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ORDERED CYCLE LENGTHS IN A RANDOM
PERMUTATION

V. BALAKRISHNAN, G. SANKARANARAYANAN AND C. SUYAMBULINGOM

Let x(t) denote the number of jumps occurring in the time
interval [0, t) and vk(t) = P{x(f) = k}. The generating function
of Vk(t) is given by

exp {λt[φ(x) - 1]}, φ(x) = Σ P*&f Σ P* = 1
fc = l fc = l

Lay off to the right of the origin successive intervals of length
&Ha$ 3 = 1» 2, ••• . Explicitly the end points are

1 = 0

• = Σ «*/*", 3 = 2, 3, , a > 0 ,

and

a
Following Shepp and Lloyd Lr, the length of the rth longest
cycle and Sr, the length of the rth shortest cycle have been
defined for our choice of x(t) and tj, j = 1,2, . This paper
obtains the asymptotics for the mth moments of Lr and Sr

suitably normalized by a new technique of generating func-
tions. It is further shown that the results of Shepp and Lloyd
are particular cases of these more general results.

Here we consider a problem involving a random permutation which
isjclosely linked with the cycle structure of the permutation. Let Sn

be the n\ permutation operators on n numbered places. Let a(π) =
{at{π), a2(π), •• ,αn(π)} be the cycle class of πeSn. In this permuta-
tion 7Γ, there are 0Lx{π) cycles of length one, a2(π) cycles of length two,
etc. Usually the elements of Sn are assigned a probability 1/nl each.
John Riordan has considered a model where he has assigned the pro-
bability

P{a, = alf a2 = α2, , an = α j = Π (l/i)^'/α, ! if
1.1 J=ί i=i

— 0 otherwise ,

for the cycle class a(π), the α's being nonnegative integers. Here a'&
would be independent if it were not for the condition Σ JaJ = w Shepp
and Lloyd has considered a sequence a = {a19 a2, •••} of mutually in-
dependent nonnegative integral valued random variables where for
j = 1, 2, the random variable aά follows the Poisson distribution
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with mean z'/j, 0 < z < 1, z being same for all values of j . Accordingly

Pz{a, = α l f α2 = α ϊ f •} = (1 - φ Σ Γ = i ^ f[ (l/i)β'/αΛ
1.2 i = 1

αy > 0 , i = 1,2, . . . .

From this it can be seen that the probability distribution of the ran-
dom variable v(a) = ΣΓ=ii α i is

1.3 P{v{a) = n} = (1 - z)z?, n = 0,1, 2, . .

Also

cλ = a19 a2 = α2, \v(a) = w} - Π (Vi) iMΛ ΣPz{ocλ = a19 a2 = α2, \v(a) = w} - Π ( V i ) i M Λ Σ i ^ =
1.4

= 0 otherwise .

Thus Shepp and Lloyd were able to recover 1.1 assumed in the model-
In this paper, for the cycle class a(π) we have assigned the probability

1.5 Pz(a, = a19 a2 = α2, , an = an) = I/II, 0 < z < 1, Σ Oao = n

— 0 otherwise .

Here

1.6 I = Π vaj(zj/ja), Σ i α y = w, αn+1 = α%+2 = = 0, ( Σ i % = w)
3=1 3=1 ί = l

where vaj(zj/ja) is the coefficient of xa* in

1.7 ^(») - Σ Pk%k and Σ Pt = 1 •
* = 1 A = l

On detailed computation

1.8 M*Vi*> = β-2''/'' ΣΣ
+

In the special case when λ = 1, p1 = 1, p 2 = Ps = * = 0 and α = l r

exp {λ{z'lQa)[φ(x) — 1]} reduces to the generating function of the Poisson
process with the time parameter equals to z'/j, which has been considered
by Shepp and Lloyd. Also the generating function of II which represents
the distribution of P{v{a) = n}, where for our choice of the sequence
a/s defined by 1.14

1.9 vipt) =Σ,
3 = 1

is given by
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1.10 Σ P{v(a) = n}xn = Π exp {Mzj/j")[φ(xj) - 1]} .

On detailed computation we note that

P{v(a) = n} = exp{-λ °°
3=1

Σ
1.11

\ 2a

nx\ n2\

III: / (/% l

2a

\ . . .

