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AN APPROXIMATION THEORY FOR ELLIPTIC
QUADRATIC FORMS ON HILBERT SPACES:

APPLICATION TO THE EIGENVALUE
PROBLEM FOR COMPACT

QUADRATIC FORMS

JOHN GREGORY

A theory for an elliptic quadratic form J(x) defined on
a Hubert space % has been given by Hestenes. A fund-
amental part of this theory is concerned with the signature
s and nullity n of J(x) on Sί. These indices are used to
develop a generalized Sturm-Lionville Theory and a Local
Morse Theory. In this paper the theory of Hestenes is
extended to elliptic quadratic forms J(x; σ) defined on ϊl(σ)
where α is a member of the metric space (Σ, p) and %{σ)
denotes a closed subspace of %. A fundamental part of this
extension is concerned with inequalities dealing with the
signature s(σ) and nullity n(σ) of J(x; σ) on 2ϊ(<7), where σ is
in a p neighborhood of a fixed point σQ in Σ.

It is noted that the hypothesis for these inequalities is sufficiently
weak so as to include many mathematical problems. In the second
part of this paper these results are applied to the study of eigenvalue
problems for compact quadratic forms. A significant result is that
the nth eigenvalue, Xn(σ), is a p continuous function of σ. Comparison
theorems are given for completeness. This work is a generalization
of the eigenvalue theory of A. Weinstein.

The inequality results may also be used to study focal point
problems and numerical approximation problems associated with linear
self adjoint systems of ordinary or partial differential equations.

2* Preliminaries* The basic theory of Hubert spaces, strong
and weak convergence, and linear operators and quadratic forms is
given in References [2] and [3]. The fundamental Hubert space is
denoted by 21; subspaces by .ζ&, 2", ϋ^, elements of 21 by the
letters x, y, z, scalars by a, b, c, . The inner product is
denoted by (x, y); the norm by | |.τ| |; strong convergence by xq=>xQ;
weak convergence by xq —»x0. We will assume that subspaces of 21
are closed and the scalars are real. The latter assumption is for
convenience; the complex case holds equally well.

A real valued function L{x) defined on 21 is said to be a linear
form if it is linear and continuous. A real valued function Q(x, y)
defined on 21 x 21 is a bilinear form if, for each y in 21, Q(x, y) and
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Q(y, x) a re linear forms in x. If xq —> x0 and yq —> y0 imply Q(xq, yq) —•
Q(^o, 2/o) t h e n Q(x, 7/) is compact. If Q(&, 7/) = Q(i/, a?) t h e n Q(x) =
Q(ί», $) is t h e quadratic form associated w i t h t h e bilinear form
Q(x, y). We assume t h r o u g h o u t th i s paper t h a t bilinear forms
satisfy Q(x, y) = Q(y, x).

Q(x) is positive (negative, nonpositive, nonegative) on 21 if Q(x) > 0
(Q(x) < 0, Q(x) ̂  0, Q(&) ^ 0) for x Φ 0 in SI. Q(x) is positive definite
on 21 if there exists a positive number /& such that Q(x) ̂ h\\x\\2 on
21. Q(x) is compact if 8ff —»- #0 implies Q(#ff) —• Q(x0). Q(x) is weakly
lower semicontίnuous (wise) if #g —> x0 implies lim infg=O3 Q(xq) ^ Q(a?0).

Two vectors x any 7/ in 21 are Q orthogonal if Q(#, 2/) = 0. The
vector x is Q orthogonal to ^ if y in ^ implies Q(x, y) — 0. The set
of all vectors ζ> orthogonal to & is the Q orthogonal complement,
denoted by &q. & and ^ are Q orthogonal if each # in έ% is Q
orthogonal to c#. A vector a; is a Q wtrfϊ vector of & if a; in & Π ̂ Q .
^ 0 will denote the set of Q null vectors of ^ .

The signature (index) of Q(x) on & is the dimension of a maximal,
linear subclass ^ of £& on which Q(«) is negative. The nullity of
Q(x) on ^ is the dimension of ^ 0 = ^ (Ί ̂ ρ . Finally J(α?) is an
elliptic form on 21 if J(x) is wise on 21, and xq=>x0 whenever xq—>x0

and J(xq) —> J(α?0).
We note the following results for elliptic forms [3]: A quadratic

form J(x) is elliptic on 21 if and only if there exists a finite dimen-
sional subspace & of 2t such that J(x) is positive definite on the
orthogonal complement of &. A quadratic form J(x) is elliptic on
21 if and only if there exists a positive definite form P(x) and a
compact form K(x) such that J(x) = P(x) — K(x). Furthermore K(x)
can be chosen nonnegative on 21. A positive elliptic form is positive
definite.

