ON ITERATED w^* -SEQUENTIAL CLOSURE OF CONES

R. D. McWilliams

In this paper it is proved that for each countable ordinal number $\alpha \geq 2$ there exists a separable Banach space X containing a cone P such that, if J_X is the canonical map of X into its bidual X^{**} , then the α th iterated w^* -sequential closure $K_{\alpha}(J_XP)$ of J_XP fails to be norm-closed in X^{**} . From such spaces there is constructed a separable space W containing a cone P such that if $2 \leq \beta \leq \alpha$, then $K_{\beta}(J_WP)$ fails to be norm-closed in W^{**} . Further, there is constructed a (non-separable) space Z containing a cone P such that if $2 \leq \beta < \Omega$, then $K_{\beta}(J_ZP)$ fails to be norm-closed in Z^{**} .

1. If X is a real Banach space and Y a subset of X^{**} , let K(Y) be the set of elements of X^{**} which are w^* -limits of sequences in Y. Let $K_0(Y) = Y$ and inductively let $K_\alpha(Y) = K(\cup_{\beta < \alpha} K_\beta(Y))$ for $0 < \alpha \le \Omega$, where Ω is the first uncountable ordinal. A cone in X is a subset of X which is closed under addition and under multiplication by nonnegative scalars. Our main theorem extends the result of [6] that if P is a cone in X, then $K_1(J_XP)$ must be norm-closed but $K_2(J_XP)$ can fail to be norm-closed in X^{**} . By contrast it is noted that if S is a compact Hausdroff space and X = C(S) and $\alpha < \Omega$, then $K_\alpha(J_XX)$ is norm-closed, even though for example if S is compact, metric, and uncountable, then $K_\alpha(J_XX)$ is not w^* -sequentially closed. It is obvious that for each Banach space X and each subset Y of X^{**} , $K_\Omega(Y)$ is w^* -sequentially closed and hence norm-closed.

In [7] a Banach space X was exhibited such that $K_2(J_XX)$ is not norm-closed. Whether $K_{\alpha}(J_XX)$ can fail to be norm-closed for $2 < \alpha < \Omega$ is not known to the author. However, in the present paper it will be convenient to use constructions involving spaces studied in [7].

Section 2 is devoted to a useful relationship between w^* -sequential convergence and pointwise convergence of bounded sequences of functions, § 3 to further study of a space constructed in [7], and §§ 4 and 5 to preparation for and proof of the main theorems.

2. Let S be a compact Hausdorff space, B(S) the Banach space of bounded real functions on S with the supremum norm, and C(S) the closed subspace of B(S) consisting of the continuous real functions on S. If A is a subset of B(S), let L(A) be the set of all pointwise limits of bounded sequences in A, and let $L_{\alpha}(A)$ be defined inductively by $L_0(A) = A$ and $L_{\alpha}(A) = L(\bigcup_{\beta < \alpha} L_{\beta}(A))$ for each ordinal α such that $0 < \alpha \leq \Omega$.

If X is a norm-closed subspace of C(S) and $z \in L_{\varrho}(X)$, then z is

bounded and Borel measurable and hence is integrable with respect to each finite regular Borel signed measure μ on S. For each $f \in X^*$ there exists a finite regular Borel signed measure μ_f on S such that $f(x) = \int_S x \, d\mu_f$ for each $x \in X$ [3, p. 265], and by the Hahn-Banach theorem μ_f can be chosen so that $||\mu_f|| = ||f||$. If ν_f is another finite regular Borel signed measure on S such that $f(x) = \int_S x \, d\nu_f$ for each $x \in X$ then also $\int_S z d\mu_f = \int_S z d\nu_f$ for each $z \in L_\rho(X)$, by virtue of the bounded convergence theorem and transfinite induction. Hence a mapping T is unambiguously defined from $L_\rho(X)$ into the space of real functions on X^* by

$$(Tz)(f)=\int_{\mathcal{S}}zd\mu_f\quad (z\in L_{\varrho}(X),\ f\in X^*).$$

TEOREM 2.1. If S is a compact Hausdorff space and X a norm-closed subspace of C(S), then T is an isometric isomorphism from $L_{\alpha}(X)$ onto $K_{\alpha}(J_{X}X)$, and T maps $L_{\alpha}(A)$ onto $K_{\alpha}(J_{X}A)$ for each subset A of X and each $\alpha \leq \Omega$.

Proof. For each $z \in L_{\varrho}(X)$ it is trivial that Tz is linear on X^* and that $|(Tz)(f)| \leq ||z|| \, ||f||$ for every $f \in X^*$, so that $Tz \in X^{**}$ and $||Tz|| \leq ||z||$. For each $t \in S$ let $f_t(x) = x(t)$ for all $x \in X$; then clearly $f_t \in X^*$ with $||f_t|| \leq 1$, and it is easily seen that $(Tz)(f_t) = \int_S z d\mu_{f_t} = z(t)$, so that $|z(t)| \leq ||Tz|| \, ||f_t|| \leq ||Tz||$ and hence $||z|| \leq ||Tz||$. Since T is obviously linear, it follows that T is an isometric isomorphism from $L_{\varrho}(X)$ into X^{**} .

Now let A be a subset of X. Since the restriction of T to X is J_X , it follows that $T[L_0(A)] = TA = J_X A = K_0(J_X A)$. If $0 < \alpha \le \Omega$ and it is assumed that $T[L_\beta(A)] = K_\beta(J_X A)$ for each $\beta < \alpha$, then for each $z \in L_\alpha(A)$ there exists a bounded sequence $\{z_n\}$ in $\bigcup_{\beta < \alpha} L_\beta(A)$ which converges pointwise to z. By the bounded convergence theorem $(Tz)(f) = \lim_n (Tz_n)(f)$ for each $f \in X^*$. Since by assumption $\{Tz_n\} \subset \bigcup_{\beta < \alpha} K_\beta(J_X A)$, it follows that $Tz \in K_\alpha(J_X A)$. Conversely, if $F \in K_\alpha(J_X A)$ there exists a sequence $\{F_n\} \subset \bigcup_{\beta < \alpha} K_\beta(J_X A)$ such that $F_n \xrightarrow{w^*} F$; the sequence $\{F_n\}$ must be bounded [3, p. 60], and by assumption there exists a sequence $\{z_n\} \subset \bigcup_{\beta < \alpha} L_\beta(A)$ such that $Tz_n = F_n$ for each n. Now $\{z_n\}$ is bounded, and if z(t) is defined to be $F(f_t)$ for each $t \in S$ it follows that $\{z_n\}$ converges pointwise to z so that $z \in L_\alpha(A)$. For every $f \in X^*$, $(Tz)(f) = \lim_n (Tz_n)(f)$ by the bounded convergence theorem. Thus $F = Tz \in T[L_\alpha(A)]$, completing the proof that $T[L_\alpha(A)] = K_\alpha(J_X A)$. By transfinite induction the theorem follows.

REMARK. If S is a compact Hausdorff space and X is the Banach

space C(S), then for each $\alpha \leq \Omega$, $L_{\alpha}(X)$ is the space of bounded Baire functions on S of order $\leq \alpha$ and, just as in the special case of a metric space S [8, p. 132], $L_{\alpha}(X)$ is norm-closed in B(S) and hence also $K_{\alpha}(J_{X}X)$ is norm-closed in X^{**} . If S is a compact metric space with uncountably many elements then S has a nonempty dense-in-it-self kernel [1, Ch. 9, p. 34]. Hence for each countable α there is a subset T of S of Borel order exactly α [4, p. 207], but then it follows that $L_{\alpha}(X) \neq L_{\alpha+1}(X)$ [5, p. 299] and hence that $K_{\alpha}(J_{X}X) \neq K_{\alpha+1}(J_{X}X)$ for each countable α .

The reader is now referred to the proof of Theorem 1 of [7] for the construction, for each real $c \ge 1$, of a Banach space $X \subset$ C([0;3]) having the property that there exists an $x^0 \in L_2(X)$ such that $||x^{0}||=1$ but if $\{y^{h}\}$ is a bounded sequence in $L_{1}(X)$ which converges pointwise to x^0 , then $\lim \inf_h ||y^h|| \ge c$. The remainder of the present paper depends heavily on properties of the space X, and the reader will occasionally need to refer to [7]. In particular, note that X is generated by a set $\{x_{pq}: p, q \in \omega\}$ of piecewise linear nonnegative functions of norm c on [0;3] and that x^0 is the pointwise limit of the sequence $\{x^p\} \subset L_i(X)$, where x^p is the pointwise limit of $\{x_{pq}\}_{q \in \omega}$ and $||x^p|| = c$ for each p. Each x_{pq} has truncated peaks centered at certain of the points s_{ui} , t_{vj} , $2 + s_{ui}$ where $s_{ui} = 2^{-u}i$ and $t_{vj} = 2 - 2^{-v}(1 + 2^{-j})$ for $u, i, v, j \in \omega$ and $i < 2^u$. Specifically, $x_{pq}(s_{ui}) = x_{pq}(2 + s_{ui}) = 1$ if $p \ge u$, and $x_{pq}(s_{u1}) = 1$ if and only if $p \ge u$. Further, $x_{pq}(t_{vj}) = c$ if $v \leq p \leq j and 0 otherwise. If <math>\chi(S)$ denotes the characteristic function of the subset S of [0;3], it turns out that

$$x^p = \chi(\{s_{ni}: i < 2^p\} \cup \{2 + s_{ni}: i < 2^p\}) + c\chi(\{t_{ni}: v \le p \le j\})$$

and that

$$x^{0} = \chi(\{s_{pi}: p \in \omega, i < 2^{p}\} \cup \{2 + s_{pi}: p \in \omega, i < 2^{p}\}).$$

LEMMA 3.1. Let Q be the norm-closed cone in X generated by $\{x_{pq}\colon p,\ q\in\omega\}$. Then Q coincides with

$$Q_0 = \{ \Sigma_p \Sigma_q a_{pq} x_{pq} \colon a_{pq} \ge 0, \ \Sigma_p \Sigma_q a_{pq} < \infty \},$$

where the indicated summations are over the set ω of all positive integers.

