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ON ITERATED w*-SEQUENTIAL CLOSURE OF CONES
R. D. McWILLIAMS

In this paper it is proved that for each countable ordinal
number «a = 2 there exists a separable Banach space X con-
taining a cone P such that, if J; is the canonical map of X
into its bidual X **, then the ath iterated w*-sequential closure
K (JxP) of JxP fails to be norm-closed in X**. From such
spaces there is constructed a separable space W containing a
cone P such that if 2 < 8 < a, then Kg(J» P) fails to be norm-
closed in W**, Further, there is constructed a (non-separable)
space Z containing a cone P such that if 2 < 8 < 2, then
Ka(JzP) fails to be norm-closed in Z**.

1. If X is a real Banach space and Y a subset of X**, let K(Y)
be the set of elements of X** which are w*-limits of sequences in Y.
Let K\(Y) = Y and inductively let K. (Y) = K(U;..K:(Y)) for 0 <
< 02, where 2 is the first uncountable ordinal. A cone in X is a
subset of X which is closed under addition and under multiplication by
nonnegative scalars. Our main theorem extends the result of [6] that
if P is a cone in X, then K,(J;P) must be norm-closed but K,(J,P)
can fail to be norm-closed in X**. By contrast it is noted that if S
is a compact Hausdroff space and X = C(S) and a < £, then K, (J,X)
is norm-closed, even though for example if S is compact, metric, and
uncountable, then K,(J;X) is not w*-sequentially closed. It is obvious
that for each Banach space X and each subset Y of X**, K (Y) is
w*-sequentially closed and hence norm-closed.

In [7] a Banach space X was exhibited such that K,(J,X) is not
norm-closed. Whether K, (J;X) can fail to be norm-closed for 2 < «
< 2 is not known to the author. However, in the present paper it
will be convenient to use constructions involving spaces studied in [7].

Section 2 is devoted to a useful relationship between w*-sequential
convergence and pointwise convergence of bounded sequences of func-
tions, § 3 to further study of a space constructed in [7], and §§4 and
5 to preparation for and proof of the main theorems.

2. Let S be a compact Hausdorff space, B(S) the Banach space
of bounded real functions on S with the supremum norm, and C(S)
the closed subspace of B(S) consisting of the continuous real functions
on S. If A is a subset of B(S), let L(A) be the set of all pointwise
limits of bounded sequences in A4, and let L,(A) be defined inductively
by L,(A) = A and L. (A) = L(Us..Ls(A)) for each ordinal a such that
l<a=s Q.

If X is a norm-closed subspace of C(S) and ze€ Ly(X), then z is
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bounded and Borel measurable and hence is integrable with respect to
each finite regular Borel signed measure ¢ on S. For each fe X*
there exists a finite regular Borel signed measure g, on S such that

f(x) = g xdy, for each xe X [3, p. 265], and by the Hahn-Banach
theorem fuf can be chosen so that ||g/|| = ||f[l. If v, is another finite
regular Borel signed measure on S such that f(x) = |\ x dv, for each
2 € X then also gszdpf = gszdv, for each ze Ly (X), bsy virtue of the

bounded convergence theorem and transfinite induction. Hence a
mapping 7T is unambiguously defined from L,(X) into the space of
real functions on X* by

(T2)(f) = depf (ze LX), feX".

TreEOREM 2.1. If S is a compact Hausdorff space and X a norm-
closed subspace of C(S), then T s am isometric isomorphism from
Ly(X) onto K,(JxX), and T maps L.(A) onto K (J+A) for each subset
A of X and each o < Q.

Proof. For each ze L,(X) it is trivial that Tz is linear on X*
and that [(T?)(f)|<||2||||f]|| for every fe X*, sothat Tze X** and
||Tz|| < ||#||. For each te Slet f,(x) = x(t) for all x ¢ X; then clearly

f.e X* with || f,|| =1, and it is easily seen that (T?)(f,) = S zdpy, =
S

2(¢), so that [2(¢))| = || T=|| || f.]|=||T#|| and hence ||z||< [ Tz||. Since
T is obviously linear, it follows that T is an isometric isomorphism
from L, (X) into X™**.

