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AN ANALYSIS OF EQUALITY IN CERTAIN
MATRIX INEQUALITIES, I

WILLIAM R. GORDON AND MARVIN MARCUS

In this paper we are concerned with analyzing the cases
of equality in certain inequalities that relate the eigenvalues
and main diagonal elements of hermitian matrices.

Let Er denote the r t h elementary symmetric function of
k variables (Eo = 1). If H=(hij) is an w-square positive semi-
definite hermitian matrix with eigenvalues γ^ ••• ̂ γn and if
1 ^ r ^ k ^ n, then it is known that

(1.1) Er(hn, , ft**) ̂  Er(n, ''', ϊk) .

If r > 1 and at least r of fen, , hkk are positive then (1.1)
can be equality if and only if there exists a permutation ce Sk

such that

(1.2) H = diag (χφa), , 7v<*>) + Hn-k

where Hn-k is (r& — fc)-square and 4- denotes direct sum. Of
course, if r = k = n then (1.1) is the Hadamard determinant
theorem:

(1.3) Πhu^άetiH).
4 = 1

If some ha = 0, then H is singular and (1.3) is equality. If
ha > 0, i = l, , n, then the condition (1.2) yields the well-known
criterion for equality in (1.3), namely H = diag (fen, ••,/&««)-

2* Results* Let /(a?) = /(ίCi, •••,«*) be a function defined for all
nonnegative vectors x i> 0 (i.e., a?< ̂  0, i = 1, ,-fe). We shall assume

that / i s symmetric: /(#σ(i), , xa{k)) = f(x) for all a e Sky the symmetric

group of degree k. Let Cr denote the cone consisting of all x ^ 0

with at least r positive components. The function / is said to be

strictly Cr-concave if / is concave for xeCr and if for x and y in Cr

and 0 < θ < 1 the equality

(2.1) f(θx + (1 - θ)y) - 0/(z) + (1 - θ)f(y)

holds then it follows that x ~ #, i.e., a? is a positive multiple of y.

The usual definition of strict concavity requires that / be concave and

that (2.1) holds if and only if x = y. We say that / is expositive if:

f(x) > 0 if and only if x e Cr. Also, / is strictly Cr-monotone if

f(x + u)> f(x), x e Cr, u ^ 0, u Φ 0.

THEOREM 1. Let H — (feίy) be an n-square positive semi-definite
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hermitian matrix with eigenvalues 0 ^ y 1 ^ g y n . Let l^r <zk<*n.
Assume that f is symmetric, concave and nondecreasing in each vari-
able. Let hωtωt, t — 1, , k, be k main diagonal entries of H* Then

(2.2) f(K1<ai, , hωkωj) ^ /(7i, , 7fc) .

Assume in addition that f is strictly Cr-monotone, strictly Cr-concave
and expositive. If at least r of the hωtωt, t — 1, •••, k, are positive
then equality holds in (2.2) if and only if for some φeSk

(2.3) hωtωt = y φ ί t ) , t = 1, , k ,

and, in fact, in row and column ωt, H is 0 off the main diagonal,

The inequality (2.2) is found in [3].

Proof. To begin with we can assume that o)t = t, t = 1, , k,
and hn <L ^ hkk. For, we can rearrange the main diagonal entries
with a permutation similarity without affecting the eigenvalues. A
trivial induction shows that for / strictly Cr-concave, af e Cr, and
βt > 0, t = 1, , m, ΣΓ=i 0t = 1, then

(2.4)

and equality implies that as ~ α*, s, ί •= 1, , m. Now there exists
a unitary U such that £7* diag (7i, , 7JΪ7 = H and hence

-(2 5) h• = y1 I % I27 i = 1. n

Since the matrix U is unitary we know that the matrix S whose
(i, j) entry is \uj{\

2, is doubly stochastic (d.s.). Thus (2.5) becomes

<2.6) (hn, ...,fenn) = S(7lf -- , 7 . ) .

