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EXCURSIONS ABOVE HIGH LEVELS FOR
STATIONARY GAUSSIAN PROCESSES

SiMEON M. BERMAN

Let X (t), t = 0, be a real valued stationary Gaussian pro-
cess with mean 0, variance 1, covariance function r(¢), and
continuous sample functions. For # >0 and T > 0 let L be
the Lebesgue measure of the set {{: 0=¢t=< T, X(t) > u},
i.e., the time spent above u in [0, T']. This paper proves:
If » is nonperiodic, and () =1 —1/2 2 t> + o(¢?), t — 0, for
some 7y > 0, then the conditional distribution of yuL, given
L >0, converges for u— o to the distribution 1— exp
(-a*/8).

This type of theorem — on the conditional limiting distribution
of excursions above high levels — was first discovered by Palmer [7]
and Rice [8]. Their work was clarified and generalized by Kac and
Slepian [5]. The less general result of Volkonskii and Rozanov [10]
was independently obtained about that time; it is included in the
monograph of Cramér and Leadbetter [4]. The most recent general-
ization is that of Beljaev and Nosko [2]. One of the problems in
the formulation of this theorem is that the conditional distribution
must be correctly and usefully defined. While our definition of the
conditional distribution is slightly different from that of the previous
authors, our hypothesis is the most general because it regquires only
the finiteness of the second spectral moment.

The main idea of our proof is this: If the sample funection
spends positive time above a high level, then the duration of the
excursion is very small; therefore, it is sufficient to consider the
process only over a small interval. On such an interval the process
is approximable by a linear combination of a sine and cosine function
with independent Gaussian coefficients. The limit theorem is shown
to hold for this particular kind of process; then, it is extended to
the more general process.

1. Excursions for random trigonometric functions. Let Y,
and Y, be independent random variables with a common standard
Gaussian distribution. Put

Y =Rcosf, Y,=Rsinf, R>0, 050 < 2r;

then, as is well known, the random variables R and 4 are independ-
ent. R has the Rayleigh distribution
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¥t =0, t<0
=1 — exp(—1¥/2), t>0,

and 6 has the uniform distribution. We put:

dav
§) =22, t#0.
V¥ (?) 7

The random function
(1.1) Y(t) = Y,cost + Y,sint, t=0,

is a stationary Gaussian process with mean 0, unit variance and cor-
relation function cost; it is also representable as

(1.2) Y(t) = Rcos(d0 + t), t=0.

In this section we shall prove that conditional limiting distribution
of the excursion for Y (¢) exists and is equal to 7.
We need this elementary result from geometric probability.

LEmMMA 1.1. Let A and B be arcs of lengths o and B, respec-
tively, om the circle of wunit radius. Suppose 0 < a<w and
0 < B <m2. Let A be fired and B uniformly distributed over the
circle. (Ome endpoint 1s uniformly distributed and B is fixed.) Let
L be the length of AN B; then L has the distribution :

PIL =0] =1—(x + B)/2x
PO < L < 2] =ua/m, 0 < 2 < min («, B)
P[L = min(e, B)] = |a — B/27 .

Proof. It is evident from the rotation-invariance of the uniform
distribution on the circle that the distribution of L is the same as
when A is random and B fixed; therefore, in proving the lemma we
may, for definiteness, assume 8 < «. Let B be the arc whose end-
points have polar angles ¢ and 6 + S, respectively, where ¢ is uni-
formly distributed on [0, 27]. We may suppose that A has endpoints
with the polar angles 0 and «, respectively. L is equal to 0 if and
only if 0 falls between « and 2r — 8. L is equal to 8 if and only
if 0 falls between 0 and &« — 8. For 0 < @ < 3, L assumes a value
between 0 and « if and only if # falls in one or the other of the
disjoint intervals: 27 — 8,27 + » — B) and (o — =, @). The state-
ment of the lemma follows.