Now let A be a subset of X. Since the restriction of T to X is
Jx, it follows that T[L,(A)] = TA = JyA = K,(J;4). If 0<a=<Q
and it is assumed that T[Ls(A4)] = Ky(JyA) for each g < a, then for
each ze L,(A) there exists a bounded sequence {z,} in Usc.Ls(4) which
converges pointwise to 2. By the bounded convergence theorem
(T2)(f) = lim,(T%,)(f) for each fe X*. Since by assumption {T%,} C
Us<eKs(JxA), it follows that Tz e K, (JyA). Conversely, if F f K. (JxA)

there exists a sequence {F,} C Us.Ks(JxA) such that F,,L F; the
sequence {F,} must be bounded [3, p. 60], and by assumption there
exists a sequence {z,} C Uscols(A) such that Tz, = F, for each n.
Now {z,} is bounded, and if z(¢) is defined to be F(f,) for each te S it
follows that {z,} converges pointwise to z so that z ¢ L,(4). For every
feX* (T?(f) = lim,(Tz,)(f) by the bounded convergence theorem.
Thus F' = Tze T[L.(A)], completing the proof that T[L.(4)] = K.(J A).
By transfinite induction the theorem follows.

REMARK. If S is a compact Hausdorff space and X is the Banach
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space C(S), then for each a < 2, L,(X) is the space of bounded Baire
functions on S of order < « and, just as in the special case of a
metric space S [8, p. 132], L,(X) is norm-closed in B(S) and hence
also K,(J;X) is norm-closed in X**. If S is a compact metric space
with uncountably many elements then S has a nonempty dense-in-it-
self kernel [1, Ch. 9, p. 34]. Hence for each countable « there is a
subset T of S of Borel order exactly a [4, p. 207], but then it follows
that LX) # L,.,(X) [5, p. 299] and hence that K,(J;X) # K,.,(JxX)
for each countable «.

3. The reader is now referred to the proof of Theorem 1 of [7]
for the construction, for each real ¢ =1, of a Banach space X C
C([0; 8]) having the property that there exists an «°e L,(X) such that
[|#°]] = 1 but if {y*} is a bounded sequence in L,(X) which converges
pointwise to «°, then lim inf,||y"|| = ¢. The remainder of the present
paper depends heavily on properties of the space X, and the reader
will occasionally need to refer to [7]. In particular, note that X is
generated by a set {z,,: », ¢ € @} of piecewise linear nonnegative func-
tions of norm ¢ on [0;3] and that a° is the pointwise limit of the
sequence {x*} C L,(X), where 2” is the pointwise limit of {®,.},., and
[l2?|| = ¢ for each p. Each x,, has truncated peaks centered at certain
of the points s,;, t,5, 2 + s,; where s,; = 27 and ¢,; = 2 — 27°(1 + 279)
for u, i, v, jew and ¢ < 2% Specifically, ®,,(s,;)) = %,,(2 + s,;) =1 if
p=wu, and %,(s,,) =1 if and only if p = u. Further, z,,(¢,;) = ¢ if
=< p=< 7< p -+ q and 0 otherwise. If ¥(S) denotes the characteristic
function of the subset S of [0; 3], it turns out that

87 = Y({spit 1 <27 U {2 + 8,00 < 27)) + ex({t.itv = p = 7))
and that
2= (s PEW, T <27 U {2 + spit e W, 1 < 27,

LeEMMA 3.1. Let Q be the morm-closed cone in X generated by
(%o », g€ W}. Then Q coincides with

Q = {szqapqqu: Upg = 0, Z"xtzvqafnoq < °°}’

where the indicated summations are over the set w of all positive inte-
gers.