Let d — (hn, , λnw), 7 = (7i, , 7W), and for any ?ι-tuple Λ; let a;[A:]
•denote the truncated vector (xΣ, , xk). IfσeSn then x° — (xσ(ι), , #σ(n,).
By Birkhoff's theorem [1] let

σ e G

where G is a subset of SΛ, cσ > 0, σ e G, Pσ is an ^-square permutation
matrix corresponding to σ and Σ σ 6 G cσ = 1. From (2.6), (2.7) and (2.4)
wre have

f(d[k)) =
<2.8)

SΣ
σ e G
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Consider a summand in (2.8) and choose μσ e Sk so that

σ(μβ(l)) < < σ(μσ(k))

and hence

(2 9) Γ^σ(μa(l)) ^ * * * = Ύσ(μa(k))

The symmetry of / implies that

Now since σμo(t) ^ t, t — 1, , k, we know that

(2.10) yσμσ(t) S: yt ,

£ = 1, , k. Then since / is nondecreasing in each variable we have

(2.11) f(T[k]) ^ f(yly . . . , γ * )

and hence (2.8) becomes

(2.12) f(dlk]^f(yly . . - , 7 , ) ,

the required inequality (2.2).
Suppose equality holds in (2.12). Since d[k] e Cr we know that

f(d[k]) > 0 and hence f(Ύ[k]) > 0. Thus y[k] e Cr. We also know that
f(yσμσ[k]) = f(Ύ[k]) and in view of (2.10) it follows that

(2.13) y°vo[k] - y[k] .

Setting μ~ι — voeSk in (2.13) we have

(2.14) Y[k] - (y[k]y* .

We must also have equality in (2.8) which because of the strict Cr-
concavity implies that yσ[k] — y°[k], σ, Θ in G. In other words,

7°[k] = aaτ[k]

for some fixed r e G, aσ > 0 all σ eG. In view of (2.14)

T[k] - α,(

so that

d[k] - Σ <vrβ

= Σ coαo
σ eG

= c(7[fc])vs c > 0 .

The equality in (2.12) implies that
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f(d[k]) = f(7[k])

and thus

f(c(y[k]yή =

or

/(cγ[fc]) - f(Ύ[k]) .

Now τ[ft] G Cr and hence by (2.1) c = 1. Thus

(2.15) d[k] = (>γ[k]y* .

Since hn ^ ^ / ^ , (2.15) implies that

But τx <̂  <; γfc and vr € Sk and hence 7vr(ί) = 7*, ί = 1, , ft. In
other words,

(2.16) Λ« = 7«, ί = l, ...,fc

Now we assert that (2.16) implies that the first k rows and columns
of H are 0 off the main diagonal. To see this we observe that if
0i = (£n> i #«i) and ^ , , un are orthonormal eigenvectors of H
corresponding to y19 •••, yn respectively, then using the standard inner
product in the vector space of complex w-tuples,

hn = (Heu et)
(2.17)

= Σlfe,
Since 7i = hlt we conclude from (2.17) that (elf %) = 0, if γy > Ti»
Suppose 7i= =Ύr < 7 r + 1 ^ ^ 7n. Then (elf %) = 0, i = r + 1 , •••,%,
and hence eΣ eζuίy , uτy, the space spanned by u19 , wr. But then
Heί = 7A and we conclude that the first column (and row) of H is 0
off the main diagonal. Since γ2, , 7» are the eigenvalues of the
submatrix obtained from H by deleting row and column 1, an obvious
induction completes the proof.

Make the following choice for /:

(2.18) βxu ...,&*) = E\!r(xl , xl)

where 0 < q ^ 1. We assert that for r > 1 or r = 1, g < 1, / ia
strictly Cr-concave. For 0 < θ < 1 consider

f(θx + (1 - 0)y) - ^ ( ( t e , + (1 - ^ ) S , (θxk + (1

^ £?^(ίαΐ + (1 - ί)»?, , θxl + (1 - θ)yl)
( 2 } ^ ^ ^ ( ^ xl) + (1 θ)E\!'(tf, , 2/ϊ)
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In (2.19) we have used the monotonicity and Cr-concavity of E\!r [4],
r > 1, and the strict concavity of tq

y t ^ 0, for r = 1. When q < 1
the first inequality in (2.19) is strict unless x = y. If q = 1, r > 1,
then the second inequality is strict unless x ~ y. In either event if
(2.19) is equality then x ~ y so that / is indeed strictly Cr-concave.
Also, / is obviously strictly Cr-monotone and (^-positive. We have

COROLLARY 1. Let H satisfy the hypotheses of Theorem 1 and
let 0 < q ̂  1. Then

(2.20) Er(hlιωi, , hlkωk) ^ Er(Tlf , 7Ϊ) .

