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EXTENSIONS OF CONTINUOUS AFFINE FUNCTIONS

LEONARD ASIMOW

Conditions are given for a closed face F' of a compact
convex set X to have the property that if fec A(F),g,, ...,
gn€ A(X), and f dominates each g; on F' then f can be ex-
tended to gc A(X) where g dominates each g; on X,

Let X be a compact convex set in a Hausdorff locally convex
space. We identify X in the standard fashion with the set of positive
elements of norm one in A(X)* (weak*-topology), where A(X) is the
ordered Banach space (sup-norm) of continuous affine functions on X.
A face of X is a convex subset which contains the endpoints of every
open line segment in X which it intersects. It is known (for example
[2]) that every continuous affine function on a closed face F' of X
admits a continuous affine extension to all of X if and only if the
linear span, <F"», of F is weak* closed in A(X)*. If additional con-
ditions of a geometric nature on F and X are made then much more
can be said about the type of extensions which are possible. For
example if X is a Choquet simplex (in which case {F") is weak* closed
whenever F' is), a theorem of Edwards [3] states that
(*) if {fiHss {95}5-1 € A(X) and fe A(F) such that

f’L|F'§f§gJ’F (7::1,°°',m;j:1,--'”}’&)
then there is an extension ge A(X) of f such that
fzégégg (izly""m;jzlr"‘vn)-

This extension property is quite strong in the sense that it in fact
characterizes simplexes among the compact convex sets.

One can ask under what conditions on F and X the following
weaker extension property holds:
(**) if {fi}m~, e A(X) and fe A(F) such that

flesf  (@=1,---,m)
then there is an extension ge A(X) of f such that

figg.

Closed faces which possess property (**) are termed strongly archi-
medean by Alfsen [1] (see also Stermer [5] for the origin of the
terminology). In [2] we give conditions on F' such that (**) holds
for functions f;, f identically zero on F. This implies in particular
that F' is (within a G, set) a peak-face of X. We give here a some-
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what strengthened form of these conditions which guarantees an
extension can be found such that (**) holds in general.

We shall say X is decomposable at the closed face F (under f)
if there exists a bounded linear functional f on A(X)* such that f
is identically zero on <{F')~ (weak* closure) and X = conv (K U F),
where K = {xe X:1 < f() < || f]}. If X is decomposable at F' and
the linear span of F' is weak* closed, then we show (Theorem 2.6
and Corollary 2.7) that the extension property (**) holds.

The closed faces of a-polytopes (see Phelps [4]), for example,
satisfy these conditions and hence are strongly archimedean. We
show also that if F' is a closed face complemented in X then a weak
version of the extension property (*) can be obtained. As a corollary
we obtain (*) as stated for simplexes.

1. Preliminaries. Let 2 be any real-valued function on the
compact convex set X. We call the set of ordered pairs (x,7)e X X
R c A(X)* x R such that » = h(x) the upper-graph of h. The lower-
graph is defined analogously. We note that % is convex if and only
if upper-graph (k) is convex and % is concave if and only if lower-
graph (h) is convex. Also % is lower-semi-continuous if and only if
upper-graph (k) is closed and upper-semi-continuous if and only if
lower-graph (%) is closed.

If xe X we define the gage functional p, on X by

p.(y) =inf{r =0:yecx + (X — 2)}.

Then p, is lower-semi-continuous, convex and affine along any line
segment in X with one endpoint . Also for each y e X there is a
z€ X such that

Let F be a closed face of X.

PROPOSITION 1.1. For each ye X the function x— p,(y) is lower-
semi-continuous on F.

Proof. Let ¢: F x X x [0,1] — X be defined by
P, 2, N) =A2+ (1 — Nz .

Then for xe F, p,(y) < r if and only if there is a ze X and se [0, 7]
such that

y=s2+ 1 —9s.

Thus {x e F: p,(y) < r} is exactly the natural projection of @~*(y) N
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(F x X x [0, r]) into F which is clearly closed.
We define p: X — [0, 1] by

pr(y) = inf{p.(y):xc F}.

By the proposition the infimum is actually attained and so each ye X
can be written as

¥ =012+ 1 — ps(¥)x ; zeX and ze F.

