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EXTENSIONS OF CONTINUOUS AFFINE FUNCTIONS

LEONARD ASIMOW

Conditions are given for a closed face F of a compact
convex set X to have the property that if feA(F),gi,.m0,
gm e A(X), and / dominates each gι on F then / can be ex-
tended to g e A(X) where g dominates each gι on X.

Let X be a compact convex set in a Hausdorff locally convex
space. We identify X in the standard fashion with the set of positive
elements of norm one in A(X)* (weak*-topology), where A(X) is the
ordered Banach space (sup-norm) of continuous affine functions on X.
A face of X is a convex subset which contains the endpoints of every
open line segment in X which it intersects. It is known (for example
[2]) that every continuous affine function on a closed face F of X
admits a continuous affine extension to all of X if and only if the
linear span, <F>, of F is weak* closed in A(X)*. If additional con-
ditions of a geometric nature on F and X are made then much more
can be said about the type of extensions which are possible. For
example if X is a Choquet simplex (in which case ζF} is weak* closed
whenever F is), a theorem of Edwards [3] states that
(*) if {/4}jLi, y ? B l e A ( I ) and feA(F) such that

f i \ F ^ / ^ gs\F ( i = 1 , •••, m j = 1 , >--n)

then there is an extension g e A(X) of / such that

/* ^ Q ̂  Qa (i = 1, , m; i = 1, , %) .

This extension property is quite strong in the sense that it in fact
characterizes simplexes among the compact convex sets.

One can ask under what conditions on F and X the following
weaker extension property holds:
(**) if {/JJLie A(X) and feA(F) such that

then there is an extension g e A(X) of / such that

Closed faces which possess property (**) are termed strongly archi-
medean by Alfsen [1] (see also St0rmer [5] for the origin of the
terminology). In [2] we give conditions on F such that (**) holds
for functions fitf identically zero on F. This implies in particular
that F is (within a Gδ set) a peak-face of X. We give here a some-
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what strengthened form of these conditions which guarantees an
extension can be found such that (**) holds in general.

We shall say X is decomposable at the closed face F (under /)
if there exists a bounded linear functional / on A(X)* such that /
is identically zero on <JFT>~ (weak* closure) and X = conv (K U F),
where K = {xe X: 1 ^ f(x) ^ | |/| |}. If X is decomposable at F and
the linear span of F is weak* closed, then we show (Theorem 2.6
and Corollary 2.7) that the extension property (**) holds.

The closed faces of α-polytopes (see Phelps [4]), for example,
satisfy these conditions and hence are strongly archimedean. We
show also that if F is a closed face complemented in X then a weak
version of the extension property (*) can be obtained. As a corollary
we obtain (*) as stated for simplexes.

1* Preliminaries* Let h be any real-valued function on the
compact convex set X. We call the set of ordered pairs (x, r) e X x
R c A(X)* x R such that r Ξ> h(x) the upper-graph of h. The lower-
graph is defined analogously. We note that h is convex if and only
if upper-graph (h) is convex and h is concave if and only if lower-
graph (h) is convex. Also h is lower-semi-continuous if and only if
upper-graph (h) is closed and upper-semi-continuous if and only if
lower-graph (h) is closed.

If x e X we define the gage functional px on X by

px(y) = inf {r ^0:yex + r(X - x)} .

Then px is lower-semi-continuous, convex and affine along any line

segment in X wi th one endpoint x. Also for each yeX there is a

z G X such t h a t

y = p*(y)z + (l - p9(y))χ

Let F be a closed face of X.

PROPOSITION 1.1. For each yeX the function x—*px{y) is lower-

semi-continuous on F.

Proof. Let φ: F x X x [0,1] -> X be defined by

, 2, λ) = λz + (1 — \)x .

Then for x e F, px(y) ^ r if and only if there is a z e X and s e [0, r]
such that

2/ = sz + (1 — s)cc .

Thus {x e F: px(y) ^ r} is exactly the natural projection of φ~\y) Π
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(F x X x [0, r]) into F which is clearly closed.
We define pF: X-* [0,1] by

pF(y) = mΐ{px(y) %eF}

By the proposition the infimum is actually attained and so each yeX
can be written as

V = PF(V)Z + (1 — VF{y))x z e X and x e F .