Theorems 1 and 2 have been given in [3].

THEOREM 1. The signature of Q(x) on . ^ , if finite, is given by
each of the following quantities:

(a) the dimension of a maximal subspace ^ in έ%? on which

Q(x) < 0;
(b) the dimension of a maximal subspace S> in £%f on which

Q(x) ^ 0 and & Π &* = 0;

THEOREM 2. // the sum m = s + n of the signature s and nullity
n of Q(x) on & is finite, it is given by each of the following
quantities:

(a) the dimension of a maximal subspace ^ in & in which

Q(x) ^ 0;
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(b) the least integer k such that there exists k linear forms
Lu •••, Lk on & with Q(x) > 0 for all x in & satisfying La(x) —

3* Fundamental Inequalities* The purpose of this section is
to state and derive fundamental inequalities which relate the signature
and nullity of an Elliptic Form on a closed subspace of 21 to "approxi-
mating" Elliptic Forms on "approximating" closed subspaces.

The main results are contained in Theorems 6 and 7. Theorem 8
is a combination of these two theorems. Theorem 11 is an extension
of Theorem 7 to the metric space I = £ ι x ί . Continuity of the
nth eigenvalue, Xn(σ), follows immediately from Theorem 11.

Let Σ be a metric space with metric p. A sequence {σr} in Σ
converges to σQ in Σ, written σr —• σQ, if limr=oo p(σr, σ0) = 0. For
each σ in Σ let 2X(σ) be a closed subspace of 21 such that

(la) If σr-*σQ1 xr in 2I(σr), xr—>y0 then y0 is in 2X(σ0);
(lb) If xQ is in 2l(σ0) and e > 0 there exists δ > 0

such that whenever p(σ, σQ) < δ, there exists xσ in ?t(σ) satisfying
a?0 - xσ\\ < e.

LEMMA 3. Condition (lb) is equivalent to the following: Let
be a subspaoe of 2l((j0) of dimension h and ε > 0. There exists

δ > 0 such that whenever p(σO1 σ) < δ, there exists a subspace &{σ) of
of dimension h with the property that if x0 is a unit vector in

0) there exists xσ in έ%?(σ) such that \\ xQ — xσ \\ < ε.

Clearly this condition implies (lb) with h = 1. Conversely let
xu " ,xh be an orthonormal basis for &(σ0). Given ε > 0 there
exists δ > 0 such t h a t if p(σ0, σ) < δ then xlσ, •••, xhσ is in %(σ) with

II &* - ^ α l l 2 < Φ>
Assume that usual summation conventions with k, I — 1, , h.

Letting x0 = bkxk and xσ = bkxkσ where bkbk = 1 we have

II Xo - Xa\\2 = II b k ( x k - xkσ) I I 2 ^ ( I b k I || x k - x k σ \ \ f

^ (6Λ)(II ^ ~ ^ II II xι - Xia II) ̂  Λ(e/fe) - ε .

This concludes the proof of the lemma.
The "approximation" hypothesis for forms are now stated.
For each σ in Σ let J(x; σ) be a quadratic form defined on %{σ)

with J(x, y; σ) the associated bilinear form. Let s(σ) and n(σ) be
the index and nullity of J(x; σ) on SX(σ). For r = 0, 1, 2, ••• let xr

be in SX(σr), yr in 2l(σr) such that: if xr—>x0, ^r=>^/0 and σr—>σ0

then
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(2a) lim J(xr, yr; σr) = J(x0, yo; σ0);
T = 00

(2b) lim inf J(xr; σr) Ξ> J(x0; σ0); and

(2c) lim J(xr; σr) — J(x0; σ0) implies xr => x0.

LEMMA 4. Assume condition (2a) holds. Let σ0 be given. Then
there exists δ > 0, M > 0 suoh that p(σ, σ0) < δ implies \ J(x, y; σ) | ^
M\\ x\\ II2/II for all x, y in 2l(cr).