It also follows that p, is affine along the line segment [x,2] and
thus p(2) = 1. In addition upper-graph (p;)

={(x, r):zeX,r =1} Uconv [(X x {1}) U (F x {0})],

and hence is a closed convex set. Consequently p, is lower-semi-
continuous and convex.

In the sequel it is necessary to assume that the closed face F of
X is self-determining, that is, if N is the weak* closure of <{F) in
A(X)* then NNX =F. If this is the case then let ¢: A(X)*—
A(X)*/N be the quotient map. The quotient space can be identified
with the dual of the space of continuous affine functions on ¢X
vanishing at 0[2]. We then define the semi-norm p, on A(X)* by

(@) = ||qx]| .

It follows that p, is weak* lower-semi-continuous and sub-additive
on A(X)*.

2. Decomposable faces. As our first step we give conditions
which assure that if A e A(X), 2| = 0 then there is a ge A(X) such
that ¢|, = 2| and ¢ = 0 on X.

LEMMA 2.1. Let F be a subset of X and asswme there exists M
and B8 (M=0 and 0= 8 <1) such that if he A(X),hlz =0, h+a=0
on X (@ =0) there is a g,€¢ A(X), 9lr = blpy0, + Ba=0 on X and
g, — k]l = Ma.

Then for each he A(X), hlr =0, there is a ge A(X), gl = hlp,
9=0o0n X and [|lg — k|| = |[R]|/1 — B)M.

Proof. Let he A(X) such that k|, =0 be given. Then % + ||2]| =0
so there is g, € A(X), gilr = hlp g + BlIR]| =0 and ||g, — k|| < M||R]|.
Now apply the hypothesis to g, with a = £||k]|| and get g,e A(X)
such that g.r = hls 0. + B2l|A]| =0 and ||g, — g.|| < BM||k||. Con-
tinuing by induction we get a sequence {g,};_, such that g.|; = &|s
g, + B*||h]]| =0 and ||g,+: — 9]l < B8*M||R||]. Thus {g,};-. converges
uniformly to ge A(X) such that g|; = &|z, 9 =0 on X and
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g = hll < 3 ligwe — 0ull + llg, — Al = =2

s 2z linl

THEOREM 2.2. Let F be a self-determining face of X and assume
that py < apy. Then if r> a and he A(X), hlz = 0, there exists
9e A(X), 9l = hlzpy 9 =0 on X and |[h — g|| = 2r||h]l.

Proof. It suffices to show that the hypotheses of the preceding
lemma is satisfied with M =2 and 8 =1 — 1/r. Since py < P, @ must
be greater than or equal to one and hence 0 < 8 < 1. Given ke A(X),
hlz=0 and &+ a =0 on X(a > 0) define h on A(X)* by

k—:h+ap1vo

Then % is sub-additive and weak* lower-semi-continuous. If ye X
then since ¥ = px(¥)z + (1 — p(¥))x with xe F' and p(z) = 1 we have

h(y) = h(@y) + apx®) = peW)(R(Z) + apy() + A — PY))h(2)
2 2:)(h@) + L) + U — p@)h(®)

= p@)(AR) + @) + (L — pe(u)h(w) — apF(y)(l _ %) )

Thus since i(z) + a, h(x) = 0 and a < r
(*) hy) +aB >0 for all yeX.

Let Y = conv ({0} U X) in A(X)*. Then (*) continues to hold on Y.
Thus {(x, ) e A(X)* X R:r = h(x) + aB} is a closed convex set disjoint
from Y x {0}. A weak* closed separating hyperplaneyields exactly
the graph of a weak* continuous affine function f on A(X)* such
that f>0onY,f <h+ aB on AX)* and 0 < f(0) < aB. On N we
have » =h and hence f <k + aB there. Since N is a subspace
and % is linear we have f =& + f(0) on N. Let g = f — f(0). Then
ge AX), 9|y =hlr and g + aB > g + f(0) >0 on X. Also

g<f<h+aB=<h+ alpy+B).
Since py <1 on conv(X U —X) we have
g<h+2z2 on X and —X.
Thus ||~ — ¢|] < 2a and the proof is complete.
In [2] we define the self-determining face F' to be comical in X

(under f) if f is a bounded linear functional on A(X)* such that
f=0on N=<{F),f=0on X and € f(x)X + N for all ze X+ N.
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We will say that X is decomposable at F (under f) if f is a bounded
linear functional on A(X)* such that f =0 on N and

X =conv(FU{re X:1< flx) < [IfII}) -

Note that if X is decomposable at F' then F' is automatically self-
determining. Also, as noted in [2], if X is decomposable at F' under
f then F' is a conical face of X under f.