It also follows that pF is aίfine along the line segment [x, z] and
thus pF(z) = 1. In addition upper-graph (pF)

= {(x, r):xeX,r^l}U conv [(X x {!}) ϋ (F x {0})] ,

and hence is a closed convex set. Consequently pF is lower-semi-
continuous and convex.

In the sequel it is necessary to assume that the closed face F of
X is self-determining, that is, if JV is the weak* closure of <JF> in
A{XY then N Π X = F. If this is the case then let q: A{X)* ->
A(X)*jN be the quotient map. The quotient space can be identified
with the dual of the space of continuous affine functions on qX
vanishing at 0[2]. We then define the semi-norm pN on A(X)* by

PN(X) = \\qx\\ .

It follows that pN is weak* lower-semi-continuous and sub-additive
on A(X)*.

2. Decomposable faces* As our first step we give conditions
which assure that if he A(X), h\F ^ 0 then there is a ge A{X) such
that g\F = h\F and g ^ 0 on X.

LEMMA 2.1. Let F be a subset of X and assume there exists M
and β (M^ 0 and 0 ^ β < 1) such that if he A(X), h\F^Q, h + a^0
on X (a ^ 0) there is a g1 e A(X), g^p = h\F, gx + βa ^ 0 on X and
lift - λ | | ^ M α .

/or eαc/̂  fee A(X), Λ^ ^ 0, there is a ge A{X), g\F = Λ|Ff

er - h\\ ^

Proof. Let λ e ^4(X) such that h\F ^ 0 be given. Then h + \\h\\ ^ 0
so there is ^ G A(X),^ | F - h\F, gt + / S p | | ^ 0 and | | ^ - h\\ ̂  Λf||Λ||.
Now apply the hypothesis to gx with a = β\\h\\ and get g2eA(X)
s u c h t h a t ftU = h\F, g2 + β2 \\h\\^ 0 a n d \\g2 - g,\\ £ βM\\h\\. C o n -
tinuing by induction we get a sequence {#J~=1 such that gn\F = h\F,
gn + βn\\h\\ ^ 0 and \\gn+1 - ^ | | ^ βnM\\h\\. Thus {^}jβl converges
uniformly to ge A(X) such that g\F = /ι|F, g ^ 0 on I and
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U S ' - h\\ ^ £ l l < / . + i - flϋl + l l Λ - A l l ^ ^ - 5 - I I A | | .
n=l 1 — β

THEOREM 2.2. Let F be a self-determining face of X and assume
that pF ^ apN. Then if r > a and he A(X), h\F ^ 0, there exists
geA(X),g\F = h\F, g ^ 0 on X and \\h - g\\ ^ 2 r |

Proof. It suffices to show that the hypotheses of the preceding
lemma is satisfied with M = 2 and β = 1 — 1/r. Since pN ^ pFa must
be greater than or equal to one and hence 0 ^ β < 1. Given & e A(X)f

h\F ^ 0 and h + α ^ 0 on X(α > 0) define h on A(X)* by

h — h Λ- apN .

Then fc is sub-additive and weak* lower-semi-continuous. If y e X
then since y = pF(y)z + (1 — pF{y))x with a? e F and j^Os) — 1 we have

h(v) = h{y) + apN(y) = pF(y)(h(z) + apN{z)) + (1 - pF(y))h(x)

^ pF(y)(h(z) + ±) + (i- PMMX)

\ a/
= PF(v)(h(z) + a) + (1 - pF(y))h(x) - apF(y)(l - ±λ .

Thus since h(z) + a, h(x) ^ 0 and a < r

( *) h(y) + aβ > 0 for all yeX.

Let Y= conv({0} U X) in A{X)*. Then (*) continues to hold on Y.
Thus {(x, r) e A(-3Γ)* x R: r ^ Λ(α ) + aβ} is a closed convex set disjoint
from Y x {0}. A weak* closed separating hyperplaneyields exactly
the graph of a weak* continuous affine function / on A(X)* such
that f> 0 on Y,f< h + aβ on A(X)* and 0 </(0) < aβ. On N we
have ^ = h and hence f < h + aβ there. Since N is a subspace
and h is linear we have / = h + /(0) on iV. Let g = f — /(0). Then
# G A(X), g\F = k\F and g + aβ> g + /(0) > 0 on X. Also

g<f<h + αβ^h + α(pN + /S) .