Proof. It is clear that @, is a cone containing {w,,: p, ¢ € @} and
contained in Q. If {z,} is a sequence in @, which converges in norm
to some x e X, then each z, has the form z, = ¥, ¥ a,,2,, With a,,, =
0 and ¥,¥a,,, < . As noted in [7] the limit lim,a,,, = a,, exists
for all p, q; indeed, in the notation of [7],
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Upg = @ (Epp — 277707 — 2(t,, — 27777Y),
Clearly each a,, = 0, and if r,se w then
ZperZospy = M2 00, ¥ g0y, < lim,2,(s1) = (s1);

hence %,%,0,, < (s;) and z = 3,53 ,0,,2,, € Q.

Let ¢ > 0 be given. It follows from [7, p. 1196] that each «,, is
continuous and vanishes at 0 and at 2 — 27' and hence that each ele-
ment of X shares these properties. Since s, — 0, there exists p,cw
such that 2(s’) < ¢ and z(s") <e& for & =s,,,,. Since ||z, — x| —0,
there exists n’ such that z,(s) <e for all » > =n’. Thus, by [7],
X oo 0y = 2(s') < e and X, % a,,, = 2.() <& for n > n'. Further,
since t,;— 2 — 27', there exists by continuity ¢, = p, such that z(¢,,)
< ce and x(t,,,) < c¢; hence there exists n”” = n’ such that z,(, ,) <ce

for all n > »”. It follows from [7] that
295p12q>q1apq = Zpéqlzwa—papq = c—-lz(tl,ql) <e

and similarly ¥,c, 350 < ¢7'2,(¢8,,) <€ for all » > n". Moreover,
since @,,, — @, there exists n, = »” such that ¥,., 3 <, |a,; — @] <&

for all n > n,. Hence for n > n, the triangle inequality implies that

”z - zn” é szmzqamxm“ + l|2p>p12qanpquq“
+ Hzpémzoqlapqx:ﬂq” + Hzpsplzwaanpquq”
+ Ilzmémzqéql(apq - anpq)qu”
< bee,

since ||%,,|| = ¢ for all p, g. Thus ||z — #,|| — 0 and therefore x = z¢
@,, proving that @, is norm-closed.

LEMMA 3.2. Let Q, = {3,b,27:b, = 0, 3,b, < «}. Then L(Q) = Q
+ Q..

Proof. Since L,(Q) is a norm-closed cone in B([0;3]) by |6,
Theorem 1, p. 192] and Theorem 2.1, and since {x?}, C L,(Q), it is
clear that @ + Q, < L,(Q). If {z,} is a bounded sequence in @ which
is pointwise convergent to some ze¢ L,(Q), each z, has the form z, =
3,3 Bpg®pg With @,,, = 0 and ¥, a,,, < . As in the proof of Lemma
3.1, for all p, g e w the limit a,, = lim,a,,, exists. For all p, g, cw,

S igq0pg = lim, Y <, @y < lim,e7'2,(8,,) = ¢7'2(t,);

hence %, < ¢ '2(t,,) for each pew. Let b, = ¢7'2(t,,) — 2,0, for

each p, and note that all the numbers a,, and b, are nonnegative.
For n, pew let u,, = J,a,,,, and w, = 3,a,%,, + b,2?. For each

p, if t€[0;3] and ¢ is not of the form s,;, 2 + s,;, or ¢,; with v < »
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=< J, in the notation of [7, p. 1196], x,,(t) = 0 for all sufficiently large
¢ and hence x*(t) = 0, so that u,,(t) — u(t), If t =s,, 0rt =2+

Spiy then
unp(t) = annpq = c—lzn(tpp) _— c_lz(tpp) = up(t) .
Finally, if v < p £ 4, then
unp(tvj) = €5 jplnpg — z(tmo) - czq;j—paw
= c[bp + 2q>i—papq] = %p(t,,j),
proving that {u,,} converges pointwise to u, on [0; 3],
For each rc w,

Zp§r(2qapq =+ bp) = C_lzpérz(tm))
= ¢7'lim, %, .,2,(t,,) = lim, 3,2, Gy,
= limnzn(su) = Z(Sn):

Hence Y,u,cQ + Q,. Let w =2 — Y, u,; then w is easily seen to be
a Baire function of the first class on [0; 3] and hence by [8, p. 143]
w must have a point ¢ of continuity in [2; 3].

