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ON THE CONJUGATING REPRESENTATION OF A
FINITE GROUP

RICHARD L. ROTH

A natural permutation representation for any finite
group is the conjugating representation T: for each geG9

T(g) is the permutation on the set {x\xeG} given by
T (g)(x) = gxg~\ Frame, Solomon and Gamba have studied
some of its properties. This paper considers the question
of which complex irreducible representations occur as com-
ponents of T, in particular the conjecture that any such
representation whose kernel contains the center of G is a
component of T. This conjecture is verified for a few
special cases and a number of related results are obtained,
especially with respect to the one-dimensional components of
T.

In §2 we see that the conjecture does hold for groups of
"central type" which were studied by DeMeyer and Janusz in [4]. In
§ 3 we obtain further information with respect to the linear
characters of G; it is shown that if G/H is a cyclic group then the
number of irreducible characters of G which are induced from irreducible
characters of H is the same as the number of conjugacy classes of
G having the property that the centralizers of their elements belong
to H. This number is precisely the multiplicity in the conjugating
representation of a linear character of G whose kernel is H.

NOTATION. G is a finite group with conjugacy classes d , C2, •••,
C* ZS X2> ''' y Xk a r e the irreducible complex characters of G.
{9ii $2* ••> 9k} will be a set of representatives of the conjugacy classes
with 9j£Cj for i = 1, 2, •••,&. We let T denote the conjugating
representation of G defined above and Θ will be the character of G
corresponding to T. The transitivity classes (orbits) under T are then
C19 ,Ck and restricting T to the set C{ gives the corresponding
transitive permutation representation T* where i = 1, 2, •••,&. Let
φ{ be the character of ϊ7*' for each i, so that θ = Σ*=i ^

If η and λ are two complex-valued characters on G, then (7), λ)
will denote the usual "inner product" given by

where X(g) is the complex conjugate of X(g), and | G | is the order of
G. Z will denote the center of the group G. The kernel of λ,
denoted Ker λ, is to mean the kernel of a representation affording the
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character λ. The underlying field is always assumed to be the com-
plex numbers. If geG then C(g) denotes the centralizer of g in G.
For general background material the reader is referred to [3] and [5].

1* General properties of the conjugating representation*

LEMMA 1.1. θ = ΣίU a^ where a{ = Σ*=i Z*(ί/y).

Proof. This was proved by Solomon in [11]. See also Theorem
6.5 in [5]. This lemma is also noted without proof in [7, p. 192].

We use lemma 1.1 to give a new proof of the following theorem
due to Frame (see [6]).

THEOREM 1.2.

= Σ XT
i l

Proof.
k k

Let Σ XΎ = Σ hXj

Then
/ k .-. \ k f —

uό \ >î -i X X > X / ^ J \ X X > X

= ΣτirΣχ<(ίi')χΓ~

t(g)V(g)) r(9)

geG

) = αy = αi (by (1.1)).Σ

(Here h(g) denotes the number of elements in the conjugacy class of g).
So

# Σ Σ& Σ Ϋ

LEMMA 1.3. (Frame [6]). // χ3 appears in the decomposition
of θ (i.e., if a,- > 0) then Z is contained in KerχJ".

Proof. If ze Z, then Γ(^) corresponds to the identical transfer-



ON THE CONJUGATING REPRESENTATION OF A FINITE GROUP 517

mation and z must be in the kernel of each of the irreducible com-
ponents of T.

We conjecture that the converse is also true, i.e.,

CONJECTURE 1.4. If χ3 is a complex irreducible character and
Z S Ker V then a3 > 0.

In seeking to prove this conjecture it is of interest to examine
the more specific problem of finding conditions on C3 and χi such that
X appears in the decomposition of φ\ i.e., in the special conjugating
representation afforded by the j t h conjugacy class. To that end we
have

LEMMA 1.5. Let χ be a complex irreducible character of G.
( i ) χ occurs in the decomposition of φj precisely m times where

m is the multiplicity of the 1-representation of the restriction of χ
to C(gs).

(ii) If χ is a linear character, then % occurs in the decomposi-
tion of φj at most once and occurs once precisely if C(gj) S Ker χ.

REMARK. The above lemma is independent of the choices of re-
presentatives g3- for the conjugacy classes.

Proof Under the transitive permutation representation Tj of G
defined on the set C, , C(g3) is the subgroup of G of elements which
leave the given element g3- fixed. Tj may thus be regarded as the
representation induced from the 1-representation on C(g3). By the
Frobenius reciprocity theorem,

m = (X> Ψ0)G = (X I C f o ), l)C{gj)

where 1 here stands for the 1-character of C(g3).
(ii) By ( i ) if χ is linear it occurs as a component of φj precisely

if χ restricted to C(g3) is the 1-representation in which case m = 1
and Kerχ a C(g3).