Since pN ^ 1 on conv ( I u — X) we have

g < h + 2α on X and —X.

Thus \\h — g\\ <* 2α and the proof is complete.

In [2] we define the self-determining face F to be conical in X
(under /) if / is a bounded linear functional on A{X)* such that

/ = 0 on N = < J F > - , / ^ 0 on X and xef(x)X + JV for all x6 X + i\Γ.



EXTENSIONS OF CONTINUOUS AFFINE FUNCTIONS 15

We will say that X is decomposable at F (under /) if / is a bounded
linear functional on A{X)* such t h a t / s 0 on N and

X = c o n v C F u {xe X: 1 ^ f(x) ^ \\f\\}) .

Note that if X is decomposable at F then F is automatically self-
determining. Also, as noted in [2], if X is decomposable at F under
/ then F is a conical face of X under /.

PROPOSITION 2.3. // X is decomposable at F under f then

Proof. If y e X then y = Xz + (1 - X)x(0 < λ < 1) with x e F,
zeX and f(z) ̂  1. Thus pF(y) ^ λ and f(y) = λ/(z) :> λ and hence

(1) P , ^ Λ

If q: A{X)* —> A(X)*/N is the quotient map we can define / on
A(X)*IN by / = /•? (since / = 0 on JSΓ). Also | | / | | = sup/(X) =
sup/(<?X) = | | / | | since the unit ball in A(X)*/N is convex U -qX).
Hence for yeX

f(y) =f°q{y) S H/ll llβvll = W/WPAV) .
Thus

(2) /

Combining (1) and (2), PF ^

COROLLARY 2.4. // X is decomposable at F under f then for any
he A(X), h\F ^ 0 and for any r > | | / | | there is a ge A(X), g\p = h\F,
g ^ 0 on X and \\g - h\\ ̂ 2

From [2; §2], we have the following theorem.

THEOREM 2.5. // X is decomposable at F under f then given
gί9 > 9n€ A(X), each g{ = 0 on F, then there is an he A(X), h = 0
oπ F such that h^ g±, •••, gn on X. Furthermore, if r > \\f\\, h
can be chosen such that \\h\\ ̂  r .

By combining Theorem 2.5 and Corollary 2.4 we obtain a result
of the type mentioned in the introduction.

THEOREM 2.6. // X is decomposable at F and f19 , /», A e A{X)
are given such that each ft\F ^ h\F there is a ge A(X) such that
g\F = h\F and each fi^g on X.

Proof. Since (h - fi)\F ̂  0 there is & e A(X), g{\F = (h-fi)\F and
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Qi ̂  0 on X. Let g\ = gt + /<β Then 0 ^ = % and ^ ^ /, on X.
Now each g\ — A is identically zero on i*7. Hence there is #'
flf; Ξ 0 on F and #' ̂  $ - Λ on X. Let g = g' + h. Then £
and

g = g'

on

COROLLARY 2.7. // X is decomposable at the closed face F and
the linear span of ζFy in A(X)* is weak* (or equivalently norm)
closed, then for any f, •• ,/ n eA(Z) and heA(F) such that each
f%\p ^ h there is an extension g e A(X) of h such that each fi^g
on X.

Proof. Since <F> is closed we can find some extension hf e A{X)
of h (see, for example [2], Th. 3.1). Thus, Theorem 2.6 applies with
Λ, •• ,/ n and h'.

3* Complemented faces* We shall say the closed face F of
X is complemented in X (by F') if there is a disjoint face F' (not
necessarily closed) in X such that each yeX has a unique represen-
tation of the form

y = λ# + (l - χ)2; xeF,zeF' .

This implies in particular that <JP> and <F'> are complemented sub-
spaces in A(X)*.

For a complemented face F in X we obtain a stronger extension
property. We establish a preliminary result first.

LEMMA 3.1. Let F be a closed face in X complemented by F\
Let feA(F) and geA(X) such that f ^ g\F. Then the function h
defined by

h(y) = Xf(x) + (1 - X)g(z); y = λx + (1 - X)z ,

0 ^X^l,xeF,zeF'

is affine and lower-semi-continuous on X.

Proof. The fact that h is affine follows directly from the defi-
nition of complemented faces. If (y, h(y)) e graph (h) then

(y, h(y)) = X(x,f(x)) + (1 - λ)(2, g(z))

e conv (graph (/) U graph (g)) .

