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ORDERED CYCLE LENGTHS IN A RANDOM
PERMUTATION

V. BALAKRISHNAN, G. SANKARANARAYANAN AND C. SUYAMBULINGOM

Let z(t) denote the number of jumps occurring in the time
interval [0, t) and v,(¢t) = P{x(t) = k}. The generating function
of v;(t) is given by

exp t[g(x) — 11}, d(2) = i pia, i pe=1.

Lay off to the right of the origin successive intervals of length
2il7%,7=1,2, .-+, Explicitly the end points are

t1<2)=0
t52) = S abke, = 2,8, - a >0,
k=1

and
oo

to(2) = 3 24k~ .

k=1

Following Shepp and Lloyd L,, the length of the rth longest
cycle and S,, the length of the rth shortest cycle have been
defined for our choice of %(¢) and ¢;,7 =1,2,---. This paper
obtains the asymptotics for the mth moments of L, and S,
suitably normalized by a new technique of generating func-
tions, It is further shown that the results of Shepp and Lloyd
are particular cases of these more general results.

Here we consider a problem involving a random permutation which
isjclosely linked with the cycle structure of the permutation. Let S,
be the n! permutation operators on # numbered places. Let a(w) =
{a,(7), ay(w), «--, a,(m)} be the cycle class of 7€ S,. In this permuta-
tion 7, there are a, () cycles of length one, a.(7) cycles of length two,
etc. Usually the elements of S, are assigned a probability 1/x! each.
John Riordan has considered a model where he has assigned the pro-
bability

Ly Pl=ana= a0 = 0 = I U0l i e, = n,

= 0 otherwise,

for the cycle class a(w), the a’s being nonnegative integers. Here a’s
would be independent if it were not for the condition 3 ja; = n. Shepp
and Lloyd has considered a sequence a = {a,, ,, -+-} of mutually in-
dependent nonnegative integral valued random variables where for
j=1,2, ... the random variable a; follows the Poisson distribution
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with mean 27/j, 0 < z < 1, z being same for all values of j. Accordingly

Pz{al = Oy Ky = Agy = '} = (1 - z)zz;;ljaj ﬁ (1/.7')0]'/&].!’
i

a; >0,7=1,2,..-.

1.2

From this it can be seen that the probability distribution of the ran-
dom variable y(a) = 35, Ja; is

1.3 Pa) =n}=01—-22",n=20,1,2, ...,
Also

v Pla, = a, a, = a, «--|v(@) = n} = 51211 /9 la;!, sz.ljaj =n
) = 0 otherwise .

Thus Shepp and Lloyd were able to recover 1.1 assumed in the model.
In this paper, for the cycle class a(7r) we have assigned the probability

15 Pl =ay=ay - a,=a)=UL0<z<1 Sja =n
7=1
= 0 otherwise .

Here

L6 1= 10,@%, 3505 =y Gy = G = =+ = 0, (X ja; = )
where v,,(27/7%) is the coefficient of 2%/ in exp {Mz7/7)[¢(x) — 1]},
1.7 $(@) = g et  and  Sip.=1.

On detailed computation

1.8 v,(Zj?) = e )" S (22779 (0,27[7%)™ « -

nyt+2ng+3ngtece=a; %1! %2! e

In the special case when A =1,p,=1,p, =9, = --- =0 and a =1,
exp {(Mz7/79)[é(x) — 1]} reduces to the generating function of the Poisson
process with the time parameter equals to z7/7, which has been considered
by Shepp and Lloyd. Also the generating function of II which represents
the distribution of P{v(a) = n}, where for our choice of the sequence
a;’s defined by 1.14

1.9 v(@) = ija]

is given by
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1.10 3 Plu(e) = mjar = T1exp (M@llp () — 1) .
On detailed computation we note that

Py(a) = n} = exp{—»\ 5; Zi[9e} x

1 2“
X

Nyl Ml e e
Ny +2ng+3ngtee
+2(nl+2nf+ee)
1.11 +3(ni’+2')§é’+"-)
iy , ,
P2 \"1 [ PR \"2
la 20!
" .
L Ny Ml eee
T paAzZ \" [ PAZE ™2
111 2(1
I" H’ >< et
L n'l 'l ..

In particular when » =1, =1 and p,=1,p,= p, = --- =0, the
generating function of the distribution of 1.9 reduces to

1.12 exp [— 23 (?7/7) + 3 @27/ = (1 — 2)/(1 — 22) .
Hence
P(a) = n} = (1 — 2)z*,

which is in agreement with that considered by Shepp and Lloyd. In
the special case mentioned above

VI =TT ()t i 3ida, = m,

=90 otherwise .