LEMMA 1.2. Let R and 6 be independent random variables such
that R has the distribution & and 6 has the wniform distribution on



EXCURSIONS ABOVE HIGH LEVELS FOR STATIONARY 65

[0, 27]. For fixed w >0 and 7,0 <7 <72, let L be the Lebesgue
measure of

{s:0<s=<7, Rcos(6 + s) > u}.
Then L has the distribution

(1.3) Pm=m=1—l;rh+2mwmmw@w;
2w Ju
P[0 < L < ] = (x/m) exp [ —u*/2 cos*(x/2)]
1.4 u/cos(z/2)
a4 +ammg”[r+mmﬂwmwmw, 0<w<t;
(1.5) PM:ﬂ:Gﬁmﬁ(WMwWWM—ﬂWML

Proof. If R > u, then L represents the length of intersection
of an arc of (random) length 2cos~'(u/R) and a uniformly distributed
arc of fixed length z. If R < u, then L = 0. We obtain the dis-
tribution of L by conditioning with respect to R, noting the inde-
pendence of R and ¢, and applying Lemma 1.1.

Write the probability as an integral of the conditional probability :

HL:N:HR§M+er:mRzﬂWML

Put a = 2 cos'(u/t), § = = and apply Lemma 1.1: the integrand above
is equal to
1 — (1/27)[2 cos~'(u/t) + 7] .
This establishes (1.3).
For 0 < 2 <t we have
PW<L<M=EPW<L<MR:HWMt

1.6)
— (g + SI)P“’ <L<a|R=t¥®dt,

where
I ={t:t = ulcos(c/2)} and I, = {t : u < t < u/cos(z/2)} .
If te I, then o < 7 < 2cos™(u/t); thus, by Lemma 1.1:
Po<L<z|R=t]l=u/r, tel, .

If tel, then min(z, 2 cos™(u/t)) < 2cos™(u/t) < x; therefore, by
Lemma 1.1:
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PI0<L<z|R=1t]'=P[0 < L <min(z,2cos(u/R)) | R = t]
= (1/2x) [t + 2cos~'(u/t)] , tel,.
Put these conditional probabilities into the integrals in (1.6); we

obtain (1.4).
If L =7, then 2cos™* (w/R) = 7; thus:

PIL = 7] = r/ _ PIL=7|R=t]¥@at.
Lemma 1.1 implies :
P[L =7 |R =t] = (1/2n)[2cos*(u/t)—7] , for wu/cos(z/2) <t .

This confirms (1.5).
Now we find the limit of the conditional distribution

PIL < w/u|L > 0]

for fixed 2 and for w — «. This conditional distribution is equal to

..y _ P[0 < L < x/ul _

1.7 Qx;u) = PILS 0] ) O<z=Ztu.
We shall show that the moments of @ converge to the corresponding
moments of the distribution % (z/2). Since ¥ is evidently determined
by its moment sequence, the well known convergence theorem
[6, p.185] implies that Q(x; u) — ¥ (x/2) for all x. Although it is
easier to prove the latter convergence directly from the functional
form of Q, it is necessary for our purposes to prove the stronger
result on the convergence of the moments.

It follows from (1.7) that the %'* moment of @ is given by the
formula :

ung’xndp[o <L <a
(1.8) SO wQr; 0 = — , n=1.

LEMMA 1.8 The moments of Q converges to the corresponding
moments of ¥(x/2); this holds for all 7,0 < 7 < /2.

Proof. By Lemma 1.2 and the definition of +:
(1.9) P|L > (] = (z/2r)exp(—u?*/2) + (1/7) r cos~ (u/t)¥(t)dt .
Put

u

0w = 1V27) | _exp(~ /2y ;
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then :
(1)) S”cos—l(u/tw(t)dt —1— 0.

This is verified by noting: The members are equal for i = 0. The
derivative of the left hand member is

- wm | @ - wyrpa,

which, by the change of variable y = ¢* — 2, is seen to be equal to
the derivative of the right hand member, for all #. The relation
(1.9) is equivalent to

(1.10) P[L > 0] = (z/2m)exp(—u’/2) + 1 — @(u) ;
thus, from the well known relation
1 — @(u) ~ @n)~*u~exp(—u?/2)
we obtain :
(1.11) P[L > 0] = (z/2m)exp(—«*/2)[1 + O(u7)], U— oo,

Since the distribution of L has a jump at z = 7, the moment
(1.8) is equal to the sum of

1.12) uﬂSZ“x"(d/dx)P[o < L = ]/P[L > 0]
and
(1.13) weP[L = 7]/P[L > 0] .