If (w, s) e conv (graph (/) U graph (g)) then
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(w, s) = a(x, f{x)) + β(x', g{x')) + y(z, g(z))

a + β + 7 = 1, x, xf e F, z e F' .

Since g(x') ^ f(x'), s ^ α/(α?) + βf{x') + Ίg{z) = fc(w) and hence (w, s) 6
upper-graph (h). Thus

upper-graph (h) = [conv (graph (/) (J graph (#))] U upper-graph (g)

which is closed. Hence h is lower-semi-continuous.

THEOREM 3.2. Let F be a closed face complemented by F' in X.
Let gif hjβ A(X) such that there is fe A(F) and f affine on F' with
Qi\F ̂  / ^ hj\F and g^, ^ / ' ^ hs\F, (i = 1, , m; j = 1, , n). Then
for any ε > 0 there is an extension k e A(X) of f such that

g{<^ k ^ hd + e (i = 1, , m; j = 1, , n) .

Proof. If yeX with y = Xx + (1 - X)z (x e F, z e F' and 0 ^ λ ^ 1)

define kϋ(y) = λ/(.τ) + (1 - λ)/'(«). Then k0 is afRne and

gi^h^hj (i = 1, , m; i = 1, , n) .

Let (9 = conv (U£=i graph (^) (J graph (/)). Since A:o is affine and
&oU = /> graph (^), graph (/) c lower-graph (fc0), a convex set. Hence

G c lower-graph (k0) .

Similarly

m

i ί = conv (U graph {h5) U graph (/)) c upper-graph (k0) .

Thus G can be separated from H + (0, e/2) by a hyperplane yielding
k^AiX) such that

gitίk^hj + — (i = 1, , m; i = 1, , n)

f ίS k,\F S f + •§-
Δ

Now define fei^) = λ/(a;) + (1 — X)k1(z) and as [in the lemma &x is
affine lower-semi-continuous. Since g{\F ^ / and k,\F — f, G c lower-
graph (AJ. Also ^ - e/2 ^ fcx implies that conv (G (J graph (k, - e/2)) c
lower-graph^). Since upper-graph (fcx) + (0, e/4) is closed, another
separation yields /c2 such that

fei - 4-' ̂  ^ ^ *i + 4 ^ *i + 4 ^ ^ + — + 4-
Δ 4 4 2 4

(i = 1, ••-, m i = 1, ••-, w) .



18 LEONARD ASIMOW

and

/ ^ kt\F ^ / + j •

In particular || k2 — fa || g ε/2. Continuing inductively we get a sequence
{fcr}~=i such that

#* ^ fa ^ fej + Σ — (i = 1, , m; i = 1, , w)
*=i 2 s

and

Hence {&r}Γ=i converges to k e A(X) such that

Qi ̂  fc ^ h3- + ε (i = 1, , m; i = 1, , n)

and

COROLLARY 3.3. If F is a closed face complemented in X then
for any ε > 0 each feA(F) has an extension g e A(X) such that

COROLLARY 3.4. (D. A. Edwards [3]). If X is a simplex and
F is a closed face of X with gi9 h5 e A(X) such that & ̂  h5 (i = 1, , m;
j = 1, « ,^) α^cί feA(F) such that g{\F ^ / ' ^ h3 \F then f can be
extended to ke A(X) such that gi^k ^hό (i = 1, , m; j = 1, , w).

Proof. Since X is a simplex ί7 has a complementary face i*7'.
Also the upper envelope g' of g1 V V gm is an affine function on
X such that

gi^ Qf ^ hj (i = 1, , m; j = 1, , n) .

Hence the theorem applies with / ' = gf\F, yielding kΣ such that kλ\F — f
and

Qi ̂  kx ^ Λy + — (i = 1, , m; j = 1, , n) .

Since ^ - 1/2, & ^ hj9 fa (i = 1, , m; i = 1, , n) and (fa - 1/2)|F ^
f = fa\F the theorem applies again yielding k2 such that
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9i ^ h ^ hj + — (i = 1, , m; j = 1, , n) .
4

Continuing by induction we get a sequence {&r}Γ=i such that

p r + 1 -fc r | |<: l
Δ

κ\, = f

Hence {&r}~=1 converges to the desired k.