Proof. It is clear that Q_0 is a cone containing $\{x_{pq}\colon p,\,q\in\omega\}$ and contained in Q. If $\{z_n\}$ is a sequence in Q_0 which converges in norm to some $x\in X$, then each z_n has the form $z_n=\sum_p \sum_q a_{npq}x_{pq}$ with $a_{npq}\geq 0$ and $\sum_p \sum_q a_{npq}<\infty$. As noted in [7] the limit $\lim_n a_{npq}\equiv a_{pq}$ exists for all p,q; indeed, in the notation of [7],

$$a_{pq} = c^{-1}(x(t_{pp} - 2^{-2p-q-2}) - x(t_{pp} - 2^{-2p-q-1})).$$

Clearly each $a_{pq} \ge 0$, and if $r, s \in \omega$ then

$$\Sigma_{p \leq r} \Sigma_{q \leq s} a_{pq} = \lim_{n} \Sigma_{p \leq r} \Sigma_{q \leq s} a_{npq} \leq \lim_{n} \mathbb{Z}_{n}(s_{11}) = \mathcal{X}(s_{11});$$

hence $\Sigma_p \Sigma_q a_{pq} \leq x(s_{11})$ and $z \equiv \Sigma_p \Sigma_q a_{pq} x_{pq} \in Q_0$.

Let $\varepsilon>0$ be given. It follows from [7, p. 1196] that each x_{pq} is continuous and vanishes at 0 and at $2-2^{-1}$ and hence that each element of X shares these properties. Since $s_{p_1}\to 0$, there exists $p_1\in \omega$ such that $z(s')<\varepsilon$ and $x(s')<\varepsilon$ for $s'=s_{p_1+1,1}$. Since $||z_n-x||\to 0$, there exists n' such that $z_n(s')<\varepsilon$ for all n>n'. Thus, by [7], $\sum_{p>p_1}\sum_q a_{pq}=z(s')<\varepsilon$ and $\sum_{p>p_1}\sum_q a_{npq}=z_n(s')<\varepsilon$ for n>n'. Further, since $t_{1j}\to 2-2^{-1}$, there exists by continuity $q_1\geq p_1$ such that $z(t_{1,q_1})<\varepsilon$ and $z(t_{1,q_1})<\varepsilon$ for all $z(t_{1,q_1})<\varepsilon$

$$\Sigma_{p \leq p_1} \Sigma_{q > q_1} a_{pq} \leq \Sigma_{p \leq q_1} \Sigma_{q > q_1 - p} a_{pq} = c^{-1} z(t_{1,q_1}) < \varepsilon$$

and similarly $\Sigma_{p \leq p_1} \Sigma_{q > q_1} a_{npq} \leq c^{-1} z_n(t_{1,q_1}) < \varepsilon$ for all n > n". Moreover, since $a_{npq} \to a_{pq}$, there exists $n_1 \geq n$ " such that $\Sigma_{p \leq p_1} \Sigma_{q \leq q_1} |a_{pq} - a_{npq}| < \varepsilon$ for all $n > n_1$. Hence for $n > n_1$ the triangle inequality implies that

$$\begin{split} ||z-z_{n}|| &\leq ||\varSigma_{p>p_{1}}\Sigma_{q}a_{pq}x_{pq}|| + ||\varSigma_{p>p_{1}}\Sigma_{q}a_{npq}x_{pq}|| \\ &+ ||\varSigma_{p\leq p_{1}}\Sigma_{q>q_{1}}a_{pq}x_{pq}|| + ||\varSigma_{p\leq p_{1}}\Sigma_{q>q_{1}}a_{npq}x_{pq}|| \\ &+ ||\varSigma_{p\leq p_{1}}\Sigma_{q\leq q_{1}}(a_{pq}-a_{npq})x_{pq}|| \\ &< 5\varepsilon\varepsilon, \end{split}$$

since $||x_{pq}|| = c$ for all p, q. Thus $||z - z_n|| \to 0$ and therefore $x = z \in Q_0$, proving that Q_0 is norm-closed.

Lemma 3.2. Let $Q_1=\{\varSigma_pb_px^p\colon b_p\geqq 0,\, \varSigma_pb_p<\infty\}$. Then $L_1(Q)=Q+Q_1$.

Proof. Since $L_1(Q)$ is a norm-closed cone in B([0;3]) by [6, Theorem 1, p. 192] and Theorem 2.1, and since $\{x^p\}_p \subset L_1(Q)$, it is clear that $Q + Q_1 \subset L_1(Q)$. If $\{z_n\}$ is a bounded sequence in Q which is pointwise convergent to some $z \in L_1(Q)$, each z_n has the form $z_n = \sum_p \sum_q a_{npq} x_{pq}$ with $a_{npq} \geq 0$ and $\sum_p \sum_q a_{npq} < \infty$. As in the proof of Lemma 3.1, for all $p, q \in \omega$ the limit $a_{pq} = \lim_n a_{npq}$ exists. For all $p, q_1 \in \omega$,

$$\Sigma_{q \leq q_1} a_{pq} = \lim_n \Sigma_{q \leq q_1} a_{npq} \leq \lim_n c^{-1} z_n(t_{pp}) = c^{-1} z(t_{pp});$$

hence $\Sigma_q a_{pq} \leq c^{-1} z(t_{pp})$ for each $p \in \omega$. Let $b_p = c^{-1} z(t_{pp}) - \Sigma_q a_{pq}$ for each p, and note that all the numbers a_{pq} and b_p are nonnegative.

For $n, p \in \omega$ let $u_{np} = \sum_q a_{npq} x_{pq}$ and $u_p = \sum_q a_{pq} x_{pq} + b_p x^p$. For each p, if $t \in [0; 3]$ and t is not of the form s_{pi} , $2 + s_{pi}$, or t_{vj} with $v \leq p$

 $\leq j$, in the notation of [7, p. 1196], $x_{pq}(t) = 0$ for all sufficiently large q and hence $x^p(t) = 0$, so that $u_{np}(t) \xrightarrow{n} u_p(t)$, If $t = s_{pi}$ or $t = 2 + s_{pi}$, then

$$u_{np}(t) = \Sigma_q a_{npq} = c^{-1} z_n(t_{np}) \longrightarrow c^{-1} z(t_{np}) = u_n(t)$$
.

Finally, if $v \leq p \leq j$, then

$$egin{aligned} u_{np}(t_{vj}) &= c arSigma_{q>j-p} a_{npq} \longrightarrow z(t_{pp}) - c arSigma_{q \leq j-p} a_{pq} \ &= c[b_p + arSigma_{q>j-p} a_{pq}] = u_p(t_{vj}), \end{aligned}$$

proving that $\{u_{np}\}$ converges pointwise to u_p on [0; 3], For each $r \in \omega$,

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Hence $\Sigma_p u_p \in Q + Q_1$. Let $w = z - \Sigma_p u_p$; then w is easily seen to be a Baire function of the first class on [0; 3] and hence by [8, p. 143] w must have a point t_1 of continuity in [2; 3].

At each point of the form $t=2+s_{ri}$ with i odd, $u_p(t)=u_p(s_{11})$ for each $p\geq r$ and hence

$$w(t) = \lim_{n} (\Sigma_{p < r} u_{np}(t) + \Sigma_{p \ge r} \Sigma_{q} a_{npq}) - \Sigma_{p} u_{p}(t)$$

$$= \lim_{n} (z_{n}(s_{11}) - \Sigma_{p < r} u_{np}(s_{11})) - \Sigma_{p \ge r} u_{p}(t)$$

$$= z(s_{11}) - \Sigma_{p} u_{p}(s_{11}) = w(s_{11}).$$

Since the set of such points t is dense in [2; 3], $w(t_1) = w(s_{11})$. On the other hand, it follows from [7] that for each point of the form $s = 2 + s_{ri} \pm 2c_{ri}$, with i odd, $x_{pq}(s) = 0$ whenever $p \ge r$, and hence

$$w(s) = \lim_{n} \Sigma_{p < r} u_{np}(s) - \Sigma_{p < r} u_{p}(s) = 0.$$

Since the set of such points s is also dense in [2; 3], it follows that $w(t_1) = 0$ and hence that $w(s_{11}) = 0$.

For each $r \in \omega$ let $w_r = z - \sum_{p < r} u_p$. Then $w_r \to w$ in the norm topology, and w_r is the pointwise limit of $\{\sum_{p \ge r} u_{np}\}$. Hence

$$||w_r|| \leq \limsup_n ||\varSigma_{p \geq r} u_{np}|| \leq c \lim_n \varSigma_{p \geq r} u_{np}(s_{11}) = c w_r(s_{11})$$

and consequently

$$||w|| = \lim_r ||w_r|| \le c \lim_r w_r(s_{11}) = cw(s_{11}) = 0.$$

Therefore w=0 and $z=\Sigma_p u_p \in Q+Q_1$, completing the proof of the lemma.

Note. The last paragraph of the previous proof shows that if

 $\{z_n\}$ is a bounded pointwise convergent sequence in Q, then in the notation of that proof for each $\varepsilon>0$ there exist $p_1,n_1\in\omega$ such that $\sum_{p\geq p_1}\sum_q a_{npq}<\varepsilon$ for all $n\geq n_1$. Indeed, given $\varepsilon>0$ there exists p_1 such that $cw_{p_1}(s_{11})<\varepsilon$. Since $\limsup_n ||\sum_{p\geq p_1}u_{np}||\leq cw_{p_1}(s_{11})$, there exists n_1 such that for each $n\geq n_1$

$$\Sigma_{p\geq p_1}\Sigma_q a_{npq} = (\Sigma_{p\geq p_1}u_{np})(s_{11}) \leq ||\Sigma_{p\geq p_1}u_{np}|| < \varepsilon.$$

LEMMA 3.3. Let $Q_2=\{c_0x^0\colon c_0\geq 0\}$. Then $L_2(Q)=L_{\varrho}(Q)=Q+Q_1+Q_2$.

