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ON MATRICES WITH A RESTRICTED NUMBER
OF DIAGONAL VALUES

J. E. H. ELLIOTT

This note confirms the following conjecture of Marcus:
Let A = (a;;) be an » X » matrix of strictly positive entries
with at most (n —1) distinct diagonal values, then A is singular,
We also show that there exist matrices with strictly positive
entries with n diagonal values which are nonsingular,

DEFINITIONS. If A is an n X n matrix and ¢ is a permutation of
{1,2, -+, n}, then the product @, *@s oz *** An,omy is called the di-
agonal of A corresponding to o.

If A, A, are two n X n matrices, then A, is called a diagonate of
A, if A, can be obtained from A, by a finite number of operations of
the following kinds :

(i) Multiplication of all entries of some row, (or column) by
some ¢ > 0.

(ii) Interchange of any two rows (or columns).

The notation A[g|~], A(¢|v) is that of [1].

PRELIMINARY REMARKS. (i) The property of being a diagonate
is an equivalence relation.

(ii) If a matrix is singular (nonsingular), then each of its di-
agonates is singular (nonsingular).

(iii) If a matrix A4, has diagonal values o, < 0, < -++ < p, then
a diagonate A, of A, has diagonal values kp, < ko, < --- ko,, where
k= k(A4,), and |det A,| = | kdet 4,].

(iv) If a matrix has strictly positive (positive) entries, then each
of its diagonates has strictly positive (positive) entries.

LEMMA. If X = (2°%?) 45 an n X n matrixz with entries in an
extension F(x) of the real field F, where e(i,j) are monnegalive
rational integers 1,57 =1,2, -+ n and e¢1,7) =0 for j =1,2, .+ n,
then

det X = (x — 1)*'g(x), where g(x) is a polynomial in 2z with
rational integral coefficients.

The proof of the lemma is by induction. The result is trivial
for n = 2. The result is therefore assumed to hold for all » < N,
and N > 2. If n = N, subtracting the first row of X from the second
and expanding X by its second row, we have
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det X = 3, (—1)ifar®? — 1} det X(2|4);
j=1

but each of the matrices X(2[j) is of the form of the matrix of the
hypothesis, and therefore by the induction assumption we have

det X(2|J) = (x — 1)*?g,(x) ,

where ¢;(x) is a polynomial in a with rational integral coefficients.
Thus

det X = 3, (—1pfe®) — 1)z — 1)"=g,(2) = (@ — 1)""'g(2) -
J=1
We are now in a position to prove the conjecture.

The conjecture is proved below by induction on the order of the
matrix. Therefore we first prove the theorem for a 3 x 3 matrix.

THEOREM 1. If A, is a 8 X 8 matrix of strictly positive entries
with at most two distinct diagonal values, then A, is singular.

To prove this, it is supposed that A, is nonsingular: then there
exist nonsingular minors A4,(¢|7) with diagonal values 0.,(7, 7) < 0.1, 7).
Consequently there exists a diagonate A, of A, where the ratio » =
0:(1, 1)/0,(1, 1) is maximal, and A, has two distinct diagonal values
Tu0:(1, 1), Av,0,(1,1).  Thus there exists a diagonate A, or A; such
that v;;, = v, =1 for 1 =1,2, 3,7, =N where A, = (7;;). Since A4,
is nonsingular A, is also nonsingular, and M\ retains its maximality
property in A,. Now if d is the entry A,(¢, 3|7, 3) where 7 == 3, j # 3,
then v,;d and d are both diagonal values, so consideration of their
ratio shows that <v; =X,1 or A’ Consideration of the minors
A[1,312,3] and A4,[1,2]2, 3] shows, by the maximality property of
A, that v,, 7., are no less than 1. Putting v, = 1 therefore, since
no columns (rows) are equal, yields v, = v, = A. This gives a con-
tradiction, as the matrix now has three distinct diagonal values 1, )
and 2. If A, =AY, then A, has distinet diagonal values A, A, and
a consideration of their ratio leads to a contradiction. We must there-
fore have v, =\, and so A, has diagonal values A\, ). However,
since v, and 7v,, are also diagonal values each equal to 1, or )\, then
Y2 = Ya = N\, and again since A, is nonsingular we have a contradiction.
But this has exhausted all possibilities for the value of v,, and so the
proof of Theorem 1 is complete.