4. tf-polytopes* It was shown in [2] that the α-polytopes [4]
are conical at each closed face. We will show next that they are
in fact decomposable at each closed face. Thus the (strongly) archi-
medean extension property holds at each face. This is a consequence
of the fact that simplexes are decomposable at each closed face and
the following theorem (see [2], Th. 3.7).

THEOREM 4.1. Let X and Y be compact convex sets whose closed
faces span closed subspaces and let φ:X—*Y be a continuous a fine
surjection. Let φ: A(X)* —> A(Y)* be the natural extension of φ
and suppose dim (ker φ) < °o. If Ff is a closed face of Y such that
X is decomposable at φ~1{Ff) then Y is decomposable at F'.

Proof. It is sufficient to consider the case where ker φ = Rx0.
Let N' = <F'> and F - φ~W)- Then N === <F> - φ-\Nr) + Rx0. Let
fe A(X)** such that / = 0 on N and

X - conv (F U {xeX:f(x) ^ 1})

If f(x0) = 0 then / qr1 well-defines a decomposing functional for Y
at F'. Suppose f(x0) = 1. Then (x0 + N) Π X = Φ since if x0 + n =
yeX then φy = φne (φN) Π Y = N' Γ) Y = F' and hence y eφ-\F') =
F. But then f(y) = /(^) = 0 contradicting /(a?0) = 1. Thus there
exists r > 0 such that

(1) \\y - Xo + n\\ ^ r; for all neN,xeX.

We define the bounded projection p: A{X)* —>/"'(O) by j)(aj) = x — f(x)x0.
If B r - {^e ^(X)*: || a? | | < r} then

(2) (N+ Br) n # e l : / ( x ) ^ 1}) = ψ .
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If not there is zeX,f(z) ^ 1 and neN such that \\p(z) — n\\ < r .
Let xe F and let yeX be given by

)s + (1 -

Then

p(z) - n = z - f(z)x0 - n = f(z)y - (f(z) - l)x - f(z)xQ - n

= f(z)(y -Xo + n') .

Thus \\y — x0 + n'\\ < r/f(z) fg r contradicting (1).
Applying the separation theorem to (2) we obtain a bounded

linear functional g on /^(O) such that \\g\\ <£ 1/r; g ~ 0 on N and
^ 1 on p({xeX:f(x) ^ 1}). Thus pZ" is decomposable at pF = F
under # and g = g p' φ"1 decomposes Y at i^7'.

5* Examples* We now give some elementary examples indicat-
ing the relationships between conical, decomposing and archimedean
faces. Let X be the closed convex set in the plane consisting of the
unit square together with the disk (x — 1/2)2 + y2 ^ 1/4. Let F be
the face consisting of the line segment from (0, 0) to (0,1). Then X
is not decomposable at F since the only possible decomposing func-
tional (α, 6) —> a does not work. Also F is not an archimedean face
of X since the functional (0, r) —> r on F cannot be extended non-
negatively to X. On the other hand X is conical at F under the
functional (α, b) —> α.

It is possible for F to be archimedean without being a decom-
posing face. For example let X be the intersection in the plane of
(x - 1/2)2 + t ^ 1/4 and α;2 + (y - 1/2)2 ^ 1/4 and let F be the ex-
treme point {(0, 0)}. Then X is not decomposable at {(0, 0)} or even
conical there since these notations coincide for F an extreme point.
However X is archimedean at {(0, 0)}.

We next give an example of a closed face which is not self-
determining. Let S be the set of nonnegative sequences in I1 with
norm less than or equal to one (weak* topology as dual of c0). Let
N be the subspace of sequences whose sum is zero and let F be a
norm compact convex subset of the unit ball (containing 0) such that
the norm-closed linear span of F is N. (Since N is separable there
is a sequence (xn) in N such that | |αn | |—>0 and N = <X>~. Let
F = norm cl-conv(^). Then F is norm compact by Krein's Theorem.)
Let X = conv(F U S). Since S a X, A(X) consists exactly of all
sequences in cQ and their translates. But then F is a closed face of
X whose linear span N is weak* dense in l\ Hence <(F)>~ Π X = X.
However X is nearly decomposable at F in the sense that the bounded
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linear function / on I1 defined by f(x) — Σ~= i x% is identically zero
on F and

X = conv (F U {xe X:f(x) = 1}) .
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