Differentiate the right hand member of (1.4):

Tu’sin(x/2) exp [ —u®/2 cos*(z/2)]
41 cos’(x/2)

4 po<L<al=
dx

_aw? sin(m/Z)} )

+ (1/7)exp [,— u*/2 cos?(x/2)] {1 4 cos*(w/2)

Substitute this in (1.12) and apply (1.11): the expression (1.12) is
asymptotic to the sum of the two integrals

© (ux)™ u sin(x/2) _w 1 _
(1.14) So 2 cos'(z/2) eXp[ 2 (cosz(oc/Z) 1>] ude

and
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Change the variable of integration: ¥ = ux. From the relation
cos?t — 1 =1 + 0@tY)) , t—0,

we find that the integral (1.14) converges to the ='* moment of
¥'(x/2), and that (1.15) converges to 0. The expression (1.13) also
converges to 0; indeed, by (1.5) and (1.11), it is equal to

©

exp(uz/z)(ur)”g o [2 cos~'(u/t) —T]¥()dt (L + O(w™)) ,

u/cos(t
which is less than
constant - %" exp (— w [——1—— 1]) ’
2 Lcos?(z/2)

which tends to 0 as u — co.

2. An inequality for the moments. Let X(¢) and Y (¢), tel,
where I is some index set, be two Gaussian processes with means
identically equal to 0 and with a common positive variance function.
A well know result of Slepian [9] is: If

(2.1) EX(5)X@t) < EY(S)Y(@®), for all s, tel,
then, for all wu,
(2.2) Plmax(X(t):tel) £ u] < Plmax(Y(t):tel) < u].

(It is implicitly assumed that the maximum is a well defined random
variable.) By applying (2.2) to the processes —X(t) and — Y (¢), we
also obtain: for all u,

2.3) Pmin(X(¢): tel) = u] < Pmin(Y(@t): teI) = u] .

We remark that (2.2) and (2.3) are valid also when the inequalities
on u are replaced by strict inequalities.

LEMMA 2.1. Let X(t) and Y(t), 0 <t < 7, be two Gaussian pro-
cesses with continuous sample functions and satisfying the conditions
above. Let L, and L, be the times spent above level u by X and Y,
respectively ; then

(2.4) E(L}IL,>0)<E(L;|L, >0).

Proof. L, is the integral over [s: 0 < s < 7] of the indicator of
the event X(s) > w; thus, by Fubini’s theorem:

EL! = S o TPIXE) > w, 5= 1, aldty, e dt -
0 0
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By (2.3), with “ > 7, in place of “ = ”, the integral is at most equal
to the one corresponding to the process Y ; therefore :

(2.5) EL» < EL}.

The events {L;> 0}, 72=1,2 are equivalent to the events
{max(X({): 0=t =<7)>wu and {max(Y(¢): 0 <¢=<7) > u}, respec-
tively ; thus, by (2.2):

(2.6) P[L, > 0] =z P[L, > 0] .
Since L, is nonnegative, we have:
E(Ly|L; > 0) = EL?/P[L; > 0], 1=1,2;
thus, (2.4) follows from (2.5) and (2.6).

3. An asymptotic formula for the distribution of the maxi-
mum of a general process. Let X(¢), ¢t = 0, be a real valued sta-
tionary Gaussian process with mean 0, variance 1 and correlation
function »(¢) which is continuous and has a finite second derivative
at the origin. It is well known that —+»"’(0) is equal to the second
moment of the spectral distribution; we put

v=v—=7r"(0) ,
so that
(3.1) 1 — #»(t) ~ 7°t°/2, t—0.
We assume :
(3.2) rt) =1 if and only if t = 0;

finally, we suppose that X has continuous sample functions.
Qur object is to prove:

THEOREM 3.1. For any T > 0:

(3.3) Plmax(X(®): 0 <t < T) > u] ~ (Tv/2m)exp(—u*/2) ,
for u— oo .,

The proof is long and will be completed after four lemmas. Note
that the expression on the right hand side of (3.3) is identical with the
well known Rice formula for the expected number of up-crossings of
the level u (see, for example, [4], p. 194). We have already established
(8.3) for the particular process (1.1) and for 7 < m/2: the correlation
function cost satisfies (3.1) with ¥ = 1, and (1.11) implies
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(8.4) Pmax(Y(#): 0=t < T) > u] ~ (T/2r)exp(—u*/2) .
We shall extend (3.4) to (3.3)

LEMMA 3.1. For every ¢, 0 < € < 1, there exists T > 0 such that

8.5) Pmax(Y(®): 0=t Tv(l —¢)) > u] < P[max(X(¢):
0=t=T)>ul=<Pmax(Y(t): 0=t =< Tv1 + ¢)) > u]

for all wand all T, 0T <=<7.