ProrosITION 2.3. If X 4s decomposable at F wunder [ then
or = || f] Dy

Proof. If yeX then y =2+ (1 — VNx(0 <A <1) with zeF,
ze X and f(2) = 1. Thus p(y) < » and f(y) = Mf(2) = ) and hence

(1) »=rf.

If ¢: A(X)*— A(X)*/N is the quotient map we can define f on
AX)*/N by f=f-q (since f=0 on N). Also ||f] =supf(X)=
sup f(¢X) = || f|| since the unit ball in A(X)*/N is conv (¢X U —¢X).
Hence for ye X

f@) = Foaw) = IF1lllgyll = 171l px(v) -
Thus
(2) F=flloy-
Combining (1) and (2), Py = ||f|| px-
COROLLARY 2.4. If X is decomposadble at F under f then for any

he A(X), hlz = 0 and for any r > ||f]|| there is a ge A(X), 9|z = hls,
9=0o0n X and ||g — R|| < 27|k

From [2; §2], we have the following theorem.

THEOREM 2.5. If X is decomposable at F wunder f them given
Gy *++s 9. € A(X), each 9; =0 on F, then there is an he A(X), h=0
on F such that h =g, -+, 9, on X. Furthermore, if r> ||f|l, h
can be chosen such that ||h|| < r.

By combining Theorem 2.5 and Corollary 2.4 we obtain a result
of the type mentioned in the introduction.

THEOREM 2.6. If X is decomposable at F and fi, «++, foy h e A(X)
are given such that each filp < hlp there is a ge A(X) such that
gz = hlr and each f; = g on X.

Proof. Since (h — f))|r = 0 there is g;e A(X), ¢ilr = (b — f3)|» and
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9:=0 on X. Let ¢g;=g9;+ fi. Then gi, ="h|, and ¢/=f; on X.
Now each g; — & is identically zero on F. Hence there is ¢’ ¢ A(X),
g =0on F and ¢ =g, —hon X. Let g=¢ + h. Then g|, = 2|,
and

g=0+hz@—-h+h=92fi (@E=1,--,n)
on X.

COROLLARY 2.7. If X is decomposable at the closed face F and
the linear span of <{F) in A(X)* is weak* (or equivalently morm)
closed, then for any fi, «++, fn€ A(X) and he A(F) such that each
filr £ h there is an extension ge A(X) of h such that each fi < ¢
on X.

Proof. Since {F') is closed we can find some extension A’ e A(X)
of h (see, for example [2], Th. 38.1). Thus, Theorem 2.6 applies with
fu "'!fn and h,-

3. Complemented faces. We shall say the closed face F of
X is complemented in X (by F") if there is a disjoint face F” (not
necessarily closed) in X such that each ye X has a unique represen-
tation of the form

y=xx+ (1 —\)z; xeF,zeF'.

This implies in particular that {F"> and <{F”) are complemented sub-
spaces in A(X)*.

For a complemented face F in X we obtain a stronger extension
property. We establish a preliminary result first.

LEMMA 3.1. Let F be a closed face in X complemented by F'.
Let fe A(F) and ge A(X) such that f < glp. Then the function h
defined by

h(y) = M) + 1 —NgR);  y=r+ (1 -1z,
0=A=1l,xecF,zecF’

18 affine and lower-semi-continuous on X.

Proof. The fact that % is affine follows directly from the defi-
nition of complemented faces. If (v, h(y)) € graph (k) then

@ h(®) = Mz, f(2) + 1 — M)(2, 9(2))
€ conv (graph (f) U graph (g)) .