Suppose the conclusion does not hold. Then for r = 1, 2, •
we may choose σr in Σ and xr, yr in 2l(σr) such that || α?r || = || j / r || = 1,
ρ(σr, σ0) < ί/r and a\ = | J(a?r, ?/r; <7r) | > r.

Now «r = xr/ar => 0 and ?/r = τ/r/αr ==> 0 so by

(2a) 1 - J(xr, yr; σr) > J(0, 0; σ0) = 0 .

This contradiction establishes the result.

THEOREM 5. // (2a) and (2c) Λ,oϊd ί/̂ β^ βΐί/ier J(x; σ) or —J(x; σ)
satisfy (2b).

Suppose the conclusion does not hold. Then there exists sequences

{σr}, {yr} and {zr} (r = 0, 1, 2, •••) such that σr-+σ0; yr, zr in SX(σr);

2/r-*2/o» ^ - ^ ^ 0 ; a n d

lim

lim J(τ/r, ^ r; σr) = B, and

lim J(zr; σr) = C > Jfe; <70)

where A, j?, and C are real numbers by Lemma 4. Thus the equation

[A - J(y0; σo)]a2 + 2a[B - J(y0, zo; σ0)] + [C - J(^o; ^0)] = 0

has two distinct real roots α l t α2. For i = 1, 2 and r = 0, 1, 2,
let xri = α42/r + 2;r so that x r i —> xoί. By the definition of ai9

J(xri; σr) = J(?/r; o r)α2

{ + 2a{J{yr, zτ\ σr) + J(zr; σr) • Aa\ + 2Bat + C

0y zo; σ0) + Jfe; 0̂) = J{®Q%\ σo)

so that from (2c) xri =>xOi (i — 1, 2). Since αx ^ α2 then yq =>y0 and
^ ==> ^0. Finally from (2a) we have

A = lim J(yr; σr) = Jd/0; σ0) > A .

This contradiction establishes the theorem.

THEOREM 6. Assume conditions (la), (2b) and (2c)
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for any σ0 in Σ there exists δ > 0 such that p(σ0, σ) < δ implies

(3) s(σ) + n(σ) ^ s(σ0) + n(σ0) .

Assume the conclusion is false. Then there exists a sequence {σr}
with σr —> σ0 and s(σr) + w(σr) > s(σ0) + n(σ0). Let & = s(σ0) + w(σ0) + 1.
For r = 1, 2, there exists k orthonormal vectors xίr, x2r, , xkr in
3l(αv) with J(x; σr) ^ 0 on span {xlr, , xkr}. For each p = 1, , k
the sequence {xpr} is bounded in 21 and hence has a weakly convergent
subsequence, which we may assume to be {xpr}, such that xpr —> xp.
By (la) xp is in 2l(σ0).

Assume the usual repeated index summation convention with
p = 1, , k. Let b = (&l5 , bk) be arbitrary, set y0 = bpxp and
2/r = bpxpr. Since τ/r —> yQ we have by (2b)

J(Vo'f ô) ^ lim inf J(?/r; (jr) ^ 0 .

Thus a?i, •••, % is a linear dependent set, for if not by Theorem 2,
Ic — 1 = s(σ0) + w(σ0) ^ &.

Choose 6 ^ 0 such that y0 = bpxp = 0; also choose yr = bpxpr. We
note yr —> τ/0 = 0 and

0 rr: J(0; 6ΓO) ^ lίm ίπf J(yr; σr) ^ lim sup J(yr; σr) ^ 0 .

Hence J(?/r; σr) ~> 0 = J(0; σ0) so that yr => 0 by (2c).
Finally 0 = limr=oo || yr ||2 = 6̂ 6̂  ^ 0. This contradiction establishes

the theorem.

THEOREM 7. Assume conditions (lb) απc? (2a) Λ,oZd. Then for
any σ0 in Σ there exists δ > 0 such that p(σ0, σ) < δ implies

(4) s(σ0) ̂  s(σ) .