In particular when λ = 1, a = 1 and p1 = 1, p2 = p3 =
generating function of the distribution of 1.9 reduces to

= 0, the

1.12

Hence

exp [-

= n} = (1 -

which is in agreement with that considered by Shepp and Lloyd. In
the special case mentioned above

1.13
I/II = Π (VJP'/aA if

= 0 otherwise .

3 = n,

This is also in agreement with the model discussed by Shepp and Lloyd.
If we take a = (a19 a2, - •) to be a sequence of mutually independent

nonnegative integral valued random variables where for j = 1, 2,

1.14 - a5} = vaj{zηja), α, = 0, 1, 2,

by using the Borel-Cantelli lemma, we can easily show that v{a) =
ΣΓ=ii^i i s finite with probability one. Hence the joint distribution
(a19 a2, a3, , v(α)) can be written as

1.15 2 = α2,
= Π vaj(zj/ja) if = n,

= 0 otherwise .
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From this we can see that

1.16 Px{ax = a19 a2 = α2, , | v(a) = n) = I/II ,

which we have assumed for the model.
Shepp and Lloyd have considered a Poisson process which takes

place on T = { - c o < £ < + o o } a t unit rate. That is, for any interval
of length I c ϊ 7 , the probability that p jumps occur in I is

independently of any conditions on the process on T — I. They have
taken the following end points for the time intervals

Uz) = 0,

1.17 t,-(z) = 2*7fcii = 2, 3, . . . ,

so that the jth interval is

tj{z) <t<ti+ι(z),j = 1,2, . . . .

They define Xz(t); — oo < £ < oo, to be a function whose value is 'j' on
the jth interval, j = 1, 2, and is zero if ί < 0 or t > t^z). Then
for each j = 1, 2, the interval {£; λβ(ί) = j} has length zj/j, the
probability that a3- jumps of the Poisson process occur in this interval is

1.18 exp (~zj/j) (zίlj)aί/asl, a, = 0,1, 2, .

and that these various events for j = 1, 2, are mutually independent.
They have taken a sample function of the Poisson process, with jumps
in the interval [0, tc{z)), which are finite in number with probability
one, occurring at times τx <̂  τ2 <; ^ τσ (σ, random). They take the
positive integers \t(τJ ^ Xz(τ2) ^ ^ λz(rσ) as the lengths of the σ
cycles of a permutation o n v = Σί=i λ*(τ

s) places, and in this class Su,
they choose a permutation at random with uniform distribution. For
any given r = 1, 2, let Sr = Sr{a) be the length of the rth shortest
cycle in a permutation of the cycle class a Sr(ά) = 0 if Σ ^ < r

If the rth jump of the Poisson process occur at *ί\ then Sr = Xe(t)
according to their model. Hence they have obtained the distribution
of Sr. Similarly they have obtained the distribution of Lr = Lr(a),
the length of the rth longest cycle. They have given asymptotics for
the distribution and to all moments of the length of the rth longest
and rth shortest cycles.

In this paper, instead of the Poisson process considered by Shepp
and Lloyd, we consider a more general process which can have k(k > 1)
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jumps at any moment. Let x(t) denote the number of jumps in the
interval [0, t) and let

1.19 vk(t) = P{x(t) = k} .

Let pk be the probability of having k jumps at a chosen moment, if
it is certain that jumps do occur generally at that moment. It has
been shown in Khintchine that

1.20 F(t, x) = Σ Vk(t)x* = exp {M[φ(x) - 1]} ,
k=Q

where φ(x) is given by (1.7) and λ > 0. In our model, we take the
end points of the time intervals to be

φ) = 0

^•^" / M — *S? 9klk" n — 9 ^ . . . nr "> 0
Oj\</J / j <v / ίh j J έJ, O, ' ' *) U ,s* \J ,

and

Uz) = Σ zh/kf .
* = 1

Here the probability that Lr, the length of the rth longest cycle is
'j9 is given by

PZ{LT = j} = — ^ — ̂ J+1 J Σ 2>*Vr-*(*- - ί)}dί,

1.22 έ ί P *

where

Pr = Σ P*

Also the probability that Sr, the length of the rth shortest cycle is
'j9 is given by