At each point of the form ¢ =2 + s,; with ¢ odd, u,(t) = u,(s,)
for each p = r and hence

w(t) = lim“(2p<rum)(t) + szrzqam»q) - Zpup(t)
= limn(zn(su) - Zp<runp(3u)) - Zpgrup(t)
= Z(Su) - Zpup(su) = 'LU(SU).

Since the set of such points ¢ is dense in [2; 3], w(t) = w(s,). On the
other hand, it follows from [7] that for each point of the form s = 2
+ 8,; &£ 2¢,;, with ¢ odd, x,,(s) = 0 whenever p = r, and hence

wis) = lim, ¥, ., u,,(s) — T, ,u,(s) = 0.

Since the set of such points s is also dense in [2; 3], it follows that
w(t,) = 0 and hence that w(s,) = 0.

For each rew let w, =2 — ¥, ., u,, Then w,— w in the norm
topology, and w, is the pointwise limit of {¥,.,u,,}. Hence

lw,|| £ limsup, || 2ps || < elim,,;,2%,,(s,) = cw,(s,)
and consequently
Nw] = lim, [|w, ]| £ ¢lim,w,(s,) = cw(sy) = 0.

Therefore w =0 and z = Y,u,€Q + @,, completing the proof of the
lemma.

Note. The last paragraph of the previous proof shows that if
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{#,} is a bounded pointwise convergent sequence in @, then in the nota-
tion of that proof for each ¢ > 0 there exist p,,n, € @ such that %,., ¥ a,,,
< e for all n=n,. Indeed, given ¢ > 0 there exists p, such that cw, (s,;)
<e. Since limsup,|[2,., %, || = cw, (s,), there exists =, such that
for each n = n,

Zr;plzqarmq = (Z‘pgplunp)(su) = HZPZmuwH <.

LEMMA 3.3. Let Q, = {ca’ ¢, =0}. Then L,(Q) = L,(Q) = Q +Q,
+ Q..

Proof. Clearly @ + @, + Q. is a cone containing L,(Q) and con-
tained in L,(@). To prove the lemma it suffices to show that L(Q +
Q. +Q)=Q + Q.+ Q,. If {z,} is a bounded sequence in Q + Q, + Q,
which is pointwise convergent to a function z, then each z, has the
form

2, = Yo + 20,27 + ¢, 2"

where y,€@, b,,=0,¢, =0, and X,b,, < . Since {z,} is bounded,
the diagonal process yields a subsequence {z,} of z, such that ¢, =
lim;e,, and b = lim;3,b,, exist and b, = lim;b,, exists for each pecw.
It is easily seen from [7, p. 1196] that these limits are finite and
nonnegative, that 3,0, < b, and that the sequence {3,b,,2” + ¢, 2’} is
pointwise convergent to X,b,a” + (¢, + b — X,b,)a°. Hence also {y,} is
pointwise convergent, and by Lemma 3.2 its pointwise limit is in @
+ @,. Since z is the pointwise limit of {z,}, it follows that z2e@Q +

Q + Q..

REMARK. It is clear from [7] that the representation of each z
€ Ly(Q) in the form Y, a,2,, + 2,b,2" + ¢’ is unique.