Let . ^ ( σ 0 ) be a maximal subspace of 9I(σ0) such t h a t J($; σ0) < 0
on ^ ( σ 0 ) . Let xl9 •• ,a?A be a basis for &(σ0). By Lemma 3 and
conditions (lb) and (2a) there exists a basis # l α, * ,xha for ^ ( σ ) such
t h a t if xσ = ttj,^ and

then

F(a, σ) = J(^σ; σ) = apaqApg(σ) (p, q = 1, , fe; p, g summed)

is a continuous function of σ at σ0.
By the usual arguments for quadratic forms we may choose

M < 0 and δ > 0 such that
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F(a, σ0) ^ 2Ma9ap

and

F(a, σ) = F(a, σ0) + (Apq(σ) - Apq(σ0))apaq ^ Mapap

where p(σ0, σ) < δ. This completes the proof.
Combining Theorems 6 and 7 we obtain

THEOREM 8. Assume conditions (1) and (2) hold. Then for any
σ0 in Σ there exists δ > 0 such that p{σ, σ0) < δ implies

(5) s(σ0) ^ s(σ) <£ s(α ) + w(σ) <ί β(tf0) + w(tf0) .

COROLLARY 9. Assume δ > 0 Λαs δeew choosen such that p(σ, σ0) <
δ implies equation (5) holds. Then if p(σ, σQ) < δ we have
(6a) n(σ) ^ w((70),

(6b) ^(σ) = n(σ0) implies s(σ) — s(σ0) and m(σ) = m(σ<), and
(6c) n(σ0) = 0 implies s(σ) — s(σ0) and n(σ) = 0.

This result follows at once from Theorem 8. As a further result
we have

COROLLARY 10. The set {σeΣ\ n(σ) = 0} is open. The set
{σ e Σ I n(σ) Φ 0} is closed.

As an example of these results we will extend Theorem 8 to a
result for the metric space M = E1 x Σ. This result will be funda-
mental for the continuity of the wth eigenvalue Xn(σ). Thus assume
M — I x Σ, I an open interval of E1, is a metric space with metric
d defined by

d(μ19 μ2) = I λ2 - \ I + p(σi9 σ,)

for any pair of points μ1 = (λ:, σ^, ^ 2 = (λ2, σ2) in M. Let s(μ) —
s(λ, (j), n{μ) = n(X, σ) be the index and nullity of J(x; μ) on 2l(μ);
let m(μ) = m(λ, σ) = s(λ, σ) + w(λ, σ). Theorem 8 and Corollary 9
hold with the obvious modifications.

THEOREM 11. Let conditions (1), (2) be satisfied with μ = (λ, σ)
in M replacing σ in Σ. For fixed σ let the signature s(λ, σ) be
a monotone function of λ such that s(λ + 0, σ) = s(X — 0, σ) implies
n(X, σ) = 0. Let μ0 — (λ0, σ0) m M be given such that s(λ0 — 0, σ0) —
n, s(X0 + 0, σ0) = m. Then there exists δ0 > 0 such that \X — Xo\ -^ δQ

and p(σ, σQ) ^ δQ imply that s(X, σ) is between n and m.

Assume s(λ, σ) is monotone increasing on an interval / and
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hence n^m. Choose δ>0 so small that s(X, σ0) = n for (λ0 — 2δ, λ o ) c /
and s(λ, σ0) = m for (λ0, λ0 + 23) c /. By assumption n(X0 — δ, σ0) =
n(XQ + 3, σ0) = 0. Finally choose <50, 0 < δ0 <̂  δ, such that (θ(σ, σ0) < δ0

implies (5) holds for both μ0 = (λ0 — δ, σ0) and μ0 = (λ0 + δ, σ0). By
(6c), s(X0 — δ, σ) = w and s(λ0 + δ, cr) = m for all σ such that p(σ, σ0) < δ0.
The theorem now follows by the monotone condition.

4* Eigenvalue Theory* The purpose of this section is to apply
the theory of § 3 to the study of eigenvalue problems for compact
quadratic forms. Our work is motivated by (and at times duplicates)
the methods and results of Hestenes [3]. Of particular significance
are Theorems 20 and 21 which give sufficiency conditions for the
continuity of the nth eigenvalue. Theorem 22 and 23 are comparison
theorems. They follow directly from "signature inequalities" given
in Reference [3].

In this section we assume Σ is a metric space with metric p.
For each σ in Σ let 2t(σ) be a closed subspace of 21, J(x; σ) an
elliptic form defined on 2l(σ), and K(x; σ) a compact form on 2l(σ).

We assume conditions (1) and (2) are satisfied and that σr —> σ0,
xr in SX(σr), x0 in 2t(<70), xr—>x0 imply K(xr; σr) —> K(x0; σ0).