We are now in a position to prove the conjecture for all n.
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THEOREM 2. If A, is an n X n matrix of strictly positive entries
with at most (n — 1) distinct diagonal values then A, is singular.

The proof of this theorem is by induction on n. The result is
trivial for n = 2, and it has been proved for n = 3. Therefore we
assume the theorem to hold for all # < N, where N > 3. It is sup-
posed that A, is an N x N matrix of the diagonate class A = {4,; ® € £}.
The proof is by contradiction; we assume that A4, is nonsingular. By
the Expansion Theorem of Laplace, [1], given two rows =,s of A,
there exist two columns ¢, w such that A,[r, s|t, ) and A.(r, s|t, u)
are both nonsingular. It then follows from the induction assumption
that the matrix A,[r, s|t, u] has at least two distinct diagonal values
s < My and the matrix A,(r, s|¢, w) has at least (N — 2) distinct di-
agonal values p, < 0, < +++ < Oy_;. Therefore A, must have at least
the (IV — 1) distinct diagonal values p,0, < 14,0, < 0, < «++ < MoOy—se
However A, has at most N — 1 distinct diagonal values, and so these
diagonal values must also be exactly the values

10 < 0, < o0 < POx_s < Uslx—s -
It therefore follows that

Hence if N denotes the ratio p,/p,, then the matrix A, has for its
(N — 1) distinet diagonal values exactly the (NN — 1) diagonal values
c<he < voo < A%, where ¢ = p,0,. Now there exists 4, = (a;;) € A
such that a;, = a,; =1for¢t=1,2, ..., N, and A, has diagonal values
E<Ae< oo <Nk for some k£ > 0. If d is any diagonal value of
A1, 7|1, 5) then a;;d, and d are diagonal values of A, and thus a;;
is an integral power of A. A division of the j-th row of A; by
min{a;;;?=1,2,--- N} for j=2,3,-.-.- N, yields a matrix A,e A4,
A, = (v;;) such that v,; = »*"? where e(4, j) is a nonnegative rational
integer for 7,5 =1,2, .-+ N,e(1,7) =0 for =1, .-- N, and A, has
diagonal values

Nh<)\,h+1< .o <7\,h+N—2.

Now let E denote the N x N matrix with (¢, 7)th entry z*“?, where
x is transcendental over the real field. By the lemma, det E =
(x — 1) 'g(x), where g(x) is a polynomial with rational integral co-
efficients. However E has exactly the diagonal values

xh < xh+1 < e < xh+N-—2

and thus det B = &*{b, + bz + -+ by_x" %} = (x — 1)"'g(x) where b;,
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1=0,1,.-« N — 2 is a rational integer. This however implies that
b,=0b,= +++ =by_, =0, and thus

det A, = M {by + DN + <o+ F by A} =0.

We therefore have A,, A, two matrices of the same diagonate class
one nonsingular and one singular. This is the required contradiction
which completes the proof of the conjecture. We can also conclude
the result below.

COROLLARY. If an m X n matrix A with strictly positive entries
has at most r distinct diagonal values and r < n, then rank(4) < r.

To show that an » X » matrix of strictly positive entries need

“not be singular if it takes on as few as » diagonal values, we may

“‘consider the n x m matrix C = (¢;;), where ¢; =k for i=2,8,.-. 1,

and ¢;; =\ otherwise; and where k, A are positive integers such that
k>n. Then detC = Mk — V)"t # 0.
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