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PROPERTIES OF FIXED POINT SETS ON DENDRITES

HELGA SCHIRMER

Every nonempty closed subset of a dendrite can be the
fixed point set of a self-map, but in general it cannot be the
fixed point set of a map with special properties, Necessary
conditions found here for the fixed point sets of homeomor-
phisms and monotone surjections of dendrites are mainly
concerned with the order of the possible fixed points, and
extend earlier results by G. E. Schweigert and L. E. Ward,
Jr.

1. Introduction. It was proved in [3,4] that every closed,
nonempty subset of the =-ball B* can be the fixed point set of a
self-map of B", but that not all such subsets can be the fixed point
set of a homeomorphism of B”. We investigate in this paper related
questions for dendrites. The first result (Theorem 3.1) shows that
again every closed nonempty subset can be the fixed point set of a
self-map of a dendrite.

It is already known that not every closed nonempty subset A of
a dendrite D can be the fixed point set of a homeomorphism of D,
or even of a monotone surjection of D. Results for homeomorphisms
by G. E. Schweigert [5] and generalizations for monotone maps by
L. E. Ward, Jr. [7] show that A cannot consist of one end point
of D:

THEOREM 1.1. (Schweigert and Ward). Let f: D—D be a
monotone surjection of a dendrite D which leaves one end point e of
D fized. Then there exists at least ome fized point distinct from e.

We extend this theorem in several ways. In §4 we prove more
details about the order (see [8, p. 48]) of the possible fixed points if
the fixed point set consists of only finitely many points. The theorem
by Schweigert and Ward states that the fixed point set of a monotone
surjection cannot consist of one end point, i.e., of one point of order
one. We show in Theorem 4.1 that it also cannot consist of two
points of order two, and in the case of a homeomorphism it cannot
consist of three points of order three. But it can consist of # points
of order n for all n > 3. We further strengthen Theorem 1.1 by
proving a restriction on the fixed point different from e: if f is a
homeomorphism, then it can be chosen of an order # 2 (Theorem 4.5).
This is no longer true for monotone surjections.

The work by Schweigert and Ward is concerned with fixed point
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sets containing one end point. In §5 we investigate fixed point sets
which contain almost all of the end points, and show that they must
contain also all points of a sufficiently high order (Theorem 5.1). In
particular we can conclude that if a monotone surjection leaves all
but one of the end points fixed, then it leaves in fact all points of
order = 2 fixed (Corollary 5.5).

In §4 we saw that a distinction exists between fixed point sets
of homeomorphisms and of monotone surjections. In the final paragraph
(§6) we show that such a distinction no longer holds for finite
dendrites, i.e., that a subset of a finite dendrite can be the fixed
point set of a homeomorphism if and only if it can be the fixed point
set of a monotone surjection (Theorem 6.1). The same is true for
open maps of finite dendrites, but nothing is known so far about fixed
point sets of open maps of arbitrary dendrites.

Ward actually proved Theorem 1.1 not only for dendrites, but
more generally for trees, i.e., he did not assume that the space has
a metric. It is likely that most or all of the results of this paper
can be extended to trees. The metric of the dendrite is used crucially
in the proof of Theorem 3.1, and it is also used implicitly in the
parts of the paper concerning the order of a point as this concept
was developed in [8] for the metric case.

2. Dendrites. A dendrite D is a metric continuum (i.e., compact
connected Hausdorff space) in which every pair of distinet points is
separated by a third. We use the partial order structure of dendrites
which was developed by Ward [6, 7]. Take an arbitrary point re D
as root, and define a partial order < on D by <y if ¢ = 7, « separates
r and ¥, or x = y. Then » < x for every x e D. Define

L(a) ={yeD|y £ a},
M(a) ={yeDla = y}.

The sets L(a) and M(a) are closed in D. Let [a, b] = M(a)N L(b); it
is a nonempty closed chain (i.e., it is linearly ordered) if ¢ < 8. Let
(a, b) be the interior of [a, b]. A point m is called a maximum of a
subset A of D, written max A, if m < « for each xe A. It is shown
in [6, Theorem 1] that every nonempty closed subset of D has a
maximum.

We also need in the following some results about dendrites, in
particular about the order of points and about arcwise connectedness,
which can be found in [8]. Frequently we use the next lemma which
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characterizes the order o(a) of a point a [8, p. 48] in the case where
it is finite.