Proof. Clearly $Q+Q_1+Q_2$ is a cone containing $L_1(Q)$ and contained in $L_2(Q)$. To prove the lemma it suffices to show that $L(Q+Q_1+Q_2) \subseteq Q+Q_1+Q_2$. If $\{z_n\}$ is a bounded sequence in $Q+Q_1+Q_2$ which is pointwise convergent to a function z, then each z_n has the form

$$z_n = y_n + \Sigma_p b_{np} x^p + c_n x^0$$

where $y_n \in Q$, $b_{np} \geq 0$, $c_n \geq 0$, and $\Sigma_p b_{np} < \infty$. Since $\{z_n\}$ is bounded, the diagonal process yields a subsequence $\{z_{n_i}\}$ of z_n such that $c_0 \equiv \lim_i c_{n_i}$ and $b \equiv \lim_i \Sigma_p b_{n_i p}$ exist and $b_p \equiv \lim_i b_{n_i p}$ exists for each $p \in \omega$. It is easily seen from [7, p. 1196] that these limits are finite and nonnegative, that $\Sigma_p b_p \leq b$, and that the sequence $\{\Sigma_p b_{n_i p} x^p + c_{n_i} x^0\}$ is pointwise convergent to $\Sigma_p b_p x^p + (c_0 + b - \Sigma_p b_p) x^0$. Hence also $\{y_{n_i}\}$ is pointwise convergent, and by Lemma 3.2 its pointwise limit is in $Q + Q_1$. Since z is the pointwise limit of $\{z_{n_i}\}$, it follows that $z \in Q + Q_1 + Q_2$.

REMARK. It is clear from [7] that the representation of each $z \in L_{\varrho}(Q)$ in the form $\Sigma_{p}\Sigma_{q}a_{pq}x_{pq} + \Sigma_{p}b_{p}x^{p} + c_{0}x^{0}$ is unique.

4. Given an arbitrary countable ordinal $\alpha \geq 2$ and a number $c \geq 1$, we now construct a separable Banach space X_{α} containing a cone P_{α} for which there exists $z_{\alpha} \in L_{\alpha}(P_{\alpha})$ such that $||z_{\alpha}|| = 1$ but such that if $\{w_n\}$ is a bounded sequence in $\bigcup_{\beta < \alpha} L_{\beta}(P_{\alpha})$ converging pointwise to z_{α} , then $\lim_n ||w_n|| \geq c$.

Let $\overline{B_{\alpha}}$ be the countable set $\{(2,1)\} \cup \{(\beta,\gamma): \alpha \geq \beta > \gamma \geq 2\}$. Then there exists a one-to-one mapping ν_{α} from D_{α} onto B_{α} , where $D_{\alpha} = \{1, \dots, 2^{-1}(\alpha^2 - 3\alpha + 4)\}$ if $\alpha < \omega$ and $D_{\alpha} = \omega$ if $\alpha \geq \omega$, such that $\nu_{\alpha}(1) = (2,1)$. Let $U = \{0\} \cup \{n^{-1}: n \in D_{\alpha}\}$ and let S_{α} be the compact subset $[0; 6] \times U$ of E^2 . For each real function z defined on S_{α} and each $u \in U$, let

$$z^{1,u}(t) = z(t, u), \qquad z^{2,u}(t) = z(t+3, u)$$

for $t \in [0; 3]$. Further, let \mathscr{S}_{α} be the set of all type $-\alpha$ generalized sequences $s = (s_{\beta}: 1 \le \beta \le \alpha)$ of positive integers.

Letting x_{pq} be as in § 3 and noting by [7] that $x_{pq}(0) = x_{pq}(3) = 0$ for $p, q \in \omega$, we easily verify that for each $s \in \mathcal{S}_{\alpha}$ the function x_s defined by

$$x_s^{1,u} = egin{cases} x_{seta^{s_{\gamma}}} & ext{if} \ u > 0, \, u^{-1} \leqq s_{\scriptscriptstyle 1}, \,
u_lpha(u^{-1}) = (eta, \, \gamma) \ 0 & ext{if} \ u > 0, \, u^{-1} > s_{\scriptscriptstyle 1} \ 0 & ext{if} \ u = 0 \end{cases} \ x_s^{2,u} = egin{cases} u x_{seta^{s_{\gamma}}} & ext{if} \ u > 0, \,
u_lpha(u^{-1}) = (eta, \, \gamma) \ 0 & ext{if} \ u = 0 \end{cases}$$

is an element of $C(S_{\alpha})$. Let X_{α} be the norm-closed subspace and P_{α} the norm-closed cone in $C(S_{\alpha})$ generated by $\{x_s \colon s \in \mathscr{S}_{\alpha}\}$. Since S_{α} is compact metric, $C(S_{\alpha})$ is separable [3, p. 340] and hence also X_{α} is separable. Note that $||x_s|| = c$ for each $s \in \mathscr{S}_{\alpha}$.

For $1 \leq \delta \leq \alpha$ and $s \in \mathscr{S}_{\alpha}$ let $z_{s \delta}$ be defined on S_{α} by

$$z_{s,\delta}^{_{1},u}=u^{-1}z_{s,\delta}^{^{2},u}=egin{cases} x_{s_{eta^{s}\gamma}} & ext{if} \;\; u>0,\,
u_{lpha}(u^{-1})=(eta,\, \gamma),\, eta>\gamma>\delta \ x^{s_{eta}} & ext{if} \;\; u>0,\,
u_{lpha}(u^{-1})=(eta,\, \gamma),\, eta>\delta\geq \gamma \ x^{0} & ext{if} \;\; u>0,\,
u_{lpha}(u^{-1})=(eta,\, \gamma),\, \delta\geq eta>\gamma \ x^{0} & ext{if} \;\; u>0,\,
u_{lpha}(u^{-1})=(eta,\, \gamma),\, \delta\geq eta>\gamma \end{cases}$$

Thus $||z_{s,\delta}|| = c$ if $1 \le \delta < \alpha$, but $||z_{s,\alpha}|| = 1$ for each $s \in \mathscr{S}_{\alpha}$. In fact, $z_{s,\alpha}$ is independent of $s \in \mathscr{S}_{\alpha}$ and we simply write z_{α} instead of $z_{s,\alpha}$.

LEMMA 4.1. For each $s \in \mathcal{S}_{\alpha}$ and $1 \leq \delta \leq \alpha$, $z_{s,\delta} \in L_{\delta}(P_{\alpha})$.

Proof. If $\delta = 1$ and $s \in \mathcal{S}_{\alpha}$, then for each $q \in \omega$ let $s^q \in \mathcal{S}_{\alpha}$ be defined by

$$s^q_{eta} = egin{cases} q & ext{if} \ eta = 1 \ s_{eta} & ext{if} \ 1 < eta \leq lpha. \end{cases}$$

It is easy to verify that $\{x_{sq}\}_{q=1}^{\infty}$ is a bounded sequence in P_{α} converging pointwise to $z_{s,1}$, so that $z_{s,1} \in L_1(P_{\alpha})$.

Proceeding by transfinite induction, assume that $1 < \delta \leq \alpha$ and that $z_{s,\varepsilon} \in L_{\varepsilon}(P_{\alpha})$ for each $s \in \mathscr{S}_{\alpha}$ and $1 \leq \varepsilon < \delta$. Let $s \in \mathscr{S}_{\alpha}$ be given, and let $t^q \in \mathscr{S}_{\alpha}$ be defined for each $q \in \omega$ by

$$t^q_{eta} = egin{cases} s_{eta} & ext{if } \delta
eq eta \leq lpha \ q & ext{if } eta = \delta. \end{cases}$$

If δ is not a limiting ordinal, then δ has an immediate predecessor $\delta - 1$, and it is straightforward to show that the bounded sequence

 $\{z_{t^q,\delta-1}\}_{q=1}^{\infty}$ in $L_{\delta-1}(P_{\alpha})$ converges pointwise to $z_{s,\delta}$ on S_{α} . On the other hand, if the countable ordinal δ is limiting, there exists an increasing sequence $\{\varepsilon_q\}_{q=1}^{\infty}$ of ordinals whose limit is δ , and it can be verified that the bounded sequence $\{z_{t^{q},\varepsilon_q}\}_{q=1}^{\infty}$ in $\bigcup_{\varepsilon<\delta}L_{\varepsilon}(P_{\alpha})$ is pointwise convergent to $z_{s,\delta}$. Thus the lemma is proved inductively. In particular, our proof has shown that z_{α} , whose norm is 1, is the pointwise limit of a sequence of elements of norm c in $\bigcup_{\delta<\alpha}L_{\delta}(P_{\alpha})$.

Note that if $1 \leq \delta \leq \Omega$, $z \in L_i(P_a)$, $i \in \{1, 2\}$, and $u \in U$, then $z^{i,u} \in L_i(Q) \subseteq L_0(Q) = Q + Q_1 + Q_2$ by Lemma 3.3, and trivially $z^{i,0} = 0$.

LEMMA 4.2. Let $1 \leq \delta \leq \Omega$ and $z \in L_{\delta}(P_{\alpha})$ with

$$z^{_{1,1}} = \Sigma_{p} \Sigma_{q} a_{pq} x_{pq} + \Sigma_{p} b_{p} x^{p} + c_{0} x^{0}$$
.

Then also $y \in L_{\delta}(P_{\alpha})$, where

$$y^{1,1} = y^{2,1} = \Sigma_{x}(b_{x} + \Sigma_{a}a_{xa})x^{p} + c_{0}x^{0}$$

 $y^{2,0} = y^{1,0} = 0$, and $uy^{1,u} = y^{2,u} = z^{2,u}$ for each $u \in U \setminus \{0, 1\}$.