// at least r of the hωtωt are positive, t = 1, , k, then equality holds
in (2.20) if and only if for some φ e Sk,

hωtωt ~ Ύφd) J t — I, , tC r

and H is 0 off the main diagonal in row and column ωt, t = 1, •••,&.

We remark that if fewer than r of the hωtωt are positive then
the left side of (2.20) is 0 and hence fewer than r of 7i, •••,7* are
positive. If r — k = n then (2.20) becomes

(2.21) Π hi ^ det £Γ ,
3 = 1

the Hadamard determinant theorem. If H is nonsingular and equality
holds in (2.21) then Corollary 1 implies (since h3j > 0, j = 1, ••', n)
that H = diag(λu, •••, fe»w). If JH" is singular and equality holds in
(2.21) then some hj3 = 0 and H has a zero row and column.

As another example consider the function

f(x) = Er(xiy

for x e Cr. We assert that / is strictly Cr-monotone, C-positive, and
strictly Cr-concave. The Cr-positivity is obvious and the strict Cr~
concavity is a result in [4]. To verify the strict Cr-monotonicity we
show that for xeCr

(2.22) ££- > 0 , j = 1, •••, k .
v 7 dxj

This will suffice since we are only interested in showing that
f(x + u)> f(x), xeCr,u^0,uΦ0.

First observe that

(2.23) Er(x) - XjE^ixj) + Er(Xj)

where Er{x3) indicates the r t h elementary symmetric function of
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.xίy •••, xά__λ, xj+1, •••, xk. Thus the sign of of/dx3 is the same as the

.sign of

(2.24) E^WEr^Xj) - Er(x)Er_2{x3) .

From (2.23) we see that (2.24) is equal to

(x3Er_2(x3) + # r _ 1 ( ί i ))-^-i(^ ) - (xjEr-i@j) + Er{x3))Er__2ψΊ)

= EU{x5) - Er(x3)Er_2(x3) .

Now it is known [2] that

since at least r — 1 of the components of x3 are positive. We can
now state

COROLLARY 2. Let H satisfy the hypotheses of Theorem 1 and
^assume that at least r — 1 of yL, , yk are positive. Then

(2 25) Er(hωι(Ol1 »», hωkίϋk) ^ Er(yly

// αί Zeαs£ r of y19 •••, 7̂  are positive then the inequality (2.25)
is equality if and only if for some φ e Sk

H is 0 off the main diagonal in row and column a)u t = 1, , A:.

Proof. First observe that if p of 7X, , 7k are positive then i ϊ
has at least n — k + p positive eigenvalues. Hence since H is positive
semi-definite we know that at most n — (n — k -{- p) — k — p of the
main diagonal elements can be 0. We conclude that any set of k
main diagonal elements must contain at least p positive elements. It
follows that both sides of (2.25) are defined. Also, if p = r we obtain
the stated conditions for equality by applying Theorem 1.

We can derive an immediate consequence of Theorem 1 by replac-
ing the matrix H by X*HX where X is any ^-square unitary matrix.
The main diagonal entries of X*HX are (Hxjy x3), j — 1, , n where
.x3 is the jth column of X.

COROLLARY 3. Let H and f be as in Theorem 1. Then for any
set of k orthonormal vectors xlf •••, xk1

(2.26) f((Hx19 x,), , (Hxk, xk)) ^ f(yly , 7.) .

If at least r of the inner products (Hx3, x3), j — 1, , k, are positive
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then (2.26) is equality if and only if

(2.27) Hxs = ΎφwXj , j = 1, , & r

/or some 9> 6 Sfc, i.e., x19 , % are cm orthonormal set of eigenvectors
corresponding to ylf , 7k in some order.

Proof. Let X be a unitary matrix whose first k columns are
x19 , xk. The result (2.26) follows from Theorem 1 applied to X*HX.
If equality holds and if r of the inner products (Hx19 a?x), , (Hxk, xk)
are positive then X*HX is 0 off the main diagonal in row and column
j,j = l, , k, and (X*HX)ίΊ = 7^(i), i = 1, •••,&, for an appropriate
φ e Sk. This completes the proof.
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