LEMMA 2.1. Let a be a point of a dendrite D. If either the
order o(a) or the number of the components of D\{a} s finite, then
these two numbers are equal [8, p. 88].

ae D is called an end point if o(a) = 1, a cut point if o(a) = 2,
and a branch point if o(a) = 3.

LEMMA 2.2. Every maximum of D is an end point, and every
end point is either a maximum or a root.

Proof. Let m be a maximum of D. If m is not an end point,
then it is a cut point [8, p. 88], and therefore m separates D into two
disjoint separated sets A and B [8, p.42]. Choose A and B so that
the root 7 is in A, and take any ye B. Then m separates » and v,
i.e., m < y. But this is impossible if m is a maximum. Hence m is
an end point. Let now e¢ be an end point with ¢ =% r. As e is not
a cut point, the set D\{e} is connected, and e cannot separate any
two points of D\{e}. So e < « is not possible for any « e D, and hence
e is a maximum of D.

It follows from [6, Theorem 5] that M(x) is connected for all
xe€ D, and therefore M(x) is a subdendrite with root z [8, p. 89]. The
space D, and hence M(x), are not only connected, but they are also
arcwise connected, and the arc between any two of their points is
unique [8, p. 89]. We write arc ab for the unique arc from a to b if
a,beD.

LEMMA 2.3. Ifb,b,eD and m = max [L(b)N L(b,)], then are
b,b, = [mb,] U[mb,].

Proof. The sets [mb;] = M(m)N L(b,), where 7 = 1,2, are connected
chains and hence ares [7, Theorem 1; 6, Theorems 4 and 6; 8, p. 36].
As [mb,] and [mb,] have exactly one point in common, [mb,]U[mb,] is
an arc, and hence it is the unique arc b.b,.

An immediate consequence of Lemma 2.3 is

LEMMA 2.4. If the conmnected subset A of D contains the points
b, and b,, then it also contains max [L(b,) N L(b,)].

We finally state a lemma concerning homeomorphisms and monotone
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maps (i.e., maps where f~'(y) is connected for all points of the range
of f) which is crucial in most of the following work. Its proof can
be found in [6, Lemma 13 and p. 156].

LEmMMA 2.5. If f: D - D is a monotone surjective self-map of
a dendrite D, then it is isotone (i.e., x <y implies f(x) < f(y)). If
f: D> D is a homeomorphism, then it is strictly isotone (t.e., x <y
implies f(x) < f(y)).

From now on all monotone surjections are assumed to be
continuous.

3. Fixed point sets of arbitrary maps on dendrites. We show
in this paragraph that any closed nonempty subset can be the fixed
point set of a self-map of a dendrite.

THEOREM 3.1. Let A be an arbitrary closed monempty subset of
a dendrite D. Then there exists a map f: D— D with A as its fized
point set.

Proof. Give D the convex metric d (see [1, 2]). As D is acyelic
and complete, it follows that for every z, v € D the point

z=te+ Q1 —-9y (0=t<1])

is a unique point of D. As D is compact, it is bounded, hence the
diameter diam (D) is finite. Select a point ae A, and define

d(z, A) o [1 _ d(=z, 4)

f(x)=m diam(D)]x for every xe D .

Then f is the desired map.

Note that the result is not true any longer if we ask in addition
that f is surjective. It ise.g., not possible to construct a map from
the unit interval onto itself such that its fixed point set consists of
one end point of the interval.

4, Nonexistence of some finite fixed point sets. Theorem 1.1
by Schweigert and Ward shows that the fixed point set of a monotone
surjection on a dendrite cannot consist of one point of order one.
We investigate in this paragraph the existence of fixed point sets on
dendrites consisting of = points of order =, for arbitrary positive
integers . The main result is stated in the following theorem.

THEOREM 4.1. Let f: D - D be a surjective self-map of a dendrite.
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(i) If f is monotone, then the fixed point set of f cannot comsist
of n points of order n for n =1 or n = 2.

(ii) If f is a homeomorphism, then the fixzed point set of f cannot
consist of m points of order m for n =1, n =2 or n = 3.

The proof of Theorem 4.1 is lengthy and will be accomplished
in several parts. The next lemma is used in the proof of part (i) of
Theorem 4.1 and in the proof of Theorem 4.5 below.

LEMMA 4.2. If a is a point of order two in D and different
from the root, them it is a point of order one in the subdendrite M(a).