Proof. The proof will be by induction on δ . If $\delta=1$, then $z^{1,1}\in L_1(Q)=Q+Q_1$ and hence $c_0=0$. There exists a bounded sequence $\{w_n\}$ in P_α which converges pointwise to z on S_α . Since the finite linear combinations with nonnegative coefficients of elements in $\{x_s\colon s\in\mathscr{S}_\alpha\}$ are norm-dense in P_α , each w_n can be assumed to have the form $w_n=\sum_{i\in\omega}r_{ni}x_{(s^{ni})}$, where each $s^{ni}\in\mathscr{S}_\alpha$, each $r_{ni}\geq 0$, and for each n there exist only finitely many i such that $r_n>0$. If $t^{ni}\in\mathscr{S}_\alpha$ is defined for all $n,i\in\omega$ by $(t^{ni})_\beta=(s^{ni})_\beta$ for $2\leq\beta\leq\alpha$ and $(t^{ni})_1=n$, then the sequence $\{w'_n\}$, where $w'_n=\sum_{i\in\omega}r_{ni}x_{(i^{ni})}$, is clearly a bounded sequence in P_α . It will now be shown that $\{w'_n\}$ converges pointwise to y.

For each $u \in U \setminus \{0, 1\}$, $\nu_{\alpha}(u^{-1}) = (\beta, \gamma)$ for some β, γ such that $\beta > \gamma \ge 2$, and hence for each $n \ge u^{-1}$,

$$w_n'^{1,u} = u^{-1}w_n'^{2,u} = \Sigma_{i \in \omega} r_{ni}x_{(i^{ni})_{\beta}(i^{ni})_{\gamma}}$$

= $\Sigma_{i \in \omega} r_{ni}x_{(s^{ni})_{\beta}(s^{ni})_{\gamma}} = u^{-1}w_n^{2,u};$

therefore, $w_n'^{1,u}(t) \xrightarrow{n} u^{-1}z^{2,u}(t) = y^{1,u}(t)$ and $w_n'^{2,u}(t) \to z^{2,u}(t) = y^{2,u}(t)$ for all $t \in [0; 3]$.

Since the situation for u=0 is trivial, it remains only to consider the case in which u=1. Given $n, p, q \in \omega$ let

$$a_{npq} = \Sigma \{r_{ni} : (s^{ni})_2 = p, (s^{ni})_1 = q\}.$$

Thus each $a_{npq} \ge 0$, and for each n there are only finitely many pairs (p, q) for which $a_{npq} > 0$. Since $w_n^{1,1} = \sum_p \sum_q a_{npq} x_{pq}$ for each n, it follows from the proof of Lemma 3.2 and the note following that proof that

 $\lim_{n} a_{npq} = a_{pq}$ for each p, q; that

$$\lim_{n} \Sigma_{q} a_{npq} = c^{-1} z^{1,1}(t_{pp}) = \Sigma_{q} a_{pq} + b_{p}$$

for each p; and that $\limsup_n \Sigma_{p \geq r} \Sigma_q a_{npq} \to 0$ as $r \to \infty$. Thus given $\varepsilon > 0$, there exist r and n_1 such that $\Sigma_{p \geq r} (\Sigma_q a_{pq} + b_p) < \varepsilon/3c$ and $\Sigma_{p \geq r} \Sigma_q a_{npq} < \varepsilon/3c$ for all $n > n_1$. Now $w_n'^{1,1} = \Sigma_p (\Sigma_q a_{npq}) x_{pn}$, and for each $t \in [0; 3]$ there exists $n_2(t) > n_1$ such that

$$|(\varSigma_{q}a_{npq})x_{pn}(t)-(\varSigma_{q}a_{pq}+b_{p})x^{p}(t)|<rac{arepsilon}{3r}$$

for each $n > n_2(t)$ and p < r. It follows easily by the triangle inequality that

$$|w_n^{\prime_1,1}(t) - \Sigma_n(b_n + \Sigma_n a_{nn})x^p(t)| < \varepsilon$$

for each $n > n_2(t)$. Thus

$$w_n^{\prime 1,1}(t) = w_n^{\prime 2,1}(t) \longrightarrow y^{1,1}(t) = y^{2,1}(t)$$

for all t, completing the proof for $\delta = 1$.

Now let $\delta>1$ and assume that the statement of the lemma is true for each ordinal ε such that $1\leq \varepsilon<\delta$. If $z\in L_{\delta}(P_{\alpha})$, there exists a bounded sequence $\{w_n\}\subset \bigcup_{\epsilon<\delta}L_{\epsilon}(P_{\alpha})$ which converges pointwise to z. By the induction hypothesis the sequence $\{y_n\}$ is contained in $\bigcup_{\epsilon<\delta}L_{\epsilon}(P_{\alpha})$, where, if

$$w_n^{_{1,1}} = \Sigma_{_{p,q}} a_{_{npq}} x_{_{pq}} + \Sigma_{_{p}} b_{_{np}} x^{_{p}} + c_{_{n}} x^{_{0}},$$

then

$$y_n^{1,1} = y_n^{2,1} = \Sigma_p(b_{np} + \Sigma_q a_{npq})x^p + c_n x^0,$$

and $y_n^{1,0}=y_n^{2,0}=0$ and $uy_n^{1,u}=y_n^{2,u}=w_n^{2,u}$ for $u\neq 0$, 1. An easy induction argument shows that $||f^{2,u}||\leq ucf^{1,1}(s_{11})$ for each $u\in U$ and $f\in L_{\varrho}(P_{\alpha})$, and from this result it follows that the sequence $\{y_n\}$ is bounded. To see that $\{y_n\}$ converges pointwise to y, note first that $y_n^{1,0}=y_n^{2,0}=0=y^{1,0}=y^{2,0}$ for each n. Next, if $u\neq 0$, 1 and $t\in [0;3]$, then

$$uy_n^{1,u}(t) = y_n^{2,u}(t) = w_n^{2,u}(t) \longrightarrow z^{2,u}(t) = uy^{1,u}(t) = y^{2,u}(t)$$
.

For u=1, since $y_n^{1,1}=y_n^{2,1}$ and $y^{1,1}=y^{2,1}$, it remains only to show that $y_n^{1,1}(t) \to y^{1,1}(t)$ for each $t \in [0;3]$. If t is not of the form s_{pi} , $2+s_{pi}$, or t_{vj} with $v \leq j$, then $y_n^{1,1}(t)=0=y^{1,1}(t)$. If $t=s_{p_1i_1}$ or $2+s_{p_1i_1}$ with i_1 odd, then

$$y_n^{1,1}(t) = w_n^{1,1}(t) - \sum_{p < p_1} \sum_q a_{npq} x_{pq}(t)$$

and

$$y^{1,1}(t) = z^{1,1}(t) - \sum_{p < p_1} \sum_q a_{pq} x_{pq}(t);$$

since $w_n^{1,1}(t) \to z^{1,1}(t)$ and $a_{npq} \to a_{pq}$ (as noted in the proof of Lemma 3.1), and since there exists q_1 such that $x_{pq}(t) = 0$ whenever $p < p_1$ $q > q_1$, it follows that $y_n^{1,1}(t) \to y^{1,1}(t)$. Finally, if $t = t_{vj}$ with $1 \le v \le j$, then

$$egin{aligned} y_n^{ ext{ iny 1,1}}(t) &= w_n^{ ext{ iny 1,1}}(t) + c \Sigma_{p=v}^{j} \Sigma_{q=1}^{j-p} a_{npq} \ &\longrightarrow z^{ ext{ iny 1,1}}(t) + c \Sigma_{p=v}^{j} \Sigma_{q=p}^{j-p} a_{pq} = y^{ ext{ iny 1,1}}(t). \end{aligned}$$

This completes the induction step and hence the proof of the lemma.

LEMMA 4.3. Let $0 \le \delta \le \Omega$ and $z \in L_{\delta}(P_{\alpha})$. Then $z^{1,u} \le u^{-1}z^{2,u}$ for each $u \in U\setminus\{0\}$. If

$$z^{1,1} = \Sigma_{p} \Sigma_{q} a_{pq} x_{pq} + \Sigma_{p} b_{p} x^{p} + c_{0} x^{0}$$

and if $q_1 \in \omega$, then

$$z^{1,u} \leq u^{-1}z^{2,u} - c\Sigma_p \Sigma_{q < q_1} a_{pq}$$

for each $u \geq q_1^{-1}$.

proof. The first assertion is immediate by induction on δ . For the second assertion suppose first that z has the form $z=\Sigma_{seo}d_sx_s$ where σ is a finite subset of \mathscr{S}_a and $d_s\geq 0$ for each s. Then $z^{1,1}=\Sigma_p\Sigma_q a_{pq}x_{pq}$, where

$$a_{pq} = \Sigma \{d_s : s \in \sigma, s_2 = p, s_1 = q\}.$$

Thus $\Sigma_p \Sigma_{q < q_1} a_{pq} = \Sigma \{d_s : s \in \sigma, s_1 < q_1\}$ and hence if $u \ge q_1^{-1}$ and $\nu_{\alpha}(u^{-1}) = (\beta, \gamma)$, then

$$\begin{array}{l} z^{2,u} = u \Sigma_{s \in \sigma} d_s x_{s_{\beta^s \gamma}} = u z^{1,u} + u \Sigma_{s_1 < u^{-1}} d_s x_{s_{\beta^s \gamma}} \\ & \leq u (z^{1,u} + \Sigma_{s_1 < q_1} d_s x_{s_{\beta^s \gamma}}) \leq u (z^{1,u} + c \Sigma_p \Sigma_{p < q_1} a_{pq}) \end{array}$$

as desired.