If (w, s) € conv (graph (f) U graph (¢9)) then
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(w, s) = a(x, f(x)) + B, 9()) + Y2, 9(2)) ;
a+B+v=1a,d'ceF,zckF'.

Since g(z') = f(&'), s = af(x) + Bf(@') + v9(2) = h(w) and hence (w, s) €
upper-graph (4). Thus

upper-graph (h) = [conv (graph (f) U graph (¢9))] U upper-graph (g)
which is closed. Hence & is lower-semi-continuous.
THEOREM 3.2. Let F be a closed face complemented by F' in X.
Let g;, h; e A(X) such that there is fe A(F) and [ affine on F' with

Gilr Ef S hilrand gilp S S hylp (0 =1, cce,m;g =1, -+, n). Then
for any € > 0 there is an extension ke A(X) of f such that

g;=<k=<h;+e¢ G=1,¢ce,myg =1,¢00,m).
Proof. If yeX with y=xx4+ (1 —N)z(xecF,ze F'and0<\<1)
define ky(y) = Mf(z) + 1 — N)f’(2). Then k, is affine and
gigkogh]’ (izly"'rm;jzly"‘rn)-

Let G = conv (Up, graph (¢;) U graph (f)). Since £k, is affine and
k| = f, graph (g;), graph (f) c lower-graph (k,), a convex set. Hence

G c lower-graph (k,) .
Similarly
H = conv ((jj graph (k;) U graph (f)) < upper-graph (k) .

Thus G can be separated from -H + (0, ¢/2) by a hyperplane yielding
ke A(X) such that

gi_g_kléh,%-% ('i:l,o-o,m;j:l,...,n)
f= kllygf+%.

Now define k,(y) = A(x) + (1 — Mk,(2) and as f/in the lemma k, is
affine lower-semi-continuous. Since ¢, < f and k|, = f, G < lower-
graph (k,). Also k, —¢/2 < k, implies that conv (G U graph (k, — ¢/2))
lower-graph (k). Since upper-graph (k,) + (0, ¢/4) is closed, another
separation yields %, such that

A
=

+

A

k, +

A

k, +

IA

%4 S pLE L
129 4h1+2 n

;j:l,-..”n)-

o

2

N
=

(

3

vy
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and
f< kzlpgf+%.

In particular ||k, — k.|| < ¢/2. Continuing inductively we get a sequence
{k.}>-, such that

A

Gk <h+3  G=1,e,mij =100, n)
s=1

and

ki — Kol é—;—; .

Hence {k,};=, converges to ke A(X) such that
gmékéhg‘l“s (i:]-,”‘ym;j:l’"‘sn)

and

klp = 1.

COROLLARY 3.3. If F 1s a closed face complemented 1n X then
Sor any € > 0 each fe A(F) has an extension ge A(X) such that

lgll= @+ lfll.

COROLLARY 3.4. (D. A. Edwards [3]). If X is a simplex and
Fis a closed face of X with g;, h; € A(X) such that g;<h; (t=1,+--, m;
J=1,+-+,n) and fe A(F) such that ¢, <f = h;ly then f can be
extended to ke A(X) such that g; < k<h; 1=1,+--,m;j=1, -, n).

Proof. Since X is a simplex F has a complementary face F”.
Also the upper envelope ¢’ of ¢, V---\/ g, is an affine function on
X such that

gzégléhg (1:21,'-~,m;j:1,°'-,%).

Hence the theorem applies with [’ = ¢’|, yielding %, such that k|, = f
and

A

k,

A

1
hj+E 1,+e,m).

—~
>
fl

-
B
<
Il

9;

Since kl — 1/2, 9; Shj, k1 (/1,:1, ey, m;le, °",7’L) and (k1_1/2>lF§

f = k.| the theorem applies again yielding %k, such that
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ke = ell < 3
kZ;F = f
gzékz-gh_,‘f'j]i‘ (’i=1,---,m;j:1,...,n).
Continuing by induction we get a sequence {k,};=, such that
hyin — k|| < Zl
krll«‘ = f
9: =k, < h,- + -217 .

Hence {k,};, converges to the desired k.