Proof. As o(a) =2 in D, we can assume that D\{a} = K, UK,,
where K, and K, are the two components of D\{a} and the root
re K,. As K, is arcwise connected, we have

K, = {xz|a¢arc rx}
= {zlag[rz]} = D\M(a) .

Hence K, = M(a)\{a}, so that M(a)\{a} is connected and o(a) =1 in
M(a).

Proof of part (i) of Theorem 4.1. Because of Theorem 1.1 we
only have to prove the nonexistence of a fixed point set consisting of
two points of order two.

Let f:D - D be a monotone surjection which has two fixed points
of order two. Take one as root », and let a be the other fixed point.
As f is isotone (Lemma 2.5), we have f(M(a)) & M(a). The restric-
tion f|M(a): M(a)— M(a) is monotone, as for any ye f(M(a)) the
counterimage f~'(y) is connected in D and hence (see [8, p.88])
S y)N M(a) is connected in M(a). If f|M(a): M(a)— M(a) is onto,
then it follows from Theorem 1.1 and Lemma 4.2 that f has a second
fixed point on M(a), and part (i) of Theorem 4.1 is proved.

Assume now that f(M(a)) + M(a), and choose ¢ M(a)\f(M(a)).
As f is surjective, there exists p € D\M(a) with f(p) = ¢, and because
S is isotone, we have f([ra]) = [ra], so that in fact p € D\{M(a) U[ra]}.
Let m = max [L(p)N L(g)]. Then r £ m < @ and hence r =< f(m) < a.
But in fact f(m) = a: as f([mp]) = [f(m)q] and aec[f(m)q], there
exists an x € [mp] with f(z) = a. But we also have f(a) = @, so that
by Lemma 2.4 the connected set f~'(a) must contain

max [L(x)N L(a)] = m, i.e., f(m)=a.
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So we see that if f has no other fixed points but » and a, then there
exists m earc ra\{a} with f(m) = a. If we take a instead of » as
root, then an analogous argument shows: if f has no other fixed
points but » and a, then there exists mearc ra\{r} with f(n) = r.
But as f(arc ra) = arc 7ra, the existence of m and » implies the
existence of a fixed point on arc ra different from » and «. Hence
f must have a fixed point different from » and a, and part (i) of
Theorem 4.1 follows.

We now set out to prove part (ii) of Theorem 4.1. This is done
with the help of the next two lemmas. The first is stated in much
more generality than is needed here for the sake of its use in the
proof of Theorem 5.1 below. We say that f: D— D permutes the
set of n points {b;|2 =1, 2, -++, »} of D if it transforms the set {b;}
bijectively onto itself; the identity transformation of the b, is included
as a possibility.

LEMMA 4.3. Assume that the monotone surjection f: D — D leaves
the root of D fized and that it permutes the set of points
{bllq’ = 17 2’ M) ’i’l/} y

where m = 2. Then
m = max [éL(bi)]
s o fixed point of f.

Proof. Let r be the root of D. As r» < m < b;, the fact that f
is isotone (see Lemma 2.5) implies
r=f(m) = f(b) =b.(t,k=1,2, -+, m)

and hence f(m) < m. But f([rb;]) = [rb,], so that there exists for
=12 «+o,m an x; with »r <m < 2, < b; and f(x;) = m. Therefore
the connected set f~'(m) contains all x;, and as

max [DiL(mi)] = max {L[max ?j L(xi)] N L(wn)} )

it follows by induction from Lemma 2.4 that me f~'(m). Thus
m = f(m) is a fixed point of f.

LEMMA 4.4. Let f: D - D be a homeomorphism which leaves the
root r of D and a point a fixred. Then f maps M(a) homeomorphically
onto itself.
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Proof. We see from Lemma 2.5 that f(M(a)) S M(a), so that
S| M(a) is an injection. As f is a homeomorphism, its inverse f*
is a homeomorphism too, hence f~(M(a)) & M(a) or M(a) S f(M(a)).
Therefore f(M(a)) = M(a), and f|M(e) is a homeomorphism of M(a).

Proof of part (ii) of Theorem 4.1. As a homeomorphism is a
monotone map, it only remains to show that the fixed point set of a
homeomorphism cannot consist of three points of order three.

Let a, b, and ¢ be three distinct fixed points of order three of
the homeomorphism f: D - D. Take a as root. Then

m = max[L(b) N L(c)]

is a fixed point according to Lemma 4.3. So part (ii) of Theorem
4.1 is proved if m is different from a, b, and c.