4. Given an arbitrary countable ordinal a = 2 and a number ¢
=1, we now construct a separable Banach space X, containing a cone
P, for which there exists z,¢€ L,(P,) such that ||2,]| =1 but such that
if {w,} is a bounded sequence in U;..Ls(P,) converging pointwise to
2. then lim,[|w,|| = c.

Let B, be the countable set {(2, 1)} U {(8, V):a@= B> =2}. Then
there exists a one-to-one mapping v, from D, onto B,, where D, =
{1, .-, 27a* — 3a + 4)} if « < w and D, = o if & = w, such that v.(1)
=(2,1). Let U= {0} U {n*:neD,} and let S, be the compact subset
[0; 6] x U of E*. For each real function 2z defined on S, and each u
e U, let

24(t) = 2(t, u), 224(t) = 2(t + 3, w)



ON ITERATED w*-SEQUENTIAL CLOSURE OF CONES 703

for t€[0;3]. Further, let .&4 be the set of all type — a generalized
sequences s = (s;: 1 < B < a) of positive integers.

Letting 2,, be as in § 3 and noting by [7] that x,,(0) = %,,(3) =0
for p, g € w, we easily verify that for each se . the function z, de-
fined by

Tope, 1L > 0,07 <5, v (u™) = (8, 7)

q’,':_’“ =40 if > O, u! > Sy
0 ifu=0
. UL, Af u >0, v(u™) = (8, 7)
x> T,
0 ifu=20

is an element of C(S,). Let X, be the norm-closed subspace and P,
the norm-closed cone in C(S,) generated by {x,:se€ .$4}. Since S, is
compact metrie, C(S,) is separable [3, p. 340] and hence also X, is
separable. Note that [|z,|| = ¢ for each se .&.

For 1 <6<« and se &% let z,, be defined on S, by

Tygo, if u>0,0.(u™) =(8,7,8>7>0
2y =uyy =4 ifu>0,vw)=B"7,8>0="
a ifu>0,v%w)=(B",0=2>"

Thus ||z,;]| =c if 1 £6 < a, but ||2,.]| =1 for each se &4. In fact,
2, . 18 independent of se€.%/ and we simply write z, instead of z, ..

LEMMA 4.1. For each s€ & and 1 <0 < @, 2,,; € L;(P,).

Proof. If 6 =1 and se.%, then for each ge w let s?e & be de-
fined by

g ifpg=1

i = )
s ifl<p=a.

It is easy to verify that {az;sq,}(‘;‘;l is a bounded sequence in P, converging
pointwise to z,,, so that z,,e L,(P,).

Proceeding by transfinite induction, assume that 1 <6 <« and
that #z,.e L.(P,) for each se€. &4 and 1 < e < 4. Let se.& be given,
and let ¢?e .2 be defined for each ge w by

s if0#B =«

£ =
PT g if p=a.

If 6 is not a limiting ordinal, then 6 has an immediate predecessor
0 — 1, and it is straightforward to show that the bounded sequence
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{#.9,,_.};, in L;_,(P,) converges pointwise to 2,, on S,. On the other
hand, if the countable ordinal ¢ is limiting, there exists an increasing
sequence {&,};, of ordinals whose limit is ¢, and it can be verified that
the bounded sequence {2, }i=: in U.<;L.(P.) is pointwise convergent to
2,s. Thus the lemma is proved inductively. In particular, our proof has
shown that z,, whose norm is 1, is the pointwise limit of a sequence
of elements of norm ¢ in Upcolis(P.,).

Note that if 1 <6< 0, ze Ly(P,),1€{1, 2}, and ue U, then z*¢
L;(Q) S L,Q) = Q@ + @, + Q. by Lemma 3.3, and trivially z*° = 0.

LEMMA 4.2. Let 1 <6 < 2 and ze L;(P,) with
2 = Y, Y 0,0, + 2pby? + cpa’.
Then also y € L;,(P,), where
Yt =yt = (b, + Ty, + o

¥ =y =0, and uy'* = y>* = 2>* for each we U\{0, 1}.