Proof. The condition (3.1) implies :

im 1 — »(t)
t—0 1—cos[tY(1 + ¢)]

=@+

therefore, for every ¢, 0 < ¢ < 1, there exists ¢ > 0 such that
(3.6) cos [t7(1 + ¢)] < r(t) £ cos[t7(1 — ¢)], lt <.

The maximum of Y (&), 0 <t < Tv(1 + ¢), is equivalent to the maxi-
mum of the process Y(tv(1 = ¢)), 0 <¢ < T. The latter process has
the covariance function cos (¢¥(1 = ¢)). If T < 7, then, by (3.6), the
covariance function of X(¢) dominates that of Y({Y(1 + ¢)) and is
dominated by that of Y (¢tv(1 —¢)) for 0 < ¢ < T. This and the ine-
quality (2.2) imply (3.5).

Next we show that the estimate of the left hand side of (3.3)
is changed by only a small amount if small pieces are removed from
the domain of X:

LEMMA 3.2. Let m be a positive integer. Then there exist
numbers K > 0 and o > 0 such that :

If J, -+, J, are closed subintervals of [0, T] each of length
h <o, and J U, -+, U, then :

. Plmax(X®): tedJ) > u]
@.7) I S (X (): 0= (= 1) > ] = 2"

Proof. Let &, 0 <e <1, be arbitrary and fixed, and let o be
the number z in Lemma 3.1. By Boole’s inequality and stationarity
we have :

(3.8) Pmax(X@®t): ted) > u] < mPmax(X(t): 0=t=h)>u].

By the second inequality in (3.5) we find :
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3.9) Plmax(X(t): 0=t =< h) > u] < P[max(Y(?):
0=t=<hv(1+¢)>ul.
Since 7 may be taken to be arbitrarily small, we suppose that
o7(1 + &) < m/2 and o<T.
Equation (1.10) implies :
(3.10) Plmax(Y(t): 0 <t < hv(1+¢)) > u]
= (hY/2m) (1 + e)exp[—uz/Z] +1-9(u), u > 0.
From (3.5) and (1.10) we obtain :

Pmax(X(#®): 0=t =< T) > u]l = Plmax(X(t): 0=t < 0) > u]

(3.11) = (07/27) (1 — e)exp(—w/2) + 1—D(w) .

As a conseguence of (3.8), (3.9), (3.10) and (3.11), the ratio in (38.7)
is at most equal to

mhY(1 + e)exp(—u?/2)/2r + 1 — O(u)
07(1 — e)exp(—uw?/2)/2r + 1—O(u)

, 0O<h<o,u>0.

The limit of this ratio for w-— o is Kh, where K = m(1+¢)/o(1—¢).

Let I, ---,I, be disjoint closed subintervals of [0, T'], and
I=1IU---UIL, We shall show that the maximum of X over I is
asymptotically equivalent to the maximum over a sufficiently dense
subset of I.

LEMMA 3.3. Let g = g(u) be a positive tnereasing function of u
such that g(u) — o for u— . For each u let G, = G,(v) be the
finite set of numbers which are of the form

IiT [ug(u) , for some integer j ,
and which belong to I, k=1, --«,m; put G=G, U ---UG.. Then:

lim Plmax(X(t): teG) > u] _ 1
u—eo Pmax(X(¢): tel) > ul

Proof. The event in the numerator implies that in the denomi-
nator, so that the fraction is at most equal to 1. It also follows
that the difference between the probabilities in the denominator and
numerator, respectively, is equal to the probability of the event

A ={X({t) < wufor all teG, but X (¢) > u for some te I} ;

consequently, it suffices to prove:
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. P(4) B
(8.12) I e (X @ e S al

The denominator in (38.12) does not increase when I is replaced by
an interval whose length is smaller than that of any of I, -.-,1,;
therefore, by (3.11), the denominator is at least of the order exp
(—u?*/2) for u— oo ; hence, (3.12) is implied by

(3.13) lim exp(u¥/2) P(4) =0 .