Assume now that m = a, i.e., that a separates b and ¢. Define

My(a) = {x|a separates b and =z},
M(a) = {x|a separates ¢ and =z},

(i.e., My(a) is the set M(a) if b is taken as root, and M,(a) is the
set M(a) if ¢ is taken as root). Hence M;(a) and M,(a), and therefore
[8, p. 88] the set @ = M,(a) N M,(a), are continua. By definition acQ,
but b¢@Q and c¢ Q. It follows from Lemma 4.4 (with b resp. ¢ as
root) that f induces a homeomorphism of M,(a¢) and of M.(a), and
hence of @. Therefore in this case part (ii) of Theorem 4.1 follows
from Theorem 1.1 if we can show that a is of order one in Q.

If a is not of order one in @, then Q\{a} is not connected. Hence
we can select two points p, ¢ € Q\{a} so that acarc pg and therefore
e = max [L(p)N L(q)]. As qe€ Mya), we see that a separates b and
gq. So we have acarc bg and hence a = max [L(b)N L(g)]. Similarly
a=max [L(x)NLy)] if =5 or x =¢, and y =p or ¥y = q. This
shows that the subdendrite D’ = L(b)U L(c) U L(p) U L(q) consists of
the four ares [ab], [ac], [ap], and [ag], and that the order of a in D’
is four. As a is of order three in D this is impossible. So a must be
of order one in @, and Theorem 4.1 (ii) holds if m = a.

If m = b then b separates ¢ and ¢. Therefore the same argument,
but with b and a interchanged, proves Theorem 4.1 (ii) in this case.
If m = ¢ we proceed analogously. This concludes the proof of part
(ii) of Theorem 4.1, and hence of Theorem 4.1.
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REMARKS. (i) One might ask whether part (ii) of Theorem 4.1
can be extended to monotone maps. That this is not the case is
shown by the following example of a monotone surjection of a dendrite
which has a fixed point set consisting of three points of order three.

it &

¢y f——— d,

3
4

p q

FIGURE 1

Let D be the dendrite illustrated in Figure 1. It is constructed
by attaching to the finite dendrite with vertices a, b, p, ¢, 7, and s
countably many line segments [e,d;],7 =1, 2,8, «++,s0 that ¢, is the
mid point of [ab], that ¢;,, is the mid point of [ac;] fort=1,2,3, «--,
and that the length of [ec,d;] equals the length of [ac;]. Define
f: D - D first on the vertices of D as follows:

fl@)=oif t =a, b, or ¢, ,
f@) =4q, f(@) =, f(r)=s, f(s) =1,
f(dl) = 01 y

F(er) = e for1=1,2,8, ---.
f(di+1) = di

Now extend f linearly over D\[¢,b], and define it over [c;b] as a
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monotone map of [¢,b] onto itself with the only fixed points ¢, and b.
Then f: D -» D is monotone and has the fixed points a, b, and ¢,
each of order three.

(ii) Tempted by one’s habit of mathematical induction one might
also ask whether it is possible to prove the nonexistence of a fixed
point set under a homeomorphism consisting of » points of order % if
7 > 3. That this cannot be done is shown by the next example, in
which for any positive integer » > 3 a dendrite D, and a homeomor-
phism f, of D, are constructed so that the fixed point set of f,
consists of exactly n points of order =.

Q43
a,
41 Oy
(lv4
gy 3
a3
1 Qg2
Ay
a
1 ay,
a
a3
FIGURE 2

Take a chain of n vertices a,, a,, ---, a, (see Figure 2 for the
case n = 4). To both a, and a, attach n — 1 segments with end points
a;;(t=1lormn;5=1,2, ---, » — 1); to each of a, a;, +--, a,, attach n — 2
segments with end points a;;(t = 2,3, «++,n — 1,5 =1,2, «+«, n — 2).
Then o(a;) = n fori=1,2, -++, n. Define f, on the vertices of D, by

Sfula:) = a; 1=1,2 ¢+, 1,
falai) = iy 1=1,2, 4,0,
where j # k and f,(a;;) = f(a;;) if 7 # j’. Extend f, as a homeomor-

phism with no further fixed points over all edges of D,. Then the
fixed point set of f, is {a, a,, ---, a,}.
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We conclude this paragraph by strengthening Schweigert’s
theorem in a different direction.