Proof. The proof will be by induction on 4. If § = 1, then z'
e L(Q) = Q + @, and hence ¢, = 0. There exists a bounded sequence
{w,} in P, which converges pointwise to 2z on S,. Since the finite
linear combinations with nonnegative coefficients of elements in {x,:s
€ .%4} are norm-dense in P,, each w, can be assumed to have the form
W, = ZiTui®,qipy Where each s™ € 5%, each r,; = 0, and for each n there
exist only finitely many ¢ such that »,, > 0. If {"e &4 is defined for
all n,ic® by (t"); = (s"); for 2< g <« and (t*), =, then the
sequence {w.}, where w, = 3¢ 7. i is clearly a bounded sequence
in P,. It will now be shown that {w)} converges pointwise to y.
For each we U\{0, 1}, v,(u™") = (B, v) for some B, v such that 5>
v = 2, and hence for each n = u™,
wyt = wwpt = Ziewrnim(tni)ﬂ(tni)r

— — —1p142,% e
- ZiEanix(sni)ﬂ(sni)r = U Wy,

therefore, w;*(t) — w'22(t) = y~*(t) and w;»*(t) — 2>*(t) = y>*(t) for

all ¢t <[0; 3].
Since the situation for » = 0 is trivial, it remains only to consider
the case in which v = 1. Given #n, p,qc® let

Qnpg = Z{Tni: (Sni)z =D, (sni)L = Q}-

Thus each a,,, = 0, and for each » there are only finitely many pairs
(p, q) for which a,,, > 0. Since wy' = 3,2 ,a,,%,, for each n, it follows
from the proof of Lemma 3.2 and the note following that proof that
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lim,a,,, = a,, for each p, ¢; that
lim,% a,,, = ¢7'2"(t,,) = 2, @py + by

for each p; and that limsup,?,.,%,a,,,— 0 as r — . Thus given ¢>0,
there exist r and », such that ¥,.,(F,a,, + b,) < ¢/3¢c and Y,.,% .y,
< ¢/3¢ for all n > n,.. Now wj' = 3,(Z,@up)%,. and for each ¢ e [0; 3]
there exists m.(t) > m, such that

|(Z s pnlt) = (Satyy + b)2(O)] < -
for each m > n,(t) and p < r. It follows easily by the triangle in-
equality that
lw'(#) — 2,p(b, + Toa,)2"(8)| < &
for each n > m,(t). Thus
w' (1) = wr(t) — ¥ () = ¥

for all ¢, completing the proof for 6 = 1.

Now let 6 > 1 and assume that the statement of the lemma is
true for each ordinal ¢ such that 1 < e < 4. If ze L,(P,), there exists
a bounded sequence {w,} C U..;L.(P,) which converges pointwise to z.
By the induction hypothesis the sequence {y,} is contained in .., L.(P.),
where, if

Wy = X Bupg®pg + Zpbup® + €,2°,
then
Yo' = Yz = 2p(bup + 2 yQupg)2” + €%

and y5° = ¥%° = 0 and uys* = y2*=w%* for w0, 1. An easy induction
argument shows that || f>*|| < ucsf™'(s,) for each ue U and f € L,(P,),
and from this result it follows that the sequence {y,} is bounded. To
see that {y,} converges pointwise to ¥, note first that ¥," = 42°=0=
y“* = y*° for each n. Next, if v # 0,1 and ¢ [0; 3], then

uy(t) = ¥ (@) = wi* () — 22 (1) = uy" () = y>*(9)-

For u = 1, since y.' = y%' and y“' = y*!, it remains only to show that
Yu'(t) — y"'(t) for each te[0;3]. If ¢ is not of the form s,;, 2 + s,
or t,; with v < j, then y;'(f) = 0 = y"'(f). Ift =s,,; or 2 4 s,; with
1, odd, then

yu'(t) = wii(t) — 2p<plzqanpqqu(t)

and
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yi(t) = () — Zp<p12qapqmpq(t);

since wy'(t) — z"'(t) and a,,, — a,, (as noted in the proof of Lemma 3.1),
and since there exists ¢, such that z,,(t) = 0 whenever p <p, ¢ > ¢,
it follows that yy'(¢) — y"'(¢). Finally, if ¢ = ¢,; with 1 < v < j, then