Next, suppose z is the pointwise limit of a bounded sequence $\{w_n\}_{n\in\omega}$ in $L_{\alpha}(P_{\alpha})$ such that each w_n has the desired property; i.e., for each $u \geq q_1^{-1}$,

$$w_n^{_{_{1}},u} \ge u^{_{_{1}}}w_n^{_{_{2},u}} - c\Sigma_{_{p}}\Sigma_{_{q < q_{_{1}}}}a_{_{npq}}$$

where

$$w_n^{\scriptscriptstyle 1,1} = \Sigma_p \Sigma_q a_{npq} x_{pq} + \Sigma_p b_{np} x^p + c_n x^0.$$

By the proof of Lemma 3.3 there is a subsequence $\{w_{n_i}\}$ of $\{w_n\}$ such that $\{\Sigma_p\Sigma_qa_{n_ipq}x_{pq}\}$ is pointwise convergent, and by the note following

Lemma 3.2 for each $\zeta > 0$ there exist p_1 and i_1 such that for each $i > i_1$,

$$\Sigma_{p \geq p_1} \Sigma_q a_{n_i p_q} < c \zeta.$$

Since $a_{n_ipq} \rightarrow a_{pq}$ for each p and q, there exists $i_2 > i_1$ such that for each $i > i_2$,

$$\Sigma_{p < p_1} \Sigma_{q < q_1} a_{p_i p_q} < \Sigma_{p < p_1} \Sigma_{q < q_1} a_{p_q} + \zeta.$$

Hence, for each $i > i_2$,

$$\begin{split} & \Sigma_p \Sigma_{q < q_1} a_{n_i pq} < \Sigma_{p < p_1} \Sigma_{q < q_1} a_{pq} + (1+c) \zeta \\ & \leq \Sigma_p \Sigma_{q < q_1} a_{pq} + (1+c) \zeta. \end{split}$$

For each $t \in [0; 3]$ and $u \ge q_1^{-1}$,

$$egin{aligned} z^{\scriptscriptstyle 1,u}(t) &= \lim_i w^{\scriptscriptstyle 1,u}_{n_i}(t) \geq \overline{\lim}_i (u^{\scriptscriptstyle -1}w^{\scriptscriptstyle 2,u}_{n_i}(t) - c \varSigma_p \varSigma_{q < q_1} a_{n_ipq}) \ &\geq u^{\scriptscriptstyle -1} z^{\scriptscriptstyle 2,u}(t) - c [\varSigma_p \varSigma_{q < q_1} a_{pq} + (1+c)\zeta]. \end{aligned}$$

Since ζ can be arbitrarily small,

$$z^{1,u} \geq u^{-1}z^{2,u} - c\Sigma_p \Sigma_{q < q} a_{pq}$$

for each $u \ge q_1^{-1}$, as desired.

The preceding paragraphs provide both the base step and the inductive step for the proof of the second assertion of the lemma.

LEMMA 4.4. Let G be the set of all $z \in L_{\varrho}(P_{\alpha})$ such that $z^{1,1} \in Q_1 + Q_2$. If $z \in G$, then $z^{1,u} = u^{-1}z^{2,u}$ for each $u \in U \setminus \{0\}$.

Proof. In the notation of Lemma 4.3, $a_{pq} = 0$ for all p, q and hence $\Sigma_p \Sigma_{q < u^{-1}} a_{pq} = 0$. The present result now follows immediately from Lemma 4.3.

$$\text{Lemma 4.5.} \quad L_{\delta}(P_{\alpha}) \, \cap \, G = \begin{cases} L_{\delta-1}(L_{1}(P_{\alpha}) \, \cap \, G) & \text{if } 1 \leqq \delta < \omega \\ L_{\delta}(L_{1}(P_{\alpha}) \, \cap \, G) & \text{if } \omega \leqq \delta \leqq \Omega. \end{cases}$$

Proof. The result is trivial for $\delta=1$. Let $1<\delta<\omega$ and assume the result is true for all $\varepsilon<\delta$. Then for each $z\in L_{\delta}(P_{\alpha})\cap G$ it follows from Lemma 4.4 that $z^{1,u}=u^{-1}z^{2,u}$ for each $u\neq 0$. Since $z\in G$, it follows that z is identical with the y occurring in the statement of Lemma 4.2 and hence is the pointwise limit of the bounded sequence $\{y_n\}\subset G\cap \bigcup_{1\leq \varepsilon<\delta}L_{\varepsilon}(P_{\alpha})$ which appears in the inductive step of the proof of Lemma 4.2. By the inductive hypothesis

$$\{y_n\} \subset \bigcup_{1 \leq \varepsilon < \delta} \mathrm{L}_{\varepsilon - 1}(L_1(P_\alpha) \cap G) = L_{\delta - 2}(L_1(P_2) \cap G)$$

and hence $z \in L_{\delta-1}(L_1(P_\alpha) \cap G)$. Conversely, if $z \in L_{\delta-1}(L_1(P_\alpha) \cap G)$, then z is the pointwise limit of a bounded sequence $\{w_n\} \subset L_{\delta-2}(L_1(P_\alpha) \cap G)$. By the inductive hypothesis $L_{\delta-2}(L_1(P_\alpha) \cap G) = L_{\delta-1}(P_\alpha) \cap G$. Hence clearly $z \in L_{\delta}(P_\alpha)$, and also $z \in G$ by the proof of Lemma 3.3. Thus the proof is complete for $\delta < \omega$.

Now let $\omega \leq \delta \leq \Omega$ and assume the result is true for all $\varepsilon < \delta$. As in the previous case each $z \in L_{\delta}(P_{\alpha}) \cap G$ is the pointwise limit of a bounded sequence $\{y_n\} \subset G \cap \bigcup_{\varepsilon < \delta} L_{\varepsilon}(P_{\alpha})$. By the inductive hypothesis $\{y_n\} \subset \bigcup_{\varepsilon < \delta} L_{\varepsilon}(L_1(P_{\alpha}) \cap G)$, and hence $z \in L_{\delta}(L_1(P_{\alpha}) \cap G)$. Conversely, if $z \in L_{\delta}(L_1(P_{\alpha}) \cap G)$, then z is the pointwise limit of a bounded sequence $\{w_n\} \subset \bigcup_{\varepsilon < \delta} L_{\varepsilon}(L_1(P_{\alpha}) \cap G)$. By the inductive hypothesis $\{w_n\} \subset G \cap \bigcup_{\varepsilon < \delta} L_{\varepsilon}(P_{\alpha})$ and hence $z \in G \cap L_{\delta}(P_{\alpha})$, completing the proof of the lemma.

LEMMA 4.6. Let $\{w_n\}$ be a bounded sequence in $\bigcup_{\iota<\alpha}L_{\iota}(P_{\alpha})$ which converges pointwise on S_{α} to the function z_{α} defined earlier in the present section. If

$$w_n^{\scriptscriptstyle 1,1} = \Sigma_p \Sigma_q a_{npq} x_{pq} + \Sigma_p b_{np} x^p + c_n x^0$$

for each $n \in \omega$, then $\lim_{n} \Sigma_{p} \Sigma_{q} a_{npq} = 0$.

Proof. If the conclusion is not true, then as in the proof of Lemma 3.3 a subsequence $\{w_{n_i}\}$ of $\{w_n\}$ exists such that $\inf_i \Sigma_p \Sigma_q \, a_{n_i p q} > 0$ and such that the limits $c_0 = \lim_i c_{n_i}$, $b = \lim_i \Sigma_p b_{n_i p}$, $b_p = \lim_i b_{n_i p}$, and $a_p = \lim_i \Sigma_q a_{n_i p q}$ all exist $(p \in \omega)$. Since $z_{\alpha}^{i,1} = x^0$ by definition of z_{α} , the coefficient of each x_{pq} in the unique expansion of $z_{\alpha}^{i,1}$ must vanish and it is easily verified that $\{\Sigma_p b_{n_i p} x^p + c_{n_i} x^0\}$ and $\{\Sigma_p \Sigma_q a_{n_i p q} x_{pq}\}$ converge pointwise to $\Sigma_p b_p x^p + (c_0 + b - \Sigma_p b_p) x^0$ and $\Sigma_p a_p x^p$ respectively, as in the proofs of Lemmas 3.3 and 3.2 (note that the symbol b_p is used differently in those two proofs). Hence

$$z_{\alpha}^{1,1} = \Sigma_{p}(a_{p} + b_{p})x^{p} + (c_{0} + b - \Sigma_{p}b_{p})x^{0}$$
.

Now the uniqueness of the expansion of $z_{\alpha}^{1,1}$ shows that $a_p + b_p = 0$ for each p and $c_0 + b - \Sigma_p b_p = 1$. Since a_p and b_p are nonnegative, they must both vanish for each p and hence $c_0 + b = 1$. Now

$$1 = z_{\alpha}^{1,1}(s_{11}) = \lim_{i} (\Sigma_{p} \Sigma_{q} a_{n_{i}pq} + \Sigma_{p} b_{n_{i}p} + c_{n_{i}})$$

= $\lim_{i} \Sigma_{p} \Sigma_{q} a_{n_{i}pq} + b + c_{0}$

and hence $\lim_i \Sigma_p \Sigma_q a_{n_i pq} = 0$, contradicting our assumption and thus proving the lemma.

THEOREM 4.1. If $\{w_n\}$ is a bounded sequence in $\bigcup_{\epsilon<\alpha}L_{\epsilon}(P_{\alpha})$ which converges pointwise to z_{α} , then there exists a sequence

$$\{y_n\} \subset G \cap \bigcup_{\varepsilon < \alpha} L_{\varepsilon}(P_{\alpha}) \text{ such that } ||y_n - w_n|| \to 0.$$

Proof. Each $w_n^{1,1}$ has the form

$$w_n^{\scriptscriptstyle 1,1} = \Sigma_p \Sigma_q a_{npq} x_{pq} + \Sigma_p b_{np} x^p + c_n x^0.$$

By Lemma 4.2 these exists a sequence $\{y_n\} \subset \bigcup_{\epsilon < \alpha} L_{\epsilon}(P_{\alpha})$ such that

$$y_n^{1,1} = y_n^{2,1} = \Sigma_p(b_{np} + \Sigma_q a_{npq})x^p + c_n x^0,$$

and $y_n^{2,0} = y_n^{1,0} = 0$ and $uy_n^{1,u} = y_n^{2,u} = w_n^{2,u}$ for each $u \neq 0, 1$. Since obviously $\{y_n\} \subset G$, if remains only to show that $\lim_n ||y_n - w_n|| = 0$.