THEOREM 4.5. If a homeomorphism of a dendrite leaves one end
point e fixed, then there exists at least one fixed point distinct from
e and of order = 2.

Proof. Take the fixed end point as root » of the dendrite D,
and let A be the fixed point set of the homeomorphism f of D. It
follows from Theorem 1.1 that A\{r} = @&, and hence that a == r if a
is 2 maximum of A. Assume that o{a) = 2. Then Lemmas 4.2 and
4.4 show that f induces a homeomorphism of M(a) which leaves the
end point a of M(a) fixed. Therefore Theorem 1.1 implies the
existence of a fixed point of f on M(a) different from «, in contradic-
tion to @ = max A. So it is necessary that o(a) = 2.

REMARK. Theorem 4.5 cannot be extended to monotone maps,
for we can construct a monotone surjection of a dendrite such that
its fixed point set consists of one point of order one and of one point
of order two. For this purpose, let D’ be the subdendrite obtained
from the dendrite D in Figure 1 by deleting the end points p, q, 7,
and s, and the four edges which have these points as end points.
Let ¢t be the mid point of ¢, and . Define f on the vertices of D’
as follows:

fla) =a, f(t)=t,
J(b) =t fle) = ¢,
fld)=5b,
flein) = ¢
f(di-n) =d;

and extend it linearly over the edges of D’. Then f is a monotone
map D’ - D' with fixed points a of order one and ¢ of order two.

for 1=1,2,3, ---,

5. Fixed point sets of monotone maps which leave almost
all end points fixed. Theorem 1.1 by Schweigert and Ward considers
the case where a map is known to leave one end point fixed. The
main result of this paragraph, Theorem 5.1, considers a case which
is, in a sense, the other extreme: a map is known to leave almost
all, or all, of the end points fixed.

THEOREM 5.1. Let f: D—»D be a monotone surjection of «a
dendrite D and assume that at most n of the end points of D do mot
belong to the fixed point set of f. Then every point of order n (where
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n = 3) belongs to the fixed point set of f.

We will prove Theorem 5.1 with the help of the following two
lemmas.

LEMMA 5.2. If aeD, then every component of D\{a} contains
etther the root or an end point.

Proof. Let K be a component of D\{a}, and let » be the root of
D. We can assume that ¢ K. Take an arbitrary xe K. Then
¢ r and ¢ = a. For any ye M(z)\{x} we have ae¢lzy], as 2 <a =y
would imply [rx] < D\{a} and hence x would be contained in the same
component of D\{a} as ». Therefore M(x)c K. But M(x) is closed
in D and hence has a maximum. According to Lemma 2.2 this is an
end point, as a maximum of M(x) is clearly a maximum of D.

LEMMA 5.3. Let f: D - D be a monotone surjection which leaves
the root of D fixed. Then the counterimage of any maximum of D
contains a Marimum.

Proof. Let m be a maximum. As f is surjective, there exists
an xeD with f(®) =m. As f is isotone (Lemma 2.5), we have
f(M(z)) = m, and as M(x) contains a maximum, so does f~'(m).

Proof of Theorem 5.1. Let acD be a point of order n (with
= 38). If D has only n end points, then it is a finite dendrite of
the form U, [ae;], where [ae;] are arcs. Hence a is fixed. (This
can easily be seen directly; it also follows from the arguments used
in the proof of Theorem 6.1 below.)

If D has more than n end points, then at least one of them
belongs to the fixed point set of f; take it as the root = of D.
According to Lemma 5.2 we can select in each of the components of
D\{a} which do not contain » an end point, thus obtaining at least
n — 1. Choose them as fixed points if possible, and then select from
this set exactly » — 1 end points, again including as many fixed
points as possible. We now continue with the proof by investigating
three possible cases.

Case 1. At least two of the selected end points, say ¢ and e”,
are fixed points. Consider m = max [L(¢’)N L(¢”)], which is fixed in
consequence of Lemma 4.3. If a s m, then arc ¢’¢” < D\{a} by Lemma
2.3, in contradiction to the selection of ¢ and ¢” in different com-
ponents of D\{a}. Hence a = m is fixed.
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Case 2. Only one of the selected #n — 1 end points, say e, is a
fixed point. Let e, ¢, -, e, , (Where n — 2 = 1) be the other selected
end points; they are not fixed. If one or two more nonfixed end
points of D exist, call them e, , and ¢,. Otherwise put ¢, or both of
e,_, and e, equal to e. Define

m = max [L(e) N Q Lie,)] -

It follows from Lemmas 2.2 and 5.3 that the set {e}U{e;|¢ = 1, 2, «--, n}
is permuted by f. Hence Lemma 4.3 shows that m is a fixed point.
Aseand ¢(t =1,2, ---,n — 2) are in different components of D\{a},
we see that a = max [L(e)N L(e;)] and therefore

@ = max [L(e) N ?jfL(ei)] .