Let N be the number of upcrossings of v by X(@), 0=¢t=< T,
and N’ the number of upcrossings by the sampled sequence
X(GT/ug(uw)), 0 <j = [ug(w)], that is, N’ is the number of events

{(X((G =D T/ugw)) = v < X(GT/ugm))}, 1=7j = [ug(w)],

that occur. It is clear that N’ < N. In order to avoid incidental
complications, we shall suppose (without loss of generality) that the
function ¢ has the property that endpoints of the intervals I, are of
the form jT/ug(w) for integral j. It follows that A implies that
N — N’ = 1; thus, by Chebyshev’s inequality :

(3.14) P(A)< P[N— N'=1] < EN — EN'.

EN is given by the right hand member of (3.3) (cf. remarks follow-
ing (3.3)). By the above definition of N’ and by stationarity we
have :

(3.15) EN' = [ug(w)] P[X(0) = u < X(T/ug(w))] .
Writing

PIX(0) = u < X(s)] = P[X(s) > u] — P[X(0) > u, X(s) > u],
and adapting the formula in [4, p.27], we find:

PIX(0) = u < X(T/ug(w))] = (27)~ Sl exp[—w/1+yl1—y)~""dy;

r(T/ug(u))

the latter is equal to

(3.16) @) exp(—w2)|  expl-w(l-w)/20+ylA-y)rdy .

r ug(u
The integral in (3.16) is asymptotic to T7/ug(u) for w— oo ; this can
be verified by changing the variable of integration from  to 1 — y
and applying the condition (3.1). From this and from (3.15), it
follows that

lim exp(v*/2) (EN — EN') =0 ;
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the latter and (8.14) imply (3.18). The proof is complete.

For each % > 0 the maximum of X on the finite set G (cf.
Lemma 3.3) is representable as the maximum of the m sub-maxima
max (X(¢t): teG,), k=1, ---,m. Now we shall prove that in esti-
mating P[max(X(t): te€ G) > u] for u— o we may suppose that the
sub-maxima are mutually independent random variables.

LEmmA 3.4. If, for some p > 0, g satisfies
lim [g(u)/u"] =0,
then

(3.17) lim L= ITE Plmax(X(#): teGy) <u] _ 4
umsoo Plmax(X(t): te G) > u]

Proof. The numerator and denominator in (8.17) are equal if
the m sub-processes {X(¢): teG,}, k=1, --., m, are mutually inde-
pendent. A necessary and sufficient condition for this is

r(s—t) =0, for seG;, teG,;, 1#J, 1,5 =1,---,m.

The point of this proof is that for a process with an arbitrary cor-
relation the probability P[max(X(¢f): t€G) > u] is asymptotically
unchanged if the correlation is altered to satisfy the above relation.

By Lemma 3.3, the set G in the denominator may be replaced
by I; furthermore, by the remark preceding (3.13), the correspond-
ing probability for I is at least of the order exp(—wu*/2); therefore,
(8.17) is implied by the convergence to 0 of

exp (u?/2) - (absolute difference between the numerator and

(3.18) denominator in (3.17)).

We estimate the absolute difference by the method in [3]: Let
X, -+, X, and (Y, -+, Y,) be two sets of Gaussian random varia-
bles with 0 means, unit variances, and covariance matrices (r;;) and
(ss;), respectively; put w;; = max(|r;|, |s:;;]); then from [3]:

| Pf[max X; > u] — P[max Y; > u]|

3.19 m
8.19) < W2 S (s | (L—wt) " exp[— L+ wy] .
2y =1

Put r;; = r(1—7) T/ug(w)), and define
8;; =1y if 1T/ug(uw) and jT/ug(u) belong to a common Gy,
= 0, otherwise, 7,7 =0,1, --- Jugw)], k=1, -+, m.

Since I,, ---, I, are closed and disjoint, they are necessarily separated
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by nonempty open subintervals; therefore, there exists 4, 0 <d <1,
such that '

|s —t|>06 if se@G;, teGy 1#£7 .
With the given form of 7; and s;;, apply (3.19) to the absolute
difference in (3.18): the latter is bounded above by
(3.20) > @m)~ ug(w)r(T/ug(w)) [L—r*(5 T/ug(w))] "

dug(u)<j=s[ug(u)]

cexp[—w/1 + | r(3T/ug(w))|] .