2* Groups of central type* In the paper of DeMeyer and Janusz
([4]), a group of central type is defined to be a group having an ir-
reducible character χ on G with χ(l)2 = [G: Z\. We see in the follow-
ing theorem that conjecture (1.4) holds for these groups.

THEOREM 2.1. Let G be a finite group of central type. Then
every irreducible character ψ with Z S Ker ψ appears as a com-
ponent of the conjugating character θ at least n times where n is
the degree of ψ.
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Proof. Let χ be an irreducible character of G with χ(l)2 = [G: Z\.
By Corollary 1 in [4], χ(g) = 0 for gίZ. Let -f be an irreducible
character of degree n with Z £ Ker ψ. For # e Z, Ψ{g)χ{g) =
For # g jgr, f(g)χ(g) = 0 = wθ = wχ(#). I.e., ^χ = wχ.

Now by [5, (6.6)] or by [3, p. 274], we have

(t, χχ) = (χ, f χ) = (χ,

By Theorem 1.2, 0 = ΣJ= 1 χ y so -f appears in 0 at least n times.

REMARK. The above proof can be adapted to prove the converse
of Corollary 1 in [4], namely that if χ(g) = 0 for g&Z then
χ(l)2 = [G: Z], Professor Janusz has noted to the author that this
follows more directly by observing that 1 = (χ, χ) = (1/\G\) χ(l)2\Z\.

As an example of these groups we consider the following:

THEOREM 2.2. Let G be a nίlpotent group of class 2 with cyclic
center. Then G is of central type and every irreducible character ψ
with Z £ Ker ψ appears as a component of θ.

Proof Kochendorffer has shown in [9] that a nilpotent group
with cyclic center has a faithful irreducible complex character χ (i.e.,
see Theorem 4). By Lemma 9, p. 1482 in [8], χ(g) = 0 for g$Z. By
the remark preceding the theorem we see that G is of central type,
and the second statement follows from (2.1) (or its proof).

REMARK. We note that in the above case G' ξΞ:Z, so if ZgΞKer ψ,
ψ is of necessity a linear character. In the next section we concentrate
on the relation of linear characters to the conjugating representation.

3* Linear characters*

THEOREM 3.1. Let X be a linear character of G and p an ir-
reducible character of G. Then Xp — p <=> p is induced from an
irreducible representation on Kerλ.

Proof Suppose p is induced from an irreducible character of the
normal subgroup Ker λ. Then p(x) = 0 for x $ Ker λ and since
X(x) — 1 for x 6 Ker λ, we have λ^ = p.

Conversely, suppose that λ^ = p. Let R be a representation of G
on a complex vector space V such that R affords the character p.
Then there exists an invertible linear transformation S of V such that
SR(g)S~1 = X(g)R(g) for all g in G. Thus SR(g) = X(g)R(g)S for all g in G.
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Now let v be an eigenvector of S and μ be the corresponding eigen-
value.

(1) SR(g)v - x(g)R(g)Sv = x(g)R(g)μv = (x(g)μ)R(g)v .

Hence R{g)v is an eigenvector of S with eigenvalue X(g)μ. Thus each
distinct value of λ gives a distinct eigenvalue of S. Let Λ1 = l, ,λr

be coset representatives for a coset decomposition of G modulo the
kernel of X. Then X(^J, X(h2) X(hr) are precisely the distinct values
that X takes on. For i = 1, 2, r let F, be the eigenspace of V
consisting of all eigenvectors of S with eigenvalue X(hi)μ. If g e G
and Vi G Vi9 then jβ(0)i\ is an eigenvector with value X(g)X(hi)μ =
X{h5)μ for some i, by equation (1). i?(flf) thus maps F< injectively
into Vj. R(g~λ) similarly maps Vά injectively into F f so both sub-
spaces have the same dimension and R(g) maps V{ injectively ontoFy.
The subspace F ^ ^ + φ K is evidently invariant under the
representation R and since R is irreducible, V = Fi ® © F r .
Also, {Fi, , Fr} forms a system of imprimitivity for F. R(g) leaves
Fi invariant precisely if #£Kerλ. Hence by Theorem 50.2 in [3], Fi
affords a representation of Kerλ which induces the representation R
of G. Clearly this representation of Ker λ must be irreducible since
otherwise R would not be irreducible.