1.13

This is also in agreement with the model discussed by Shepp and Lloyd.
If we take a = (a, vy, -+ +) to be a sequence of mutually independent
nonnegative integral valued random variables where for 7 =1,2, --.

1.14 Pla, = a;} = v,,;(#7/j%), a; = 0,1,2, ++-,

by using the Borel-Cantelli lemma, we can easily show that v(a) =
S, ja; is finite with probability one. Hence the joint distribution
(ay, a,y atyy +++, V() can be written as

PAa, = @y @ty = g, + -+, v(@) = 0} = I 0,/ it 3ja; = n,
1.15 =t i=
=0 otherwise .
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From this we can see that
1.16 Pla, =a, a, = a,, «--, | v(a) = n} = I/IT,

which we have assumed for the model.

Shepp and Lloyd have considered a Poisson process which takes
place on T = {—o <t < 4o} at unit rate. That is, for any interval
of length I'c T, the probability that p jumps occur in I is

eXp[-lII] 'Ilp/p!’ D = 0, ly PARER

independently of any conditions on the process on T — I. They have
taken the following end points for the time intervals

tx(z) = Oy
1.17 ) = S etk = 2,8, «--
k=1

to?) = 2tk =log (1 —2)~",
k=1
so that the jth interval is
t](z) <t < tj+1(z)1j = 1! 2’ ctc .

They define \,(f); — o <t < =, to be a function whose value is ‘5’ on
the jth interval, j = 1,2, .- and is zero if t < 0 or ¢ > t.(2). Then
for each 5 =1,2, ... the interval {¢; A.(¢) = j} has length z7/j, the
probability that a; jumps of the Poisson process occur in this interval is

1.18 exp (—2/9) « @/5)%/a;l,a; = 0,1,2, «--

and that these various events for 5 = 1, 2, .-« are mutually independent.
They have taken a sample function of the Poisson process, with jumps
in the interval [0, ¢.(z)), which are finite in number with probability
one, oceurring at times 7, <7, < --+ <7, (0, random). They take the
positive integers A, (7)) < \(7,) < -+ = \,(7,) as the lengths of the ¢
cycles of a permutation on v = 3%, A.(z,) places, and in this class S,,
they choose a permutation at random with uniform distribution. For
any given » = 1,2, +++ let S, = S,(«) be the length of the »th shortest
cycle in a permutation of the cycle class «a - S, (@) = 0 if > a; <.
If the rth jump of the Poisson process occur at ‘¢’, then S, = \.(¢)
according to their model. Hence they have obtained the distribution
of S,. Similarly they have obtained the distribution of L, = L,(«),
the length of the »th longest cycle. They have given asymptotics for
the distribution and to all moments of the length of the »th longest
and rth shortest cycles.

In this paper, instead of the Poisson process considered by Shepp
and Lloyd, we consider a more general process which can have k(k > 1)
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jumps at any moment. Let x(f) denote the number of jumps in the
interval [0, ) and let
1.19 () = Ple@t) = k} .

Let p, be the probability of having &k jumps at a chosen moment, if
it is certain that jumps do occur generally at that moment. It has
been shown in Khintchine that

1.20 F(t, ) = kgmw = exp (M[p@) — 1]} ,

where ¢(x) is given by (1.7) and » > 0. In our model, we take the
end points of the time intervals to be

t.2) =0

121 tj(z)zjz—lzk/k”‘,j-:z,g,-..,a>0,

k=1
and

to(2) = }gz"/k“ .

Here the probability that L,, the length of the rth longest cycle is

‘4’ is given by
PAL, = 3} = 2 [ {3 pwv. it - 0)at,
i p t; k=1
1.22 e
173 r
- ;; :‘“ {I‘Zl PVt — t)}dt ,
r J -
where
Pfr = pk .

k

Also the probability that S,, the length of the »th shortest cycle is

‘4’ is given by

1l
-

PAS, = j} = 1‘; S S v )}a

Here we use the technique of generating functions to estimate the
asymptotics of E{L,}™ and E{S,}™ suitably normalized in a way different
from that used by Shepp and Lloyd. While they have considered the
case where the jumps occur according to Poisson law, we have considered
a more general system of which Poisson process is a special case. By as-
suming the Poisson law for jumps they were able to recover the model
based on the uniform distribution. By assuming a more general law for
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jumps we obtain a generalised probability model for the cycle class of
which that derived on the basis of the uniform distribution is a special

case. Thus we have in this paper discussed a generalization of the
one given by Shepp and Lloyd with the help of the new technique.

