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REGULAR SEQUENCES AND MINIMAL BASES

EpwaArRD D. Davis

This note records the results of an effort to understand
in simple terms a certain theorem of Lichtenbaum and
Schlessinger: Let I o J be ideals of noetherian local ring. If
I and I/J are generated by regular sequences, then so is J.
This theorem is closely related to the well known: If R and
R/P are regular local rings, then P is generated by part of a
regular system of parameters, We investigate the implica-
tions of ‘“ I/J is generated by a regular sequence’’ and dis-
cover an elementary theorem having both of these results
as corollaries,

1. Notation and preliminaries. We consider only commutative
rings with 1 5= 0 and adopt the convention that local and semilocal rings
need not be noetherian. Given a finitely generated ideal (or module) X,
we denote by v(X) the greatest integer » such that X has no basis of
fewer than % elements; a basis of cardinality v(X) will be called a
minimal basis. We denote the following elementary fact as Lemma
A: Every basis of a module over a local ring contains a minimal basis.
Recall that a regular sequence in a ring R is a finite sequence
(x,, ++-, z,) of elements of R such that Rx, + -+ + Rz, # R and z; is
not a divisor of zero on R/Rx, + «-+ + Rx;_, (1 <1 < m). If the ideal
X is generated by the members of such a sequence, then ¥(X) = n, for
it is an easy exercise to check that X/X* is a free (R/X)-module of
rank n. We shall have need of another elementary fact which we
shall denote by Lemma B: If an ideal of moetherian local ring is
generated by a regular sequence, then any permutation of a minimal
basis of the ideal is a regular sequence. (A good account of all the
elementary facts we need can be found, for example, in Kaplansky’s
book [2]; specifically, Lemma A is contained in Theorem 158, Lemma
B in Theorem 129, and § 3-1 deals with regular sequences.) We shall be
concerned with results of the type v(I) = v(I/J) + v(J). This equation is
clearly equivalent to: The union of a minimal basis of J with a set
of representatives of a minimal bastis of I/J 1s a mintmal basis of I.

2. Noetherian local rings. In this section I D J are ideals of
ideals of a noetherian local ring R. The relaxation of the conditions
“local” and “noetherian” will be discussed in § 3.

THEOREM. If I/J is generated by a regular sequence, then
v(I) = v(I/J) + v(J).
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COROLLARY 1. (Lichtenbaum and Schlessinger [3, 3.3.4]). If both
I and I)J are generated by regular sequences, then so is J.

COROLLARY 2. If R/J is regular, then J is generated by part of
a minimal basis of the mawximal ideal. (Hence, if R and R/J are
regular, then J is generated by part of a regular system of para-
meters.)

Corollary 2 is well known; its geometric content is: if » is a
simple point of a subvariety W of a variety V, then “locally at p”
W “looks” like the intersection of V with a linear space.

Proofs. The corollaries follow immediately from the theorem;
the first by Lemma B, and the second by the well known fact that
the maximal ideal of a regular local ring is generated by a regular
sequence. To prove the theorem notice that by the hypothesis and
Lemma A, I has a minimal basis {x;, «--, ., ¥, ***, ¥}, Where the y’s
lie in J and #’s form a regular sequence mod.J. By passing to
R/Ry, + -+ + Ry,, we may assume that v(I) = v(I/J) and must prove
that J = 0. We proceed by induction on n. For n = 1, since z, is
not a divisor of zero mod J,J = Jx,, whence J = 0 by Nakayama’s
Lemma. For n > 1, an application of the case n =1 to the ring
R/Rx, + -+ + Rz,_, shows that the canonical image of J is 0; that
is, Rx, + ++-+ + Rx,_, D J, whence J = 0 by the induction hypothesis.

REMARK 1. The theorem also admits a proof by the methods of
Lichtenbaum and Schlessinger. The exact sequence of the triple
(R, R/I, R/J) applied to the (R/J)-module R/J together with the
fact that I/J is generated by a regular sequence gives the exactness
of 0 — J/IJ— I/I*—I/J + I*— 0 [3, 3.2.1 and proof of 3.3.4]. Since
I/J + I* is (R/I)-free, the sequence splits, whence by “local”, v(I/I*) =
v(J/IJ) + v(I/J + I?). The theorem follows since v(I/I%) = v(I),
v(J/IJ) = v(J), and v(I/J + I*) = v(I/J) by Nakayama’s Lemma.