First note that $(y_n - w_n)^{1,0} = 0$ and $(y_n - w_n)^{2,u} = 0$ for all $u \neq 1$.

For each real r>0 there exists by Lemma 4.6 an $n_r \in \omega$ such that $\Sigma_p \Sigma_q a_{npq} < r$ for all $n>n_r$. For each $u\neq 0$ there exists $q_u \in \omega$ such that $u \geq q_u^{-1}$ and hence by Lemma 4.3,

$$u^{-1}w_n^{2,u} - cr < u^{-1}w_n^{2,u} - c\Sigma_p\Sigma_{q < q_u}a_{npq}$$

$$\leq w_n^{1,u} \leq u^{-1}w_n^{2,u}$$

for each $n > n_r$. Since $y_n^{2,u} = w_n^{2,u}$ for each $u \neq 1$,

$$||(y_n - w_n)^{1,u}|| = ||u^{-1}y_n^{2,u} - w_n^{1,u}|| = ||u^{-1}w_n^{2,u} - w_n^{1,u}|| \le cr$$

for each $n > n_r$ and $u \neq 0, 1$.

Finally, since $z^{1,1} = z^{2,1}$ for each $z \in L_{\varrho}(P_{\varrho})$,

$$||(y_n - w_n)^{2,1}|| = ||(y_n - w_n)^{1,1}|| = ||\Sigma_p(\Sigma_q a_{npq} x^p - \Sigma_q a_{npq} x_{pq})|| < 2cr$$

for each $n > n_r$.

We have now shown that $||y_n - w_n|| < 2cr$ for each $n > n_r$, completing the proof of the theorem.

LEMMA 4.7. Let ζ be a countable ordinal, and let $y \in L_{\zeta}(L_1(P_{\alpha}) \cap G)$. Let $\zeta' = \zeta + 1$ if $\zeta < \omega$ and $\zeta' = \zeta$ if $\zeta \ge \omega$. If $u \in U \setminus \{0\}$ and $\nu_{\alpha}(u^{-1}) = (\beta, \gamma)$ with $\beta > \gamma > \zeta'$, then $y^{1,u}$ is continuous and hence has the form $y^{1,u} = \sum_{p} \sum_{q} a^{u}_{pq} x_{pq}$. If also $v \in U \setminus \{0\}$ and $\nu_{\alpha}(v^{-1}) = (\gamma, \delta)$ with $\beta > \gamma > \delta > \zeta'$, then for each $r \in \omega$, $\sum_{p} a^{u}_{pr} = \sum_{q} a^{v}_{rq}$.

Proof. The proof will be by induction on ζ . If $y \in L_0(L_1(P_\alpha) \cap G) = L_1(P_\alpha) \cap G$, there is a bounded sequence $\{w_n\} \subset P_\alpha$ which converges pointwise to y. The sequence $\{w_n\}$ can be chosen so that each w_n is a finite linear combination of elements of $\{x_s: s \in \mathscr{S}_\alpha\}$, and hence there exists a countable subset σ of \mathscr{S}_α such that each w_n has the form $w_n = \sum_{s \in \sigma} b_{ns} x_s$, where each b_{ns} is nonnegative and for each n only a finite number of the b_{ns} are nonzero. If $u \neq 0$ and $\nu_\alpha(u^{-1}) = (\beta, \gamma)$, then

$$w_n^{2,u} = u \Sigma_{s \in \sigma} b_{ns} x_{s_\beta s_\gamma} = u \Sigma_p \Sigma_q a_{npq}^u x_{pq},$$

where

$$a_{npq}^u = \Sigma \{b_{ns} : s_{\beta} = p, s_{\gamma} = q\}$$
.

Now $y^{1,u}=u^{-1}y^{2,u}$ by Lemma 4.4 since $y\in G$; hence $y^{1,u}$ is the pointwise limit of the bounded sequence $\{\Sigma_p\Sigma_qa^u_{npq}x_{pq}\}$. The function $y^{1,u}$ is in $L_1(Q)$ and hence has the form

$$y^{1,u} = \Sigma_p \Sigma_q a^u_{pq} x_{pq} + \Sigma_p b^u_p x^p;$$

by the proof of Lemma 3.2, $a_{pq}^u = \lim_n a_{npq}^u$ for all p, q and

$$b_p^u = c^{-1}y^{1,u}(t_{pp}) - \Sigma_q a_{pq}^u = \lim_n \Sigma_q a_{pq}^u - \Sigma_q a_{pq}^u$$

for all p.

Now assume further that $\nu_{\alpha}(u^{-1})=(\beta,\gamma)$ with $\gamma>1$, and let $\lambda=2$ if $\gamma>2$ and $\lambda=1$ if $\gamma=2$. Then $(\gamma,\lambda)\in B_{\alpha}$ so there exists $v_1\in U\setminus\{0\}$ such that $\nu_{\alpha}(\nu_1^{-1})=(\gamma,\lambda)$. Since $\{\mathcal{\Sigma}_p\mathcal{\Sigma}_q a^u_{npq}x_{pq}\}$ and $\{\mathcal{\Sigma}_p\mathcal{\Sigma}_q a^{v_1}_{npq}x_{pq}\}$ are bounded pointwise convergent sequences in Q, it follows from the note following Lemma 3.2 that for each real $\varepsilon>0$ there exist integers p_1 and n_1 such that $\mathcal{\Sigma}_{p>p_1}\mathcal{\Sigma}_q a^u_{npq}<\varepsilon$ and $\mathcal{\Sigma}_{p>p_1}\mathcal{\Sigma}_q a^{v_1}_{npq}<\varepsilon$ for all $n\geq n_1$. Since

$$\{egin{aligned} egin{aligned} eg$$

for each $n \geq n_1$, it follows that if $f_n = \sum_{p \leq p_1} \sum_{q \leq p_1} a_{npq}^u x_{pq}$,

$$||u^{-1}w_n^{2,w}-f_n|| \leq c\Sigma \{a_{npq}^u\colon p>\mathrm{p_1} \ \mathrm{or} \ q< p_1\}>2carepsilon$$

for each $n \ge n_1$. Since $||f_n|| \le ||u^{-1}w_n^{2,u}|| \le u^{-1}\sup_n ||w_n||$ for each n, it follows that for each $n \ge n_1$, f_n belongs to the compact subset

$$\mathscr{C}_{u,p_1} = \{ \varSigma_{p \leq p_1} \varSigma_{q \leq p_1} k_{pq} x_{pq} \colon k_{pq} \geq 0, \ \varSigma_{p \leq p_1} \varSigma_{q \leq p_1} k_{pq} \leq u^{-1} \sup_{n} ||w_n|| \}$$

of C[0;3]. By compactness some subsequence $\{f_{n_i}\}$ of $\{f_n\}$ must converge to an element f of \mathscr{C}_{u,p_1} , and since $\{u^{-1}w_{n_i}^{s,u}\}$ converges pointwise to $y^{1,u}$, it follows that $||y^{1,u}-f|| \leq 2c\varepsilon$. Thus, for each $\varepsilon > 0$ there exists an $f \in C[0;3]$, depending on ε , such that $||y^{1,u}-f|| \leq 2c\varepsilon$. Since C[0;3] is complete in norm, $y^{1,u} \in C[0;3]$ and must therefore be equal to $\Sigma_p \Sigma_q a_{pq}^u x_{pq}$.

Now if $0 \neq v \in U$ and $\nu_{\alpha}(v^{-1}) = (\gamma, \delta)$ with $\gamma > \delta > 1$, then for all n and r,

$$\Sigma_p a_{npr}^u = \Sigma \{b_{ns} : s_r = r\} = \Sigma_q a_{nrq}^v$$

Since $y^{1,v} = \sum_{p} \sum_{q} a^{v}_{pq} x_{pq}$, it follows that

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

On the other hand the bounded sequence $\{\Sigma_p\Sigma_q a^u_{npq}x_{pq}\}$ converges pointwise to $y^{1,u}=\Sigma_p\Sigma_q a^u_{pq}x_{pq}$. By the note following Lemma 3.2, for each $\varepsilon>0$ there exist p_1 and n_1 such that $\Sigma_{p>p_1}\Sigma_q a^u_{npq}<\varepsilon$ for all $n\geq n_1$ and also $\Sigma_{p>p_1}\Sigma_q a^u_{pq}<\varepsilon$. Hence

$$|\Sigma_p a^u_{pr} - \lim_n \Sigma_p a^u_{npr}| < 2\varepsilon + |\Sigma_{p \le p_1} a^u_{pr} - \lim_n \Sigma_{p \le p_1} a^u_{npr}|$$

= 2ε .

Since ε is an arbitrary positive number,

$$\Sigma_n a_{nr}^u = \lim_n \Sigma_n a_{nnr}^u = \Sigma_n a_{rn}^v$$

This completes the proof of the lemma for $\zeta = 0$.

For the induction step let $0<\zeta<\varOmega$, assume the desired result holds for each $\eta<\zeta$, and let $y,\ \zeta',\ u,\ \beta$, and γ be as in the statement of the lemma. Then there exists a bounded sequence $\{y_n\}$ in $\bigcup_{\eta<\zeta}L_{\eta}(L_1(P_{\alpha})\cap G)$ which converges pointwise to y. Since $1<\zeta'<\gamma\leq\alpha$, there exists $v_1\in U\setminus\{0\}$ such that $v_{\alpha}(v_1^{-1})=(\gamma,\zeta')$. For each n there exists $\eta_n<\zeta$ such that $y_n\in L_{\eta_n}(L_1(P_{\alpha})\cap G)$, and it follows that $\beta>\gamma>\zeta'>\eta'_n$ for each n, where η'_n is defined in terms of η_n as ζ' was defined in terms of ζ . By the induction assumption $y_n^{\iota,v}$ and y_n^{ι,v_1} are continuous and have the form $y_n^{\iota,u}=\Sigma_p\Sigma_q a_{npq}^u x_{pq}$ and $y_n^{\iota,v_1}=\Sigma_p\Sigma_q a_{npq}^{v_1} x_{pq}$, and $\Sigma_p a_{npr}^u=\Sigma_q a_{npq}^{v_1}$ for all n and r.