Let H be any normal subgroup of a group G and ψ1 and ψ2

characters of H. If there exists geG such that ψ^x) — Ψ2(gxg~1}
for all xeH, then we say that ψx and ψz are G-conjugate (see [3T

p. 278, Ex. 6; also p. 343]). The irreducible characters of H are thus
divided up into "(?-conjugacy classes". Let N(ψ) = the αnormalizer??

of ψ in {G = g e G \ ψ(x) = figxg-1) all xeG}.

THEOREM 3.2. Let G be a finite group, H a normal subgroup
such that G/H is cyclic. The following four numbers are then equal:

a ~ the number of conjugacy classes Ci such that C(^ ) £ H.
b = the number of G-conjugacy classes of irreducible characters

f of H such that N(f) C H.
c = the multiplicity of a linear character λ in θ, where λ is

any linear character with Ker X = H.
d — the number of distinct irreducible characters of G which are

induced from irreducible characters of H.

Proof. Let λ be any linear character of G with H = Kerλ; since
G/H is cyclic there exist linear characters satisfying this condition.
By (1.5), part (ii), λ occurs in the conjugating representation as
many times as there are conjugacy classes Gό with C(gd) ϋ K e r λ = H.
Thus a = c. By Theorem 1.2, θ = ΣiXΎ Now (λ, χψ) = (χ\ λχ*) = 1
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or 0 depending on whether χ* = λχ* or not. Hence if λ occurs in θ c
times then there are precisely c irreducible characters χ* of G such
that λχ* = χ\ By Theorem 3.1 these are precisely the characters of
G induced from irreducible characters of H, so c = d.

Let ψ be an irreducible character of H. Then ΨG is irreducible
precisely if ψ9 Φ ψ for g$H (by (45.5) in [3]). This means that
ψ9 = ψ implies that ge H; i.e., N(Ψ) S H. By Exercise 5, p. 278, in
[3] two conjugate characters induce the same character of G. Now
(45.6) in [3] applied in the case that Hι = H2 shows that two non-
conjugate irreducible characters can't induce the same irreducible
character of G. Hence b = d.

We describe the constant from (3.2) in still another way. G/H
may be considered as a group operating by conjugation on the set of
conjugacy classes D19 ,Dt of H. Let {A* ι-D«} be an orbit
under this operation; i.e., \jT=ι A is a conjugacy class of G contained
in H. In the following lemma, the phrase "G/H operates regularly
on the orbit {Dlf •••, A»}" means G/H permutes the set transitively
and no element except the identity leaves any element fixed. The
following lemma shows that a of (3.2) equals the number of orbits on
which G/H acts regularly.

LEMMA 3.3. G/H operates regularly on the orbit {A> •••, Dm} if

and only if C(x) Q H where x e U ^ i A

(Note this is independent of the choice of x.)

Proof Say G/H is regular on {D19 ,Dm} and geC(x). If x e Dt

then gH operating on the orbit {A> > Dm) fixes A so gH = H and
geH, i.e., C(x) s H.

Conversely, say C(x) S H. Let geG and suppose gH fixes A
(for example). Let x e Dlf gxg~y = xf with xf e A Then there exists
heH such that hxh~ι = x''. Hence h~ιgeC(x) £ H and so # e i ϊ .
Thus gH = H and G/ίί operates regularly on the orbit.

REMARK. Using a lemma of Brauer (Lemma 1, § 6 in [1]) an
alternate proof can be given to show that a = b in Theorem 3.2. For
G/H is cyclic and if r = | G/H | then the number of orbits of length
r under the action of G/H on the conjugacy classes of H equals the
number of orbits of length r in the action of G/H on the characters
of H. The latter number is in fact b while the former equals a by
Lemma 3.3. (See [10, Proposition 1.5] for a similar use of another
lemma of Brauer).

We now verify that conjecture (1.4) holds in one more special case.
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THEOREM 3.4. Let G be a finite group and p a prime such
that p I G but p2 \ G Let λ be a linear character G taking on exactly
p values. If Z £Ξ Ker λ then X occurs as a component of the conju-
gating character θ.

Proof By the Schur-Zassenhaus theorem ([3, (7.5)]) we may
regard G as the semidirect product of Ker λ and a cyclic group P or
order p. The elements Φ 1 of P induce nontrivial automorphisms of
Ker λ by conjugation (since Z g Ker λ). Theorem II, p. 89 of Burn-
side's book ([2]) states: "An isomorphism of a group G whose order
contains a prime factor which does not occur in the order of G must
interchange some of the conjugate sets of G". Thus if a is one
of the nontrivial automorphisms of P, since it is of order p, there
must be p classes A> •••, DP of conjugacy classes of Ker λ regularly
permuted in a cycle. By (3.3) and (3.2) the multiplicity of λ in θ is
at least 1.
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