2. A lemmma. We now prove a lemma which we use extensively.

LEMMA. Let

2.1 Az, x) = 2 a. (@),
and
2.2 A@) = S a0,

with a.(z) > 0, satisfying
2.3 SaE) =c0<z<1,
r=1

¢, a constant. Then for
24 a,( —a,, z—> 17,
it 1s mecessary and sufficient that for 0 < x <1

2.5 Az, 0) — A@), 2 — 1~

Proof of the lemma. First let us suppose that (2.4) holds. Then
for fixed x, (0 < 2 < 1) and ¢, we can choose a number 7, such that
{x™/(1 — x)} < e. Then,

2.6 1Az, 1) — A@w)| < fﬁ:ﬂo(a,(z) — a,|a" + 206 .

Now each term in the right hand side tends to zero. Hence the
necessary part. Now suppose that (2.5) holds. Since {a,(z)} is bounded
it is always possible to find a converging subsequence. If (2.4) is not
true then we can extract two subsequences converging to two different
sequences {a}} and {a}*} and the corresponding subsequences of {4(z, x)}
would converge to A*(x) = X, a}x” and A**(x) = >, a}*x” which con-
tradicts the assumption that (2.5) holds. Hence {a}} = {a}*} = {a,}.
This proves the sufficiency part.

3. The rth longest cycle. The mth raw moment of the rth
longest cycle is

3.1 E{L}y =\ 1" S"'“ S Dt — 1) dE .
= P, Ji; k=

[



ORDERED CYCLE LENGTHS IN A RANDOM PERMUTATION 609

Hence
o oo o tit1
S, ParBALY" = 2 3o 5 S S5 Pty b — Bt
r= r=1 =1 7 =1
©o ts oo r
3.2 — A g s x'"‘{z Vs it — t)pk}dt,
j=1 t; r=1L k=1

=N\ ijm Stj+1 el[QS(av)—l](tm—t){¢(m)/x}dt .

tj
Let F' = F'(\) denotes the left hand side of (3.2) and F’' = F'(As'™) .

ti+

Fr = g S n | 1 et g @ g
=1

tj

= 3 ParB(L)"

3.3

where L. is the same as L, with ) replaced by rs'—=.
Let us now consider some analytical preliminaries regarding ¢;(z). With
z2=¢7°0<s < c. We have

3.4 toe™) — tie=) = 2 {e=* k) .

In the interval {y: ks < y < (k + 1)s}, we have

6—ks e Y e—(k+1)s
> > ’
kese y“ (k + 1)*s®
and
—ksaql—a (k+1)s ,—u l—a,—(k+1)s
3.5 s o 5 e gy > STttt
= e o T TE T D)

Summing with respect to k, we have,

3.6 st ,2, (e %[k > g: (e ¥/y*)dy .
Let
3.7 E(©) = S: (e y™)dy .

Then from (3.6) E(js) < s~ So; e~ /k*. Also

S C (eMy)dy > s S {e R k) .
(G—1)s k=3
Combining the two

3.8 E(js) < s 3 {7/} < B(G — D)s} .
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Now consider the equation
3.9 st S {e [k} = E(X) .

k=j

If X,(s) is the root of the equation (3.9), we have

(i) G —Ds<Xils) <7Js

3.10 and
"% (i) X,(s) is unique .

In (3.3) put E(9) = s*“*(t. — t) so that
s dt = {¢79/60*}do .

Hence

oo X s 2—1] »
e

j=1 Xj(s) 6,1
Let

X j41(8)
= ij(s) dp(®)

where
3.12 dp(0) = {eb@-1E0-0/gaqg |
But

3.13 G —1Ds < X;(8) <gs and js < X;u.(s) < (G + Ds.
This implies that
Xi(s) <Js < Xy o

Thus
g = 2@ S (g SX““” dp(6) .
X j=1 Xj(s)

Now
3.14 M%”fl S Xr()p = Flsm < 2”.232 S Xra)p -
Consider

oo o Xj-l—l(s)
3.15 S o dp(@) = 3, g 6" dp(0) .