Let M — Eι x Σ be the metric space with metric d defined above
(after Corollary 10). For each μ = (λ, σ) in M define Wi(μ) = 3I(tf)
and

(7) H(x; μ) = J(x; X, σ) = J(x; σ) - XK(x; σ)

on the space 2l(μ). Finally let s(μ) = s(X, σ), n(μ) = n(X,σ), and

m(μ) — m(X, σ) denote the index, nullity, and sum of the index and

nullity of H(x; μ) on

THEOREM 12. Conditions (1) and (2) hold with μ replacing σ and

H replacing J.

Since 2l(μ) = Sl(σ) conditions (1) hold. For (2a) let xr, yr in

2l(/ir), r = 0, 1, 2, with xr -> xQ and yr => yQ. Then

H(xr, yr) μr) - H(x0, yo; μ0) = {J(xr, yr; σr) - J(x0, yQ; σ0)}

+ XQ[K(xQ, yo; σ) - K(xrJ yr; σr)\

+ (λ0 - Xr)K(xry yr; σr) .

If r _>oo the first term goes to 0 since (2) holds on Σ, the third

term goes to 0 as K(xr, yr; σr) is bounded, and the second term goes

to 0 by the equality
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2[K(xoy yo; σ0) - K(xr, yr; σr)\ = K(x0 + yo; σ0) - K(xr + yr; σr)

- K(x0; σ0) - K(y0; σ0)

+ K(xr; σr) + K(yr; σr) .

For (2b) let lim Ar denote lim inf Ar then
r — oo

lim H(xr; μr) = lim [J(xr; σr) - XrK(xr; σr)\

^ lim J(xr; σr) - Umr=zooXrK(xr; σr) ^ J(x0; σ0) - \K(x0; σ0)

= H(x0; μQ) .

For (2c) if xr —> xQ, lim H(xr; μr) = H(x0; μ0) then

J(x0; σ0) - \K(x0) σ0) = H(x0; μ0) = limr=coH(xr; μr) = lim r = o oj(^ r; σr)

- limr=oβ XrK(xr; σr)

so that J(x0; σ0) — limr=oo J(xr\ σr). Since (2c) holds on Σ, we have xr=>x0.
This complete the proof of the theorem.

Theorem 13 now follows immediately from Theorem 8.

THEOREM 13. For any μ0 — (λ0, σ0) in M there exists d > 0 such
that if μ = (λ, σ), d(μ, μ0) < δ then
(8) s(λ0, σ0) ^ s(λ, σ) ^ s(λ, σ) + n(X, σ) ^ s(λ0, σ0) + w(λ0, σ0) .

COROLLARY 14. Assume δ > 0 ftαs δeen chosen such that μ =
(λ, σ), d(μ, /̂ 0) < δ implies inequalities (8) ΛoZd. TΛβ^ i/ d(μ, μQ) < 5
we have
(9a) n(λ, σ) g w(λ0, α-0),
(9b) π(λ, σ) = w(λ0, σ) implies s(λ, σ) = s(λ0, σ0) and m(λ, σ) = m(λ0, σ0), and
(9c) n(X01 σ0) = 0 implies s(λ, σ) = s(X0, σ0) and w(λ, σ) = 0.

Corollaries 14 and 15 follow immediately from Theorem 13.

COROLLARY 15. The set [μ in M\n(μ) = 0} is open. The set
{μ in M\ n{μ) Φ 0} is dosed.

THEOREM 16. Let σQ in Σ be given and let Λo be a nonempty
compact subset of {X\ n(X, σ0) = 0}. Then there exists ε > 0 such that
λ0 in ΛOε and p(σ, σ0) < ε imply

(10) s(λ0, σ) = s(λ0, σ0) , ?^(λ0J σ) = n(X0, σ0) = 0

where ΛQε is the ε-neighborhood of Λo.

Let λ0 in ΛQ and set //0 = (λ0, σ0). By Corollary 14 there exists
δ = <?(λ0) > 0 such that μ = (λ, <J) and d(μ, ^0) < 3 imply conditions
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(10). By the usual arguments for compact sets there exists δ > 0
such that (10) holds whenever d(μt μ0) < δ for any λ0 in Λo. This
completes the proof.