REMARK 2. Let A D B be finitely generated R-modules, and let
S denote the sequence 0 — B— A— A/B— 0. Observe that for any
ideal N, S® R/N is exact if, and only if, BN NA = NB. With this
in mind one routinely abstracts the argument of the last two sentences
of the preceding paragraph to prove the equivalence of:

(1) v(A4) = v(4/B) + v(B).

(2) For M the maximal ideal of R, S R/M is exact (if, and
only if, BN MA = MB).

(3) There exists an ideal N such that S R/N is exact (if, and
only if, BN NA = NB) and A4/B® R/N is (R/N)-free.
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(4) There exists an ideal N such that S® R/N is split exact.
Generalization of the theorem beyond the realm of ideals generated
by regular sequences is probably best studied through (4); that is, one
could look for classes of pairs A D B for which reasonable candidates
for N would present themselves. In general (3) is probably not likely
to be an improvement over (2) since one cannot reasonably expect the
freeness of A/B® R/N for many N’s.

REMARK 3. In view of the previous remarks we see that the
Lichtenbaum-Schlessinger proof of the theorem amounts to showing
that J N I* = IJ. Following the referee’s suggestion to examine the
appropriate Koszul complex we see where this point lies buried in our
proof. The choice of the x’s guarantees that the complex obtained
by tensoring with R/J the Koszul complex they generate has vanish-
ing homology in dimension 1; and the long exact sequence of “Koszul
homology”” associated to 0 — J — R — R/ J — 0 then gives the exactness
of 0—J/KJ— R/K— R/I— 0, where K = Rz, + -+ + Rz, (for details
see, e.g. [1, 1.2 and 1.5]). Thus J N K = KJ from which J N I* = IJ
immediately follows. (Actually our proof reduced to the case I = K
and showed J = IJ which this argument also shows.)

3. On extending the results of § 2. Graded rings. We consider
only graded rings R such that R, is a field and R; = 0 for 1 < 0. As
a rule theorems about local rings translate into theorems in the graded
situation, and that is true of the results of § 2. The translations are
accomplished via the graded versions of Lemmas A and B which are valid
for homogeneous ideals and bases even without the noetherian hypo-
thesis in Lemma B. The proof of the theorem works in the graded
case without any assumption other than that I and J be homogeneous
ideals; and it follows that the Lichtenbaum-Schlessinger result holds
for homogeneous ideals in graded rings. The translation of Corollary
2 requires that R = R[R,] and that R, be of finite R,-dimension
(i.e., R is the quotient of a polynomial ring by a homogeneous ideal);
whence: If J is a homogeneous tideal such that R/J is isomorphic
(as an abstract ring) to a polynomial ring, then J is gemerated by a
subspace of R,.

Local rings. Our theorem is valid for arbitrary local rings pro-
vided that J is finitely generated, for that is the extent to which the
proof requires “noetherian”. That some vestige of “noetherian” must
remain is clear—consider any valuation ring of Krull dimension greater
than 1. Remark 2 is clearly valid for arbitrary local rings. Concerning
Remark 3, observe that “0 — J/IJ — I/I* — I/J + I*— 0 is split exact”
is a formal consequence of the vanishing of the appropriate “Koszul
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homology” in dimension 1; no other hypothesis is needed (not even
“local”) since that condition implies the (R/I)-freeness of I/J + I* as
well as the exactness of 0 — J/KJ — R/I— R/K— 0. (Of course this
condition on the homology is equivalent in the noetherian local case
to “the 2’s form a regular sequence mod J” [1, 2.8].) Stated for
modules over local rings our theorem becomes: If A O B are finitely
generated submodules of C such that A= B+ Cx, + -++ + Czx,, where
the &’s form a (C/B)-regular sequence, then v(A) = v(A/B) + v(B).
The proof given in § 2 works here—as does the proof of the gener-
alization assuming only the vanishing in dimension 1 of the homology
of the complex obtained by tensoring with C/B the Koszul complex
generated by the =2’s. Recalling Remark 2 and letting N =
Rz, + ..+ + Rx,, one can observe that here we have a case in which
S ® R/N is split exact with A/B® R/N not necessarily (R/N)-free.

Semilocal rings. An easy application of the Chinese Remainder
Theorem shows that for semilocal R, ¥(X) = max{¥(X® R}, where
M runs over the maximal ideals of E. With this fact and the local
version of the theorem one readily proves that our theorem holds for
arbitrary semilocal rings provided that I is a radical ideal (i. e.,
contained in every maximal ideal). Then because Lemma B holds for
radical ideals in noetherian rings, it follows that the Lichtenbaum-
Schlessinger result is valid for radical ideals in noetherian semilocal
rings.
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