4. a-polytopes. It was shown in [2] that the a-polytopes [4]
are conical at each closed face. We will show next that they are
in fact decomposable at each closed face. Thus the (strongly) archi-
medean extension property holds at each face. This is a consequence
of the fact that simplexes are decomposable at each closed face and
the following theorem (see [2], Th. 3.7).

THEOREM 4.1. Let X and Y be compact convex sets whose closed
faces span closed subspaces and let p: X —Y be a continuous affine
surjection. Let &: A(X)* — A(Y)* be the matural extemsion of @
and suppose dim (ker ) < co. If F’ is a closed face of Y such that
X is decomposable at @~ (F") then Y is decomposable at F".

Proof. It is sufficient to consider the case where kers = Rx,.
Let N’ =<F">and F = ¢~ *(F"). Then N =<F) = 3'(N') + Rx,. Let
fe A(X)** such that f=0 on N and

X=conv(FU{reX:flx) =1} .

If f(x,) = 0 then f .5 well-defines a decomposing functional for Y
at F'. Suppose f(z,) =1. Then (x, + N)N X = ¢ since if z, + n =
ye X then py=@gne (PN)NY =N'"NY =F' and hence yc o '(F") =
F. But then f(y) = f(n) =0 contradicting f(x,) =1. Thus there
exists 7 > 0 such that

(1) lly — @+ n||=r; for all neN,zeX.

We define the bounded projection p: A(X)*— f~*(0) by p(x) =« — f(z),.
If B, = {xe A(X)*: ||z|| < r} then

(2) (N+ B)np(reX:ifl@)=z1}) =9¢.
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If not there is ze X, f(2) =1 and ne N such that ||p() — n|| < r.
Let xe F and let ye X be given by

¥y = 1/f®)z+ 1 — 1/f(z)x .
Then

PR) —n =2 — fR), — n = f(RY — (f(2) — Dx — f(R)a, —n
=fR)y —x, + 7).

Thus ||y — «, + #'|] < 7/f(z) < r contradicting (1).

Applying the separation theorem to (2) we obtain a bounded
linear functional g on f-*(0) such that ||g||<1/r;9 =0 on N and
g=1 on p{{re X: f(x) =1}). Thus pX is decomposable at pF = F
under g and § = g-p-@ ' decomposes Y at F".

5. Examples. We now give some elementary examples indicat-
ing the relationships between conical, decomposing and archimedean
faces. Let X be the closed convex set in the plane consisting of the
unit square together with the disk (v — 1/2)* + ¥* < 1/4. Let F be
the face consisting of the line segment from (0, 0) to (0,1). Then X
is not decomposable at F since the only possible decomposing func-
tional (a, b) — a does not work. Also F is not an archimedean face
of X since the functional (0,7) — 7 on F cannot be extended non-
negatively to X. On the other hand X is conical at F' under the
functional (a, b) — a.

It is possible for F' to be archimedean without being a decom-
posing face. For example let X be the intersection in the plane of
(x—1/2+y*<1/4 and 2* + (y — 1/2)* £ 1/4 and let F' be the ex-
treme point {(0, 0)}. Then X is not decomposable at {(0, 0)} or even
conical there since these notations coincide for F an extreme point.
However X is archimedean at {(0, 0)}.

We next give an example of a closed face which is not self-
determining. Let S be the set of nonnegative sequences in I' with
norm less than or equal to one (weak* topology as dual of ¢,). Let
N be the subspace of sequences whose sum is zero and let F be a
norm compact convex subset of the unit ball (containing 0) such that
the norm-closed linear span of F is N. (Since N is separable there
is a sequence (x,) in N such that [[z,[|—0 and N =<z,>". Let
F = norm cl-conv (x,). Then F' is norm compact by Krein’s Theorem.)
Let X =conv(F US). Since Sc X, A(X) consists exactly of all
sequences in ¢, and their translates. But then F is a closed face of
X whose linear span N is weak* dense in I'. Hence <})> N X = X.
However X is nearly decomposable at F’ in the sense that the bounded
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linear function f on ' defined by f(x) = 3ip-., is identically zero
on F and

X=conv(FU{zeX:f(x) =1}).
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