As in the proof for $\zeta=0$, for each $\varepsilon>0$ there exist n_1 and p_1 such that $\Sigma_{p>p_1}a_{npq}^u<\varepsilon$ and $\Sigma_{p>p_1}\Sigma_qa_{npq}^{v_1}<\varepsilon$ for all $n\geq n_1$. Hence, since $\Sigma_pa_{npr}^u=\Sigma_qa_{npr}^{v_1}$ for all n and n, it follows that for $n\geq n_1$, the distance between $y_1^{n_1}$ and the compact subset

$$\mathscr{D}_{p_1} = \{\varSigma_{p \leq p_1} \varSigma_{q \leq p_1} k_{pq} x_{pq} \colon k_{pq} \geq 0, \, \varSigma_{p \leq p_1} \varSigma_{q \leq p_1} k_{pq} \leq \sup_n ||\, y_n^{\scriptscriptstyle 1,u}\,||\}$$

of C[0;3] is less than $2\varepsilon c$. Since $\{y_n^{1,u}\}$ converges pointwise to $y^{1,u}$, the compactness of \mathscr{D}_{p_1} implies that $||y^{1,u}-w|| \leq 2\varepsilon c$ for some continuous w depending on ε . Then the completeness of C[0;3] implies that $y^{1,u} \in C[0;3]$ and therefore, since also $y^{1,u} \in L_1(Q)$, that $y^{1,u}$ has the form $\sum_p \sum_q a_{pq}^u x_{pq}$.

If also $0 \neq v \in U$ and $\nu_{\alpha}(v^{-1}) = (\gamma, \delta)$ with $\beta > \gamma > \delta > \zeta'$, then $y^{1,v}$ and each $y_n^{1,v}$ are continuous and have form corresponding to $y^{1,u}$ and $y_n^{1,u}$ respectively. Further, by the induction assumption, $\Sigma_p a_{npr}^u = \Sigma_q a_{nrq}^v$ for all n and r. Hence

$$\Sigma_q a_{rq}^v = c^{-1} y^{1,v}(t_{rr}) = \lim_n c^{-1} y_n^{1,v}(t_{rr}) = \lim_n \Sigma_q r_{nrq}^v = \lim_n \Sigma_q a_{npr}^v.$$

Exactly as in the last part of the proof for $\zeta = 0$ it is seen that

 $\Sigma_p a_{pr}^u = \lim_n \Sigma_p a_{npr}^u$. This completes the proof of the induction step and hence of the lemma.

LEMMA 4.8. If $y \in L_{\zeta}(L_{\iota}(P_{\alpha}) \cap G)$ for some countable ζ and if $u, v \in U \setminus \{0\}$ with $\nu_{\alpha}(u^{-1}) = (\beta, \gamma)$ and $\nu_{\alpha}(v^{-1}) = (\beta, \delta)$ for certain ordinals β, γ, δ then in the expression

$$y^{1,u} = \Sigma_{p} \Sigma_{q} a^{u}_{pq} x_{pq} + \Sigma_{p} b^{u}_{p} x^{p} + c^{u} x^{0}$$

and the corresponding expression for $y^{1,v}$ it must be true that $y^{1,u}(2^{-1}) = y^{1,v}(2^{-1})$, $c^u = c^v$, and $b^u_p + \Sigma_q a^u_{pq} = b^v_p + \Sigma_q a^v_{pq}$ for each p.

Proof. By Lemma 4.5, $y \in G$. Hence, by Lemma 4.4, $y^{1,u} = u^{-1}y^{2,u}$ and $y^{1,v} = v^{-1}y^{2,v}$.

If $\zeta=0$, then y is the pointwise limit of a bounded sequence $\{y_n\}$ of functions of the form $y_n=\sum_{s\in\sigma_n}b_{ns}x_s$, where σ_n is a finite subset of \mathcal{S}_{α} and each b_{ns} is nonnegative. For each p and n,

$$u^{-1}y_n^{2,u}(t_{pp}) = c\Sigma\{b_{ns}: s_\beta = p\} = v^{-1}y_n^{2,v}(t_{pp}).$$

Since $\{y_n^{2,u}\}$ converges pointwise to $y^{2,u}$,

$$y^{_{1},u}(t_{pp}) = u^{_{-1}}y^{_{2},u}(t_{pp}) = v^{_{-1}}y^{_{2},v}(t_{pp}) = y^{_{1},v}(t_{pp})$$

for each p, and hence it follows immediately that

$$b^u_p + \Sigma_q a^u_{pq} = c^{-1} y^{1,u}(t_{pp}) = c^{-1} y^{1,v}(t_{pp}) = b^v_p + \Sigma_q a^v_{pq}$$

for each p. Since $y^{1,u}$ and $y^{1,v}$ are Baire functions of the first class, $c^u = 0 = c^v$. Hence

$$y^{1,u}(2^{-1}) = \Sigma_p(b_p^u + \Sigma_q a_{pq}^u) = y^{1,v}(2^{-1}).$$

For the induction step let $\zeta > 0$ and assume the statement of the lemma holds for each $\eta < \zeta$. By hypothesis there exists a bounded sequence $\{y_n\}$ in $\bigcup_{\eta < \zeta} L_{\eta}(L_1(P_{\alpha}) \cap G)$ which converges pointwise to y. Under the usual notation the relations

$$b_{np}^u + \Sigma_q a_{npq}^u = b_{np}^v + \Sigma_q a_{npq}^v,$$

 $c_n^u=c_n^v$, and $y_n^{\scriptscriptstyle 1,u}(2^{\scriptscriptstyle -1})=y_n^{\scriptscriptstyle 1,v}(2^{\scriptscriptstyle -1})$ must hold for all n and p. It is seen immediately that $y^{\scriptscriptstyle 1,u}(2^{\scriptscriptstyle -1})=y^{\scriptscriptstyle 1,v}(2^{\scriptscriptstyle -1})$ and $y^{\scriptscriptstyle 1,u}(t_{\scriptscriptstyle pp})=y^{\scriptscriptstyle 1,v}(t_{\scriptscriptstyle pp})$ for all p, from which the remaing desired relations for $y^{\scriptscriptstyle 1,u}$ and $y^{\scriptscriptstyle 1,v}$ follow. The proof is thus complete.

THEOREM 4.2. Let ζ be a countable ordinal, and let ζ' be defined as in Lemma 4.7. If $y \in L_{\zeta}(L_1(P_{\alpha}) \cap G)$ and $0 \neq u \in U$ with $\nu_{\alpha}(u^{-1}) = (\beta, \gamma)$

and $\beta > \zeta'$, then $y^{1,u} \in Q + Q_1$.

Proof. If $\zeta = 0$, then $y \in L_1(P_a)$ and hence trivially $y^{1,u} \in L_1(Q)$, which is equal to $Q + Q_1$ by Lemma 3.2.

If $\zeta>0$ and the desired result is true for each $\eta<\zeta$, then $2\leq \zeta'<\beta\leq\alpha$ and hence there exists $v\in U\setminus\{0\}$ such that $\nu_{\alpha}(v^{-1})=(\beta,\zeta')$. There exists a bounded sequence $\{y_n\}$ in $\bigcup_{\eta<\zeta}L_{\eta}(L_1(P_{\alpha})\cap G)$ which converges pointwise to y. Since $\beta>\zeta'>\eta'$ for each $\eta<\zeta$ it follows from Lemma 4.7 that each $y_n^{1,v}$ is continuous and hence belongs to Q. Hence $y^{1,v}\in L_1(Q)=Q+Q_1$. Thus in the usual notation for $y^{1,u}$ and $y^{1,v}$ it follows that $c^v=0$, but then also $c^u=0$ by Lemma 4.8, hence $y^{1,u}\in Q+Q_1$, and the proof is complete.

The following theorem justifies the claim made at the beginning of the present section.

THEOREM 4.3. The element $z_{\alpha} \in L_{\alpha}(P_{\alpha})$ has the property that $||z_{\alpha}|| = 1$ but that if $\{w_n\}$ is a bounded sequence in $\bigcup_{\beta < \alpha} L_{\beta}(P_{\alpha})$ converging pointwise to z_{α} , then $\lim_{n} ||w_n|| \ge c$.

