Proof. Suppose M is a model of T. We define a model M, whose
elements will be the elements of M and sequences of length n =
Siem 1 < Yo of elements of M. The relations will be the relations
in M, and Q": which will be the set of elements of M, the functions
F¥: for ¢ < n such that F'¥1(ay, +++, @,_,») = a; (When ay, «--, a,_, € M)
and F¥(a) =a (when aeM). The theory T, will be the set of
sentences which hold for M,. It is easily seen. that T, is a complete
theory, |T.| = | T| + W and that T, has algebraic elements if and
only if T has algebraic elements.

We shall also define

p= {hYo Pu(F1, (@) =y Fipinga(2)): @u@os + vy @) € P4y b = J%nj} .
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It is easily seen that T, and p satisfy our demands.

THEOREM 2.2. If T is a complete theory, p a type, then there
exists a complete theory T' and a type p' such that |T,| = |T| + W,
and K(T, p) = K(T', p"), and T* has no algebraic elements.

REMARK. Clearly this disproves Morley’s conjecture.

Morley told me that between 1963 and 1966 he disproved his con-
jecture. Later some people wrote him that they disproved the con-
jecture, but he did not remember their names. Seemingly, the review
[3] is the first place the disproof was mentioned, but the proof does
not appear anywhere.

Proof. Let N be a model of 7. We shall define M the elements
of M will be pairs of the form {a, > where ¢ € N, and ¢ is an integer.
If R” ig a relation in N, then

R" = {Ka;, Dy - -+, <a,, D):<a;, «++, a,y>€ RY, | is integer} .

We define <":<a,, 1,)<"Ca,, v,y if and only if 7, <4, (as integers.).
We define F'¥, F"({a,, 1.0, {ay, 1)) = {ay, 1.

T, will be the set of sentences that M satisfies.

Let us define

p: = {(Vzl, e 2,)(32,0) (@0 S 2 A2y ST A

n

@Al AR SNz 200 < w}
W. l.o.g. let ¥ be the only unbound variable which appears in the
formulas of p. We define 4* by induection for subformulas of formulas
of p: if in @ no quantifiers appear, then ¢* = ¢, and (Ax)p)* =
En)fe =y Ay = x A p*l

We define p, = {+*: + € p}.

It is clear that for every integer 4,, the mapping <a, i) —<a, © + i)
is an automorphism of M. So for every element of M there exists
an infinite number of elements which are its image by some automor-
phism of M,. So M has no algebraic elements. It is clear that if
M, is a model of T, which omits p,, then for every aelM, k, =
[{beM,: M, =b<aAa<bl <K(T p. If M, also omits p,, then
the power of M, is £, W, = £, < K(T, p). On the other hand, for every
£ < K(T, p), £ = | T|, it is easy to construct a model of T, omitting
», and p,. By Theorem 2.1 the conclusicn of 2.2 follows immediately.

The referee has informed me that a little later than I, James
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Schmer] (U.B.C.) independently discovered the same proof of Theorem
1.3. —%.= 3[(29*]. After writing this paper, I find in a review on
an article of Morley, that Morley has already disproved this conjecture
(see [3]).
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