Under (3.2), r is bounded away from 1 outside every neighborhood
of 0; thus, there exists b > 0 such that

r(iT/ug(w)) =1 —0b, for 7 > oug(u) .
It follows that the sum (3.20) is at most equal to
27) "t uwig®(w) (1 — b)b~Pexp[—w*/(2 — b)] .

This function of % is, under the hypothesis on g, of smaller order
than exp(—wu?*/2) for w— o ; therefore, the expression (3.18) con-
verges to 0.

We now return to:

Proof of Theorem 3.1. For the given T > 0 and arbitrary e,
0 <e <1, let the integer m =1 be chosen so large that T/m is
smaller than the number 7 in Lemma 3.1 and also so small that
TY(1l + ¢)/m < w/2. Construct the intervals I, ---, I, in the follow-
ing way. Decompose [0, T') into m subintervals of equal length T/m,
closed on the left and open on the right. For an arbitrary, small
h > 0, clip the open segment of length & from the right end of each
of the m given subintervals; there remain m closed subintervals

L =[j—1)T/m,jT/m — h], F=1, e, m.

Let J, ---,J, be the closures of the complementary intervals in
[0, T']:

J,=13T/m — h, T/m] , J=1,--,m;

each is of length 4. By the inclusion I [0, T'] and Boole’s inequal-
ity, we have:
Pmax(X(t): tel) > u]l < Plmax(X(t): 0=Z¢t = T) > uj

S < Plmax(x®): te) > ul + Plmax(X(): ted > u].

Let K and o be the numbers in Lemma 3.2; if & > ¢, then, by (3.2)
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and Lemma 3.2, the limiting values of the ratio

Plmax(X(t): tel) > u]
Plmax(X(@): 0=t =< T) > u]

(3.22)

fall between 1 — Kh and 1. By Lemma 3.3, the same is true of the ratio

Plmax(X(®): te G) > u]
Plmax(X(t): 0 <t < T) > u]

By Lemma 3.4 and the stationarity of the process, the result extends
to the limiting values of the ratio '

1—P"(max(X(t): teG) = u]
Plmax(X(t): 0<t<T)>u]

By the relation 1 — P™ ~ m(1l — P), P— 1, the ratio above is asym-
ptotic to

mP[max(X(¢): teG,) > u]
Plmax(X(t): 0<t<T)>u]

By another application of Lemma 3.3 (stated for the case m = 1) this
is asymptotic to

mP[max(X(t): tel) > ul
Plmax(X(t): 0<¢t=<T) > u]

By Lemma 3.1 (with T/m — h in place of T) this is bounded above
by

mP[max(Y(®): 0=t < (T/m — b)Y + €)) > u]
Pmax(X(®#): 0=t < T) > u]

which, by (8.4), is asymptotic to

(T—mh)Y(1 + ¢)exp(—u?/2)/2x
Pmax(X(t): 0=t=<T) > u] ~

From the statement about the limiting values of the ratio (3.22) and
the relations following it, we infer:

.23 limint =m0 +0exp(—w2)/2T 1 _ gy |
we  Plmax(X(t): 0=t =T)>u]

By similar reasoning, with 1 — ¢ in place of 1 + ¢, we obtain :

(3.24) lim sup (L=mh)Y(L—e)exp(—w'/2)[2x_ _ 4
wee . Plmax(X(0): 0=t<T)>u] —

Let 7 —0; then the left hand members depend only on & but not m.
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Since ¢ > 0 is arbitrary, the relation (3.3) follows, and the proof of
the theorem is complete.

4. Invariance of the limiting distribution of L under changes
in T. Now we write L as L(T) to display its dependence on T.

THEOREM 4.1. For every T > 0 and every integer m =1, we
have :

Pl0 < I(T) < 2/u] _ P[0 < L(T/m) < x/u]

PIL(T) > 0] PIL(T/m)>0] ' 7
for all x> 0.
Proof. For m =1, we have:
(4.1) lim P[X(3T/m) > u, for some j =0,1, -+, m] —0:
uoo P[L(T) > 0]

indeed, by Theorem 3.1, the denominator is of the order exp(—wu?/2),
and, by Boole’s inequality, the numerator is at most

mP[X(0) > u] = exp(—u?/2) - 0(u™) .

Let N be the number of upcrossings of w by X(t), 0t < T
then, (4.1) implies:

(4.2) P[N = 1] ~ P[L(T) > 0] , h— oo .