Xy(s) i=1 JX;(s)
We have
3.16 S Xr@m = |, 0"au®) = 5 X500 -
ie.,

L<IZ<I, (say),
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where

L= 3 Xp@p L= 3 X6

and

1= S‘” 6" d(6) .
Xq(s)

I, and I, are the Darboux sums for the Stieltjes integral based on the
above meshes. Also X,(s) — 0 as s — 0*. Hence

s”F'" ~ {p(x)/x}n r fr—egtle@—UEO=6dh s — 0F, m = «,

3.17 . L )

~ S om=ce—0d9 3 x’“‘{z vM[E(ﬁ)]pk}, s— 0" .
0 r=1 k=1

Now

S

1

b

" 3P E(L)"™ = As e
318 ! -
= gm oS ne ) = N S e < oo

=1 Jj=1

.t 2 .
N S dt = \s™Hi—¢ Z{J”‘(t]-+1 —t;)
=

ti

3 i

Hence using the lemma
319  s"PE.(L)" ~ \ S‘” [Z v,_k[E(ﬁ)]pk]e*"ﬁ’”—“dﬁ, s 0" .
0 k=1

Since s ~ (1 — 2),
(1 — 2 E(L)"™ ~ (\/P,) r [z v,_k[E(ﬂ)]pk]e”"ﬁ’”‘“dﬂ, 1.
0 k=1
Taking =1, =1,p, =1, p, = p;-+» = 0, we now have

(1 — )" BAL}" ~ S“’ v, [EO)]e-6m—d8, z — 1-,
3.20 N
~ g e FO- O B(O)] 0™ (r — 1))}d0, z— 1- .
0

This is in agreement with Shepp and Lloyd.

4. The rth shortest cycle. Let S, be the length of the rth
shortest cycle. Then

41 P(S, = i) = JP) |7 S v, ity
Let

F,= F\) = 3, PaE(S)" .
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Then
oo L3 ts r
Fo=2Sa 55 7" S0t
4 2 r=1 J=1 ty k=1
) B N2 A2
= A Sgn | e @yt
=1 177
Also

F! = F,(\s=) = 3, Par—E,(S)™ ,

where S/ is the same as S, with \ replaced by As'~*. Put (f. — t)s'* =
E@) in F!.

o Xj41(8) 1—a
43 Fr =255 | 7 @)oo msonse g

7=1 Xj(s
Let

Xj11(s)
#j - SXj(s) dﬂ(a) ’

where
44 dp(0) = {p(v)/xf}es’ t=EONb@-11-0gg |
Hence

oo X ;49(8)
4.5 S"‘Fl' — XZ (js)m S i1 {¢(x)/x0a}el[sl—"tm—f2(€)][d)(:t)—l]——ﬁdﬁ .
i=1 Xj(s)

gis

Since (j — 1)s < X;(s) < js < Xju(s) < (4 + 1)s,

4.6 A iX}"(S) i < Fls™ <\ 2 X7 ()t -
Also

L s X j41(8) oo

S Xr@m < 35| 0mduo) < S Xn@w .
That is '
4T S xr@m < | 0dmo) < 5 Xr0m -
Hence

4.8  s"F/ ~ kr Om—{p(x) [}l MtamEONSE@-L=0Gh s — 0F, m=a.
0

Here also s" 3.7, PE(S)™ = s"H* 35, 5" (b — t5) < oo {by (3.18)}.
Thus as in 3.17 by equating the coefficient of 2™ on both sides we can
obtain lim,_, s™P,E.(S)™.

Now let us consider the particular case of the above when p, =1,
Py=Ps=-++=0 A=1and a =1. Here

g™ i xr—sz(Sr)m ~ Sm 0m—le(x—-l)[log(l—z)‘—l]—(az—l)E(d)—0d0’ 2 — 1—’
4.9 r=1 0

~ 8 S 0111,—16-::[5'(0)+10gs]+E(<9)-—0d0, s — 0+ .
0
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Hence
sm—li wr—-lEz(ST)m ~ ezlog(s"‘l) Sm 6—xE(0)+E(0)—06m-—1d0 .
So
A=9™ S gy e L
w0 (m— D) 2T ES ~ Ty
) > po—ogm—1 o | —2E(@O)] dﬁ] % [c° [xlog (1 — z)_llr—l] .
[So ¢ D e P 1Y D P 1

Equating coefficient of 2 on both sides of 4.10

A=A psym ~ —L o S [(og ¢ - 977/pY

(m — 1) (m - 1)‘ p=0
oo [_E(a)]r—-l—pﬁm——leE(ﬁ)—ﬂ dﬂ _ O+
X{S r—1—p) }]s
4.11 ~ 3 t/phllog (L — )~ PPK(r — 1 — p, m), s — 0%,
where
4.12 K(g, m) = |~ L I=EOITT 4

Jo O (m— D)l !

which is in agreement with Shepp and Lloyd.
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