COROLLARY 17. Let λ* be real and σ0 in Σ such that n(λ*, σ0) —
s(λ*, σ0) = 0. Then there exists ε > 0 such that p(σ, σ0) < ε and
λ — λ01 < ε imply n(X, σ) — s(λ, σ) = 0.

Let σ0 in Σ be given. A real number λ0 is an eigenvalue
(characteristic value) of J(x; σ0) relative to K(x; σ0) on 2I(σ0) if
w(λ0, &o) ^ 0. The number n(X0, σ0) is its multiplicity. An eigenvalue
λ0 will be counted the number of times equal to its multiplicity. If
λ0 is an eigenvalue and x0 Φ 0 in 2t(<τ0) such that J(x0, y, cr0) —
\K(x0, y; σ0) for all y in 2X(<70) then x0 is an eigenvector corresponding
to λ0.

Assume J, K, and 21 are independent of σ, that is, consider a
fixed Elliptic Form J(x) and a fixed compact form K(x) on a fixed
space 91. Results for this case (Theorem 18) have been given by
Hestenes [3].

THEOREM 18. Assume x Φ 0 in 21, K(x) ^ 0 implies J(x) > 0.
T%e% £fterβ exists λ* s^c/t ί/iαί J(cc; λ*) is positive definite on 21.

// λ0 ^ λ* ί/̂ βre exists ε = ε(λ0) ŝ f̂c that
(lla) s(λ) = s(λ0), n(X) = 0 (λ0 - ε < λ < λ0) and
(lib) s(λ) = s(λ0) + w(λ0), w(λ) = 0 (λ0 < λ < λ0 + ε).

J/ λ0 ^ λ* ίfcerβ exists ε = ε(λ0) ŝ ^A ί/iαί
(12a) s(λ) = s(λ0) + w(λ0), n(λ) = 0 (λ - ε < λ < λ0) and
(12b) s(λ) - s(λ0), π(λ) = 0 (λ0 < λ < λ0 + ε).

// λ* ^ λ' < λ" then s(λ") — s(λ') is β^^αi ίo ίfeβ number of
characteristic values on λ' ^ λ < λ"; if λ" < λ' < λ* ίfeβπ s(λ") — s(λ')
is egttαϊ ίo the number of characteristic values on λ" < λ ^ λ'.

// λ* ^ λf < λ" ίfeβπ s(λ") + n(λ") — s(λf) is equal to the number
of characteristic values on λ' ^ λ ^ λ"; if λ" < λ' ^ λ* ttβn- s(λ") +
?z(λ") — s(λ') is equal to the number of characteristic values on
λ" <: λ ^ v .

It is instructive to describe the graph of λ versus s(λ). By
Theorem 18 this graph is a step function with a finite or countably
infinite number of intervals; each interval has the associated non-
negative integer value s(λ). The number λ* is not unique. It may
be chosen to be any interior point of the interval on which s(λ) = 0.
Note that s(λ) is a nondecreasing function on (λ*, co) and nonincreasing
on (— oo,χ*); it is continuous from the right if λ < λ* and from
the left it λ* < λ. The discontinuities in s(λ) are points at which
n(X) Φ 0; in fact the jump at λ is n{X).
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For convenience we will denote the kth eigenvalue greater than
λ* by λA._1, the kth. eigenvalue less than λ*, by Xk. If σ0 in Σ is
such that Theorem 18 holds we use the notation Xk(σ0) and λ_fc(o 0).

THEOREM 19. Let σ0 in Σ be given and assume J(x; σ0) > 0
whenever x Φ 0 in Sl(σ0), K(x; σ0) <£ 0. Then there exists rj > 0 such
that p{σ, σ0) < η implies J(x; σ)>0 whenever x Φ 0 in 2I(σ), K(x; σ) < 0.

In addition there exists λ* and 8 > 0 such that μ — (λ, σ), μQ =
(λ*, (70\ d(/ί, μ0) < δ imply H(x; μ) > 0 on

If the first result is not true, we may choose sequences {σj,
{xq} such that σg—>σ0, xq in 3l(<τff), | |a j j | = l, K(xq; σq) ^ 0, and
e/(flJg; O"Ϊ) ^ 0. Since {xq} is bounded there exist y0 in SI and a sub-
sequence {XqJ, which we assume to be {xq} such that xq—>y0. By
(1) y0 is in 2t(σ0).