Proof. By Lemma 4.1 and the remarks preceding it we know that $z_{\alpha} \in L_{\alpha}(P_{\alpha})$ and $||z_{\alpha}|| = 1$. If $\{w_n\}$ is a bounded sequence in $\bigcup_{\beta < \alpha} L_{\beta}(P_{\alpha})$ converging pointwise to z_{α} , then by Theorem 4.1 there exists a sequence $\{y_n\}$ in $G \cap \bigcup_{\beta < \alpha} L_{\beta}(P_{\alpha})$ such that $||y_n - w_n|| \to 0$. Clearly $\underline{\lim}_n ||w_n|| = \lim_n ||y_n||$. Now by Lemma 4.5,

$$\{y_n\}\subset egin{cases} L_{lpha-2}(L_1(P_lpha)\,\cap\,G) & ext{if}\ \ 2\leqqlpha<\omega \ igcup_{eta$$

Defining ζ' as in Lemma 4.7, one sees easily that each $y_n \in L_{\zeta_n}(L_1(P_\alpha) \cap G)$ for some ζ_n such that $\alpha > \zeta'_n$. Now there exists $u_1 \in U \setminus \{0\}$ such that $\nu_\alpha(u_1^{-1}) = (\alpha, \gamma)$ for some $\gamma < \alpha$; for example, take $\gamma = 1$ if $\alpha = 2$ and $\gamma = 2$ if $\alpha > 2$. Then by Theorem 4.2, $y_n^{1,u_1} \in Q + Q_1 = L_1(Q)$ for each n. Now $z_\alpha^{1,u_1} = x^0$ by definition, and hence $\underline{\lim}_n ||y_n^{1,u_1}|| \ge c$ by Theorem 1 of [7]. It follows that

$$\lim_{n} ||w_n|| = \lim_{n} ||y_n|| \ge \lim_{n} ||y_n^{1,u_1}|| \ge c.$$

COROLLARY 4.1. Let T be the mapping of Theorem 2.1 for the space X_{α} , and let $G_{\alpha} = Tz_{\alpha}$. Then $G_{\alpha} \in K_{\alpha}(J_{X_{\alpha}}P_{\alpha})$ and $||G_{\alpha}|| = 1$, but if $\{F_n\}$ is a sequence in $\bigcup_{\beta < \alpha} K_{\beta}(J_{X_{\alpha}}P_{\alpha})$ such that $F_n \xrightarrow{W^*} G_{\alpha}$, then $\underline{\lim}_n ||F_n|| \ge c$.

Proof. It is immediate from Theorem 2.1 that $G_{\alpha} \in K_{\alpha}(J_{X_{\alpha}}P_{\alpha})$ and $||G_{\alpha}|| = 1$. If $\{F_n\} \subset \bigcup_{\beta < \alpha} K_{\beta}(J_{X_{\alpha}}P_{\alpha})$ and $F_n \xrightarrow{W^*} G_{\alpha}$, then by Theorem 2.1 the sequence $\{T^{-1}F_n\}$ is in $\bigcup_{\beta < \alpha} L_{\beta}(P_{\alpha})$ and $||T^{-1}F_n|| = ||F_n||$ for each

n. Now $\sup_n ||T^{-1}F_n|| = \sup_n ||F_n|| < \infty$ since $\{F_n\}$ is w^* -convergent. For each $t \in S_\alpha$ let $f_t \in X_\alpha^*$ be defined as in the proof of Theorem 2.1. Then

$$(T^{-1}F_n)(t) = F_n(f_t) \longrightarrow G_\alpha(f_t) = z_\alpha(t)$$

for each t, and hence

$$\lim_{n} ||F_n|| = \lim_{n} ||T^{-1}F_n|| \ge c.$$

5. Our main theorems will now be proved through consideration of product spaces, as defined in [2, p. 31], of spaces of the type X_{α} . Since X_{α} , P_{α} , and G_{α} depend on the given number $c \geq 1$ as well as on α , the objects mentioned will henceforth be indicated with double subscripts as $X_{c,\alpha}$, $P_{c,\alpha}$, and $G_{c,\alpha}$ respectively. Recall that if I is a set and X_s is a Banach space for each $s \in I$, then the product spaces $II_{l_1(I)}X_s^*$ and $II_{m(I)}X_s^{**}$ are respectively the dual and bidual of the Banach space $II_{c_1(I)}X_s$ under the natural identifications.

Theorem 5.1. For each countable ordinal $\alpha \geq 2$ let Y_{α} be the Banach space $\Pi_{c_0(\omega)}X_{n^2,\alpha}$ and let

$$Q_{\alpha} = \bigcap_{n \in \omega} \{ y \in Y_{\alpha} : y(n) \in P_{n^2,\alpha} \}.$$

Then Y_{α} is separable, and Q_{α} is a norm-closed cone in Y_{α} such that $K_{\alpha}(J_{Y_{\alpha}}Q_{\alpha})$ is not norm-closed in Y_{α}^{**} .

Proof. It is evident that Y_{α} is separable and Q_{α} is a closed cone in Y_{α} . An easy transfinite induction argument shows that for each n the functional F_n belongs to $K_{\alpha}(J_{Y_{\alpha}}Q_{\alpha})$, where $F_n(n)=G_{n^2,\alpha}$ and $F_n(i)=0$ for all $i\neq n$. Hence $\sum_{n=1}^m n^{-1}F_n\in K_{\alpha}(J_{Y_{\alpha}}Q_{\alpha})$ for each positive integer m, and therefore $\sum_{n\in\omega}n^{-1}F_n\in\overline{K_{\alpha}(J_{Y_{\alpha}}Q_{\alpha})}$. If $\{H_k\}$ were a sequence in $\bigcup_{\beta<\alpha}K_{\beta}(J_{Y_{\alpha}}Q_{\alpha})$ such that $H_k\stackrel{\mathrm{W}^*}{\longrightarrow} \sum_n n^{-1}F_n$, then for each $i\in\omega$ it would follow that

$$\{H_{\scriptscriptstyle k}(i)\}_{\scriptscriptstyle k} \subset igcup_{\scriptscriptstyle eta$$

and

$$H_{\scriptscriptstyle k}(i) \xrightarrow{\mathrm{W}^*} \Sigma_{\scriptscriptstyle n} n^{\scriptscriptstyle -1} F_{\scriptscriptstyle n}(i) = i^{\scriptscriptstyle -1} G_{i^{\scriptscriptstyle 2}, \alpha}.$$

It would then result by Corollary 4.1 that

$$\underline{\lim}_{k} ||H_{k}|| \geq \underline{\lim}_{k} ||H_{k}(i)|| \geq i,$$

but then since i is arbitrary the sequence $\{H_k\}$ would be unbounded in norm, contradicting the fact that a w^* -convergent sequence in Y_α^{**} must be bounded [3, p. 60]. Hence $\Sigma_n n^{-1} F_n \notin K_\alpha(J_{Y_\alpha} Q_\alpha)$, and the proof

is complete.

THEOREM 5.2. For each countable ordinal $\alpha \geq 2$ there exists a separable Banach space W_{α} containing a norm-closed cone R_{α} such that if $2 \leq \beta \leq \alpha$, then $K_{\beta}(J_{W_{\alpha}}R_{\alpha})$ is not norm-closed in W_{α}^{**} .

Proof. Let $A_{\alpha} = \{\beta \colon 2 \leq \beta \leq \alpha\}$ and for each $\beta \in A_{\alpha}$ let Y_{β} and Q_{β} be as defined in Theorem 5.1. Let $W_{\alpha} = \prod_{e_0(A_{\alpha})} Y_{\beta}$ and $R_{\alpha} = \bigcap_{\beta \in A_{\alpha}} \{w \in W_{\alpha} \colon w(\beta) \in Q_{\beta}\}$. Then the Banach space W_{α} is separable since A_{α} is countable, and R_{α} is clearly a norm-closed cone in W_{α} . For each $\beta \in A_{\alpha}$ there exists by Theorem 5.1 a sequence $\{\phi_{\beta,n}\}$ in $K_{\beta}(J_{Y_{\beta}}Q_{\beta})$ which coverges in norm to an element $\phi_{\beta,0} \in Y_{\beta}^{**}$ not in $K_{\beta}(J_{Y_{\beta}}Q_{\beta})$. If $\psi_{\beta,n}$ is defined for each integer $n \geq 0$ by $\psi_{\beta,n}(\gamma) = 0$ for $\gamma \neq \beta$ and $\psi_{\beta,n}(\beta) = \phi_{\beta,n}$, it is easily shown that $\{\psi_{\beta,n}\}_{n\in\omega} \subset K_{\beta}(J_{W_{\alpha}}R_{\alpha})$ and $\{\psi_{\beta,n}\}$ converges in norm to $\psi_{\beta,0}$, but that $\psi_{\beta,0} \notin K_{\beta}(J_{W_{\alpha}}R_{\alpha})$. Hence for each $\beta \in A_{\alpha}$, $K_{\beta}(J_{W_{\alpha}}R_{\alpha})$ fails to be norm-closed in W_{α}^{**} .

Theorem 5.3. There exists a Banach space Z containing a norm-closed cone P such that if β is a countable ordinal ≥ 2 , then $K_{\beta}(J_{z}P)$ fails to be norm-closed in Z^{**} .

Proof. The proof is almost identical with that of Theorem 5.2. Let $A = \{\beta \colon 2 \leq \beta < \Omega\}$, $Z = \prod_{e_0(A)} Y_\beta$, and $P = \bigcap_{\beta \in A} \{z \in Z \colon z(\beta) \in Q_\beta\}$. Since A is uncountable, the Banach space Z is nonseparable. It is clear that P is a closed cone in Z. The pooof that $K_\beta(J_z P)$ fails to be norm-closed in Z^{**} for each $\beta \in A$ is identical with the corresponding part of the proof of Theorem 5.2, in which it was shown that $K_\beta(J_{W_\alpha}R_\alpha)$ fails to be norm-closed in W_α^{**} for each $\beta \in A_\alpha$.

REFERENCES

- 1. N. Bourbaki, Topologie générale, Hermann, Paris, 1948.
- 2. M. M. Day, Normed linear spaces, Springer, Berlin, 1958.
- 3. N. Dunsford and J. T. Schwartz, *Linear operators*, Vol. I, Interscience, New York, 1958.
- 4. F. Hausdorff, Set theory (translated by J. R. Aumann, et al.), Chelsea, New York, 1962.
- 5. C. Kuratowski, Topologie, Vol. I, Warszawa, 1958
- 6. R. D. McWilliams, On the w*-sequential closure of a cone, Proc. Amer. Math. Soc., 14 (1963), 191-196.
- 7. _____, Iterated w*-sequential closure of a Banach space in its second conjugate, Proc. Amer. Math. Soc., 16 (1965), 1195-1199.
- 8. I. P. Natanson, Theory of functions of a real variable, Vol. II (translated by L. F. Boron), Ungar, New York, 1960.

Recieved June 22, 1970. Supported in part by National Science Foundation Grants GP-7243 and GP-9632.

FLORIDA STATE UNIVERSITY