Here we use the technique of generating functions to estimate the
asymptotics of E{Lr}

m and E{Sr}
m suitably normalized in a way different

from that used by Shepp and Lloyd. While they have considered the
case where the jumps occur according to Poisson law, we have considered
a more general system of which Poisson process is a special case. By as-
suming the Poisson law for jumps they were able to recover the model
based on the uniform distribution. By assuming a more general law for
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jumps we obtain a generalised probability model for the cycle class of
which that derived on the basis of the uniform distribution is a special
case. Thus we have in this paper discussed a generalization of the
one given by Shepp and Lloyd with the help of the new technique.

2* A lemma* We now prove a lemma which we use extensively.

LEMMA. Let

2.1 A(z, x) = Σ <*>r(z)%r ,
r = l

and

2.2 A(x) = Σ &rXr ,
r = l

with ar(z) > 0, satisfying

2.3 Σ *r(z) = c, 0 < z < 1 ,
r = l

c, α constant. Then for

2.4 αr(«) • α r , z > 1" ,

it is necessary and sufficient that for 0 < x < 1

2.5 A(z, x) • A(x), z > 1- .

Proof of the lemma. First let us suppose that (2.4) holds. Then
for fixed x, (0 < x < 1) and ε, we can choose a number n0 such that
{x*°/(l - x)} < ε. Then,

2.6 I A(s, a?) - A(x) | < Σ I αr(») - αr | α;r + 2eε .

Now each term in the right hand side tends to zero. Hence the
necessary part. Now suppose that (2.5) holds. Since {ar(z)} is bounded
it is always possible to find a converging subsequence. If (2.4) is not
true then we can extract two subsequences converging to two different
sequences {α?} and {α?*} and the corresponding subsequences of {A(z, x)}
would converge to A*(x) = Σα?αΓ and A**(#) = ^a^xr which con-
tradicts the assumption that (2.5) holds. Hence {α*} = {α**} = {αr}.
This proves the sufficiency part.

3* The r th longest cycle* The mth raw moment of the rth
longest cycle is

3.1 Ez{LrΓ = ^tζ- [j+1 Σ Pkvr-k(t~ ~ t) dt .
i=i Pr Jtj k=i



ORDERED CYCLE LENGTHS IN A RANDOM PERMUTATION 609

Hence

Σ Prx
r-ιEz{Lr}

m = λ Σ a'-1 Σ i m Σ 3>*Vr-»(ί- - ί)dί,
r = l r = l j = l J ί j & = 1

•3.2 = λ Σ i" 1 Σ * H Σ vr-*(ί- - t)pk \dt,
3 = 1 Jtj r = l U = l J

oo f*i + l

= λ Σ i r o elc*"t)-13(t--t>{^(a;)/a!}(iί .
3 = 1 Jίj

Let F = F(X) denotes the left hand side of (3.2) and F' =

F' = s^xitj™ \tJ+1elsl~aiφix)-iW--t){φ(x)/%}dt ,
3.3 3 " J t i

where L' is the same as Lr with λ replaced by λs1~α.
Let us now consider some analytical preliminaries regarding t3-(z). With
z = er\ 0 < s < oo. We have

3.4 ^(e-) - tό{e-s) - Σ {e"k'/ka} .
k = j

In the interval {y: ks < y < (k + l)s}, we have

e-ks e - y e-(k + ί),

Aαsα τ/α (k + l ) α s α '

and

5 ώy > J L f3.5
y (k +1

Summing with respect to k, we have,

3.6 s1-" Σ (e~ks/ka) > \~ (e-ηya)dy .
k = j Jjs

Let

3.7 E(Θ) = \ (e~y/ya)dy .
Jo

Then from (3.6) E(js) < s1-* ΣΓ=3 e~ks/ka. Also

Γ (e~y/ya)dy > s1^ Σ. {β~fes/̂ α} •

Combining the two

3.8 EΌ's) < sι~a Σ {e-*β/*β} <



f , + 1 ) d?λίφ{x)~l]E{θ)~θ

3.11 F ' = λ Σ i w {̂ (̂ M-̂  dθ .
jΛΓyt 9
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Now consider the equation

3.9 sι-« Σ {e~ks/ka} - E(X) .