For, on the one hand, if both N =0 and L(T) > 0, then X(0) must
exceed % ; thus:

P[L(T) > 0] = PIN =1, L(T) > 0] + 0(1—@(u)), for u— oo,
so that (4.1) implies :
P[I(T) > 0] ~ P[N=1, L(T) > 0] .

On the other hand, the latter implies (4.2) because N =1 only if
L(T) > 0.

Next we obtain :

PINz2] _,.

b

4.3 li =
“? PN =]

in fact,
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PIN= 2] :P[N:1]+2§,2P[N=lc]_ls S\ kPIN = 4] )
P[N = 1] gP[N:kl = gP[N———k]
- __EN
P[N = 1] ’

and the last expression tends to 0 because EN is equal to the right
hand side of (8.3), and P[N = 1] is, by (4.2), asymptotic to the right
hand side of (3.3).

If L(T) >0 and X(jT/m) <u for =0,1,+++,m, then N=1;
therefore, from (4.1), (4.2) and (4.3), we get:

P[0 < L(T) < a/u] _
@ PIL(T) > 0]
PO <I(T) = w/u; X(GT/m) S u, 0 <jg=m; N =1]
P[L(T) > 0]

7u OOy

The event in the numerator on the right hand side of (4.4) is that
an excursion above u takes place within exactly one of the open
subintervals of length T/m and that the duration is not more than
xfu. If the excursion takes place in ((7 — 1)T/m, ¢T/m) then

L(T) = L(T/m) — L((% — 1)T/m) ;
therefore ;
Pl0 < I(T) < w/u; X(iT/m) =w, 0=j<m; N=1]

= SV PI0 < LGT/m) — (G — DTm) < wfu; X (FT/m)
Su, 0=j=<m; N=1].

(4.5)

By the same argument supporting (4.4) we have :
PO < LET/m)—L(t—1)T/m) < xju; X(GTIm) =u, 07 <=m; N=1]
4.6) P[L(T) > 0]
_ Pl0 < LGT/m) — L((¢ — 1H)T/m) < x/u]
P[L(T) > 0]

_ PI0 < L(T/m) < x/u] . : A TR
= PILD) S 0] (by statiomarity), 1 =1, )y M.

From (4.4), (4.5) and (4.6), it follows that

P[0 < L(T) < afu]l _ mP[0 < L(T/m) < v/u]

.7 P[L(T) > 0] P[L(T) > 0]
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It is clear from (3.8) that
P[L(T) > 0] ~ mP[L(T/m) > 0] ;

therefore, (4.7) implies the assertion of the theorem.
5. The main result and its extensions.

THEOREM 5.1. Let X(¢), t =0, be a stationary Gaussian process
satisfying the conditions stated at the beginning of §3: then

lim 20 < YI(T) < @/u] _ g9
- P[L(T) > 0]

for every positive x and T.

Proof. By the moment convergence theorem (cf. § 1) it suffices
to show that the moments of the conditional distribution converge
to the corresponding moments of the limit distribution.

Let ¢, 0 < ¢ <1, be arbitrary. By Theorem 4.1, we may assume
that T is as small as we want; thus, it will be supposed to be smaller
than 7, where 7 is the number for which (3.6) holds. For the
process Y (¢) in (1.1), let L(T, +) be the time spent above w by
Y1 xe)vt), 0 <t <T. Lemma 2.1 and the inequalities (3.6) imply:

EILNT, )| L(T, +) > 0] = E[L*(T)|L(T) > 0]

By Lemma 1.3, the extreme members of this inequality converge to
the moments of the limiting distribution; therefore, the middle mem-
ber also does. The normalizing constant ¥ cancels the factor 1/7
arising from the transformation of the excursion integral of Y (7¢)
to Y (¢).

REMARKS. The essential condition on the process is (3.1). It
follows from the well known criterion for Gaussian processes [1] that
(8.1) implies that there exists a version of the process with con-
tinous sample functions. Theorem 5.1 is valid for this version —
without a special continuity assumption.

The roots of the equation 1 — »(¢) = 0 form a closed subgroup
of the reals: either (3.2) holds or there exists A >0 such that
r(vn) = 1 for all integers » and »(¢t) <1 if ¢ An for some n. In
the latter case X(¢) is periodic with period N, and the process is of
interest only on the parameter set 0 < ¢ < \. All of our results are
valid for T < . '
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