This implies m < a.

If m = a, then a is fixed. If m < a, then at least one of ¢,_,
or ¢, is > a. Without loss of generality we can assume that e¢,_, > a
and that m = max|[L(e)N L(e,-,)]. As f 1is isotone, we have
J([me]) = [me], hence there exists an x with m < x < e and f(z) = a.
If f(e,_,) > a, then there must also exist a point ¥ with m < ¥y < e,_,
and f(y) = a. As f7'(a) is connected, it must contain

max [L(z) N L(y)] = max [L(e) N L(e,-,)] = m

by Lemma 2.4. But f(m) = m < a. Therefore f(e,—,) > a, and thus
fle,) = e, and e, > a.

Assume now that f(e,) > a. Then there exists a point z with
m < z < e, and f(z) = a, and f~'(a) contains

k = max [L(z) N L(z)] = max [L(e) N L(e,)] -

As e, > a, we have m =<k <a. But as ac[me], we see that
m < f(a) <e and as ac[me] for some e, with ¢ <n—2 and
f(e) = e,_,, we see that m < f(a) < e,_,. As m = max [L(e)N L(e,-,)],
this implies f(a) = m, and therefore f([ma]) = m in contradiction to
f(k) = a. 8o it is necessary that f(e,) } a,i.e., f(e) =e,... We
can now apply Lemma 4.3 to the set {e}U{e;|]t1=1,2, «+-, n — 2} to
see that a is fixed.

Case 3. None of the selected end points is a fixed point. Denote
these end points by e, e, +--, e,, (Where » — 1= 2). If one other
nonfixed end point exists, call it ¢,, otherwise put ¢, = ¢,. As in case
2 we see that
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m = max [fﬁ L(ei)]
is a fixed point, that
a = max nfjl L(ei)] s

and hence that m < a. If m = a, then o is fixed. If m < a, then
¢, > a. Choose ¢;(1 < n — 1) such that f(e;)+e,, i.e., f(¢;) > a. Then
a € f([me;]), hence there exists an ¢ with m <2 <e; and f(x) = a.
But also a e f([me,]), therefore there exists y with m <y <e, and
f(y) = a. Thus the connected set f~'(a) must contain

max [L(x) N L(y)] = max [L(e;) N L(e,)] = m

by Lemma 2.4, so that f(m)=a. But f(m)=m, so m<a is
impossible.

This completes the proof of Theorem 5.1.

Putting % = 3 in Theorem 5.1 we obtain the following special
case.

COROLLARY 5.4. Let f: D->» D be a monotone surjection of a
dendrite D which leaves at most three of the end points mot fixed.
Then f leaves all branch points fixed.

We conclude this paragraph by formulating one further consequence
of Theorem 5.1, which is a complement to the theorem by Schweigert
and Ward.

COROLLARY 5.5. Let f: DD be a monotone surjection of a
dendrite D which leaves at most one of the end points mnot fixed.
Then f leaves all end points and all branch points fixed.

Proof. Assume that we know that f leaves all end points fixed
with the possible exception of one end point, say e. Take any of the
fixed end points as root ». It follows from Lemmas 2.2 and 5.3 that
f7(e) contains an end point which must of necessity be e. So
f(e) = e is fixed. That all branch points of D are fixed follows now
from Corollary 5.4.

REMARK. It is not possible to strengthen Theorem 5.1 to include
the points with order » — 1. To see this, consider the finite sub-
dendrite D” of Figure 1 with vertices a, b, p, q, r, and s, define f on
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the vertices of D” by f(a) =b, f(b) = a, f(p) =7, f(q) =s, f(r) =D,
f(s) = q, and extend it linearly over the five edges of D”. Then f
leaves none of the four end points of D” fixed. Take n =4 in
Theorem 5.1, and check that the two branch points a and b of order
n — 1 = 3 are not fixed.