We claim #0 = 0. If not K(yQ; σ0) = limρ=00 K(xq; σq) ^ 0 implies
J{Vv> σo) > 0 which is impossible as

0 ^ lim sup J(xq; σq) ^ lim inf J(xq; σq) ^ J(y0; σ0) .

Thus J(y0; σ0) — 0 = lim9=oo J(a;ρ; σ*ff) and by (2c) xg ==» 0. The contradic-
tion 1 = lim9=oo || xq || = || 0 || = 0 establishes the first result.

For the second result; by Theorem 18 there exists λ* such that
H(x; μ0) > 0 on 3t(//0) Thus w(λ*? σ0) = s(λ*, σ0) = 0. The result now
follows by Corollary 17.

THEOREM 20. Let σ0 in Σ be given such that J(x; σ0) > 0 whenever
x Φ 0 in 9X((J0), K(x; σ0) ^ 0. Assume λ', λ"(λr < λ") are not eigen-
values of σ0 and there exists k eigenvalues of σQ on (λ', λ"). Then
there exists e > 0 such that p(σ, σ0) < ε implies there are exactly k
eigenvalues of σ on (λ', λ").

In fact if Xn(σ0) ^ Xn+1(σ0) ^ ^ Xn+k-ι(σo) a r e the k eigenvalues
of σ0 on (λr, λ") then Xn(σ) ^ λw+1(σ) ^ fg λu+fc_L(σ) are ί/te A:

eigenvalues of σ on (λ'? λ' ;).

We may assume λ*(σ0) ^ λ' < λ"; if λ' < X*(σ0) < ^" we consider
the two intervals λ' ^ λ ^ λ*(6r0) and λ*(σ0) <̂  λ ^ λ" separately.
Assume s(λ', c70) = ^ then by Theorem 18, s(λ", σQ) = n + k — 1,
n(X', σ0) = n(X", σQ) = 0. By Corollary 14 there exists d > 0 such
that if j0(0 , σ0) < δ then π(λ', σ) = ?^(λ", σ) = 0, s(λ', σ) = w and s(λ", α ) =
^ + k — 1. The result follows from Theorem 18 by taking ε =
min (δ, rj) where η given in Theorem 19.
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C O R O L L A R Y 2 1 . // the nth eigenvalue Xn(σ) (n = 0, ± 1 , ± 2 , •••)
exists for σ = σ0 it exists in a neighborhood of σ0 and is a continuous
function of σ.

We note that the continuity of the nth eigenvalue also follows
from Theorem 11 as the hypothesis of Theorem 18 implies the
hypothesis of Theorem 11.

Theorems 22 and 23 are concerned with comparison theorems and
eigenvalue problem. These results have been given in Reference [2]
and are included for completeness.

THEOREM 22. Let 21* be a subspace of 21, J(x) > 0 whenever
x Φ 0 and K(x) ^ 0, and λ* be given as in Theorem 18. Let {λj,
{Xf} (i = 0, ± 1 , ± 2 , •) be the eigenvalues of J(x) relative to K(x) on
21 and 21* respectively. If the kth eigenvalues Xk, λ* exist (k =
0, ± 1 , ± 2 , •••) we have

(13a) Xk ^ λ* (k = 0, 1, 2, . . . ) and

(13b) λ f c ^ λ f (k= - 1 , - 2 , - 3 , . . . ) .

Strict inequality holds for any k (k — 0, ± 1 , ± 2 , •••) such that the
J(x) Xk) null vectors of 21 and 21* are disjoint.

If 21 © 31* has finite dimension e then

(14a) Xk^ λ* <L Xk+e (k = 0, 1, 2, •) and

(14b) Xk ^ λ* ^ Xk_β (k = - 1 , - 2 , - 3 , •) .

THEOREM 23. Let J*(x) and K*(x) be a second pair of elliptic
and compact forms on 21 such that J*(x) > 0 whenever x — 0,
K*(x) < 0. Let J*(x; λ) — J*(x) — XK*(x) and assume for any real X
that J(x; X) ^ 0 whenever J*(x; X) <̂  0. T%ew ίAerβ exists λ* ŝ cfc
ί/iαί 6oί/t J*(x; λ*) απcZ J(a;; λ*) are positive definite on 21.