If Xj(s) is the root of the equation (3.9), we have

Ί ( i ) (j — 1)8 < Xj(s) < js
3.10 and

(ii) Xj(s) is unique .

In (3.3) put E{θ) = 81~«{U - t) so that

s 1 - dt = {e-
θ/θa}dθ .

Hence

Let

where

3.12 d^(^) =

But

3.13 (j - 1)8 < X,{s) < js and i s < Xj+1(s) < (j + l)s .

This implies that

Thus

Now

Consider

3.15 Γ θmdμ(θ) - Σ

We have
j oo

3.16 Σ X?($)μj ^ \ θmdμ{θ) ̂  Σ

i.e.,

Ii^I-^I* (say) ,
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where

ii = Σ x?(s)μh J2 = Σ xτ+i(8)μj

and

J = [° θmdμ(θ) .

/i and L are the Darboux sums for the Stieltjes integral based on the
above meshes. Also X^s) —»0 as s —» 0+. Hence

i, S
3.17 J°

Jo r =

Now

^ "V Ό TP (T f\™ Λ o^+i—a V ήm \
2^frϊi,z\Ljr) — AiS 2 J ^ \
r=l i=l Jί

f ί 7+ 1

\

3.18 " = ι ' ^ y

Hence using the lemma

3.19 smPrEz(L'r)
m ~ λ ( Γ Σ Vr-iΓ^ί^lPtle- ^ * - " ^ , s -+ 0+ .

Since s ~ (1 — 2),

( Σ
Jo Lfc=i

Taking λ = 1, α = 1, p1 = 1, p2 = p3 = 0 , we now have

3.20 :

Jo

This is in agreement with Shepp and Lloyd.

4. The rth shortest cycle* Let Sr be the length of the rth

shortest cycle. Then

Σ Pkvr-

t k

Let

F, = F^X) = Σ Pχ-ιE
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Then
co co ΓtjΛ_ι r

F1 = x Σ x*-1 Σ 3m\ Σ PkVr-k{t)dt,
r = l j = ι Jtj k=l

CO Γt

= ^ Σ i m

3=1 J<

4.2 T~L J~L 3

Also

where S; is the same as S r with λ replaced by λs1™*. Put (ί«β - ί)^1-" =
E(θ) in ί7/ .

4.3 Fl

Let

Xj(s)

where

4.4

Hence
4.5 8-F/ = λ Σ (Js)m {φ{)l}

3 = 1 JXjM

Since 0" - l)β < XM < js < Xί+ι(s) < (j + l)s,

4.6 λ Σ X7(8)μj < F!sm < λ Σ X?»(*)t*j

Also
co oo f l » ιi(8) co

Σ X?(8)μ, < Σ Omdμ(θ) < Σ XMs
j = l J = l JXj(8) j = l

That is

4.7 Σ ̂ f ( s ) ^ < (" <? dM<?) < Σ
J = l JXiis) 3=1

Hence

4.8 β"jP/ -

Here also swΣ?=i PrEz(Sχ = sm+1-αΣΓ=iimfe-fi - *i) < °° {by (3.18)}.
Thus as in 3.17 by equating the coefficient of xr~ι on both sides we can
obtain lims_0 smPrEz{S'r)

m.

Now let us consider the particular case of the above when pι = 1,
Ί>2 = Pa = = 0 λ = 1 and a — 1. Here

7 , 2 -

4.9
0 + .
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Hence

So

4.10
(TO - 1)! S X ~ (m - 1)!

ί=ί (r - 1)! J U=l (r - 1)!

Equating coefficient of xr^ on both sides of 4.10

(m — 1) (m — 1)! J>=

(r - 1

1 g Γ { [ l o g ( 1 _ 2 ) - i ] 7 p I }

— 1 ) ! J>=»L

X \\ [ ^{On ± 1 dθ\ ,
U ( 1 ))! J-Γ

4.11 ~ Σ (1/Pθflog (1 - zj-' l^ίr - 1 - p, m), s — 0+ ,
p=Q

where

4.12 X(?f m) = g Γ (?J, , dθ

Jo (m — 1)! ql
which is in agreement with Shepp and Lloyd.
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