6. Fixed point sets of monotone maps on finite dendrites. In
§4 we found it necessary to distinguish between fixed point sets of
monotone maps and fixed point sets of homeomorphisms on dendrites.
We will show now that this distinction is superfluous in the case of
finite dendrites, i.e., dendrites with finitely many vertices.

THEOREM 6.1. A subset of a finite dendrite D can be the fixed
point set of a homeomorphism of D if and only if it can be the fized
point set of a monotone surjection of D.

Proof. It is only necessary to show that a subset A c D which
is the fixed point set of a monotone surjection f: D — D can be the
fixed point set of a homeomorphism of D.

A is nonempty; select a root » of D with re A. Take the branch
points and end points of D, as well as r if not yet included, as the
set V of vertices of a simplicial complex K which is a triangulation
of D. We first show that f|V determines a simplicial map @: K » K
(i.e., f|V is a function of the vertices of K onto themselves such
that adjoining vertices are mapped onto adjoining vertices).

As D is finite, Lemmas 2.2 and 5.3 imply that the image under
f of an end point is an end point. Similarly it follows that the
image of a branch point is a branch point if we can show that the
counterimage of every branch point contains a branch point. Assume
by way of contradiction that b e D is a branch point such that o(x) = 2
for all xe f(b). As f~(b) is closed and connected, it must be of
the form [mn], where m < n and [mn] is contained in an edge of
D. As f is isotone (see Lemma 2.5), we have f(M(n)\{n}) = M(b)\{b}.
As o(n) = 2, the set M(w)\{n} is connected, hence f(M(n)\{n}) is
connected. But o(b) > 2, therefore M (b)\{b} is not connected, and
thus f(M(n)\{n}) = M(b)\{b}. Choose y e M(b)\{b} such that

N M@m\al] = o .

As f is surjective, there exists xe D with f(z) = v, and we see that
then # > n and even > m. As f is isotone, we have f([rz]) = [ry],
therefore there exists #’eD with r <&’ <z and f(2) =b. This
implies m < 2’ < n and hence m < « in contradiction to > m. So
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it follows that f~'(b) must contain a branch point.

We complete the argument that f|V determines a simplicial map
by showing that f maps adjoining vertices of K onto adjoining
vertices. Let a and b be adjoining vertices; we can assume that
a < b. Then f(a) < f(b). If there exists a vertex between f(a) and
f(b), then there exists a vertex ¢ which is its counterimage, i.e.,
f(a) < f(e) < f(b). As f is isotone and as there is no vertex between
a and b, this implies c¢¢ L(b)U M(b). Let m = max [L(b)N L(c)], then
o(m) > 2. As m > a would imply m = b and ¢ e M(b), it follows that
m =< a. Now f([Jab]) = [f(e) f(b)], hence there exists an x with
a <x<band f(x) = f(c). The set f~f(c) is connected and therefore
contains max [L(x) N L(¢c)] = max [L(b)N L(c)] = m, so that f(m) = f(e).
As f determines a bijective transformation of V, we must have
m = c¢. But this would imply ¢ < a in contradiction to ce L(b). So
the vertex f(¢) cannot exist, and f|V determines a simplicial map

¢: K-> K.

As the image of an edge [ab] under a monotone map f must be
the edge [f(a) f(b)], it is now easy to check that the fixed point set
A of f must be of the following form:

(1) acA for every a € V with ¢(a) = «a;

(2) An(ab) is an arbitrary (possibly empty) closed set for every
edge [ab] of D with ®{a) = a and ®(b) = b;

(3) An{(ab) = @ for all other edges.

But we can construct a homeomorphism of D with the same images
of the vertices as f and with this set A as fixed point set. Therefore

Theorem 6.1 holds.

Using a theorem by Whyburn [8, p. 182 Theorem 1.1] we can
extend Theorem 6.1 to open maps if D is finite and not an interval,
for a study of the proof of Whyburn’s theorem shows that in this
case f|V again determines a simplicial map. Hence we have

THEOREM 6.2. If the finite dendrite D is mot an interval, then
a subset of D can be the fized point set of a homesmorphism of D if
and only if it can be the fixed point set of an open swrjection of D.

The case where D is an interval has to be excluded, as e.g., the
subset {1/3, 2/3} of the unit interval [01] can be the fixed point set
of an open surjection but not of a homeomorphism. It would be
interesting to know whether any or all of the results of §4 and §5
generalize to open maps. The method of proof will have to be
different, though, as an open map of a dendrite need not be isotone.
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