Let {λfe}, {λ*} (A: = 0, ± 1 , ± 2 , •••) 6e the eigenvalues of J(x)
relative to K(x) on 21 and J*(x) relative to K*(x) on 21 respectively.
Then inequalities (13) hold. If J(x; λ) < 0 whenever x Φ 0 and
J*(x;X) < 0 then inequalities (13) hold with strict inequality.

5. An Example* In this section we show that condition (1)
and (2) include the hypothesis of the eigenvalue theory of A.
Weinstein [1]. Thus many physical problems, including those of
vibrating membranes and plates, may be handled by our methods.
In a subsequent paper we will indicate how the values Xn(σ) may
be found by numerical methods.

The assumptions of Weinstein are now given. Gould [1] contains
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the most complete discussion of this theory as well as a complete
list of references.

Let ^f be a closed subspace of 21 and Sfn (n = 1, 2, •••) be a
sequence of closed subspaces of 91. Let P and Pn be the respective
projections of St onto S^f and S^n. The sequence {£fn} converges to
i^7, written J^n —• DS^ if Pnx ==> Px for all x in 31. The sequence
{,9rn} converges downward to J5^, written £?* \ ^ , if ^fn converges
to ^έ7 and J^n+ι c i^ r \ The sequence {Sf*} converges upward to ̂ ,
written S?* / £?, if <^w converges to ^ and ^ c ^ " 1 .

THEOREM 24. 1/ ^ % \ JZ 7 then £? = Π ^ ^ if ^ " /* «^

If ,5^% \ £? then a; in ^ implies x in J2f * for n = 1, 2,
so that 8 in f)^fn. Conversely if x in <2fn for each n then Pnx = x
and hence x = lim%=oo P

w»τ = Pa; so that a? in ^f.
If =^7?ι /" Sf and a; not in £f then Pίϋ ̂  .τ. Thus there exists

a > 0 such that

a < II a? - Pa; II = limNa; - P"α;||

so that x is not a limit point of \J^fn i.e., x is not in
Conversely if x in J*f then Pwa; => Px = x. Thus given ε > 0 there
exists m such that ||& — Pw.τ| | < ε with Pmx in J^f c \JJ^n; hence
a? is in \jj^n.

A correspondence between Weinstein's setting and § 3 is now
given: Let Σ = {a? e Eι \ x = 1/w (w = 1, 2, •) and 0} with the usual
metric. For w = 1, 2, 3, we set 2l(l/n) = Sfn and 31(0) = £? where
-Ŝ 7, =5^w(^ = 1,2,3, •••) are subspaces of 21 and Sfn/^. A
correspondence between the Generalized Raleigh-Ritz Method and § 3
is obtained in the same manner except that J^n \ &.

THEOREM 25. Assume USfn} satisfies ^fn\j5f or ^fn/£f.
Then n—> oo, χn in ^fn, xn-+y0 implies yQ in ^ .

Assume &n \ ££>. Let m be an arbitrary fixed integer. If
n^m then xn in ^ m . It follows that y0 is in ^ζfm. By Theorem
24, 2/0 is in

Assume £^n /*£>?. By Theorem 24 Sf — \J^n and hence xn

in S^ for n = 1, 2, . This implies, ?/0 in j*f.

THEOREM 26. Assume {^n} satisfies £f* \J*f or J^n / &>.
Then given any x0 in J^f and ε > 0 there exists a fixed integer n0

such that if n > n0 there exists xn in J?fn satisfying \\ x0 — xn\\ < ε.
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If ^f% \ S^ then x0 in j2f — Π ̂ n and we take xn = #0 in = ^ w

( w = l , 2, •••)• If Sfn/Jsf then £0 in ^ f = \J£fn. Thus there
exists x in \JJsfn such that | | # 0 — x\\ < ε and an m such that # in
J2?m. The result follows by taking n0 = m.

We remark that the spaces {Jifn} are chosen by Weinstein in a
more restrictive manner than that above. In particular for the case
Jjfn \ £f they satisfy Sf* = i? 7 0 Q span {p^ , pn) when {̂ Λ} is a
complete orthonormal sequence in i^7 0 Q J^. In the case ,.5f * / " Z
they satisfy β5fΛ = «5f ° 0 span {plf , pm} where {p/c} is a complete
orthonormal sequence in ^ θ & °.

We note that inequalities (14) with e = 1 include the comparison
(or separation) results of Weinstein contained in [1; pp. 77].
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