Yit(t) = wi'(t) + €Z5ou T3
— () + eTi Tita,, = YD),

This completes the induction step and hence the proof of the lemma.

LEMMA 4.3. Let 0<6 < Qand ze Ly(P,). Then z"* < w™'2>"* for
each we U\{0}. If

= 3,8 4,00, + 2pbya” + ot
and if q, € w, then
2 S uTR — X2 g0y

for each u = qi.

proof. The first assertion is immediate by induction on 4. For
the second assertion suppose first that z has the form z = %, .,d,x, where

o is a finite subset of &4 and d, = 0 for each s.- Then 2" = ¥, % a,,&,,,
where

a,, = 2{d,:s€0,s,=p,s = g}

Thus 2,%, ., a,, = 2{d,:se0,s < ¢} and hence if u = ¢i* and v, (u™)
= (B, 7), then

2 = uZ’,,e,,dsxsﬁ,r = uzb* + u2,1<u—1d,x,ﬁ,r
S u@ + T, A ) S w@E + 02020, 05)

as desired.

Next, suppose z is the pointwise limit of a bounded sequence {w,},ca
in Ly(P,) such that each w, has the desired property; i.e., for each
%= Qg

1, —1 A
wnu g w wiu - czpzq«zla'npq
where
I} S— 0
Wwy' = Y2 0 %0y + 2pbap? + €2,

By the proof of Lemma 3.3 there is a subsequence {w,} of {w,} such
that {3,%,a,,,,%,,} is pointwise convergent, and by the note following
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Lemma 3.2 for each { > 0 there exist p, and 7, such that for each ¢
> 1,

szﬂlzqa”nipq < cC-

Since a,,,, — a,, for each p and ¢, there exists ¢, > ¢, such that for
each 7 > 1,

2P<p12q<q1an,~m < 2p<p12q<q1apq + C'
Hence, for each 7 > 1,

Zp2q<q1an¢w < 2p<p12q<qla’pq + (1 + C)C
= 2p2q<q1apq + (1 + O)C-

For each te¢[0;3] and » = ¢,

20(t) = limawi () = Hmy(w ' wi(t) — ¢2,3 <0, @n;n)
= w'z(t) — C[2p2q<q1am + (1 + ¢)¢].

Since { can be arbitrarily small,
1, —1,2,
2V Z U — X2 g,y

for each u = ¢i*, as desired.
The preceding paragraphs provide both the base step and the induc-
tive step for the proof of the second assertion of the lemma.

LEMMA 4.4. Let G be the set of all ze L(P,) such that z“'c @,
+ Q.. If ze @G, then z"* = u™'2*" for each we U\{0}.

Proof. In the notation of Lemma 4.3, a,, =0 for all p, ¢ and
hence %,%,.,a,, = 0. The present result now follows immediately
from Lemma 4.3.

L, (L(P)NG) iflsi<w

LEMMA 4.5. Ly(P,) NG = L(L(P) N G) if ®<d< 0.

Proof. The result is trivial for 6 = 1. Let 1 < § < @ and assume

the result is true for all ¢ < §. Then for each ze L;(P,) N G it follows

from Lemma 4.4 that 2" = u~'2** for each 0. Since ze(G, it

follows that z is identical with the y occurring in the statement of

Lemma 4.2 and hence is the pointwise limit of the bounded sequence

{#.} < G NU.sc<sL.(P,) which appears in the inductive step of the proof
of Lemma 4.2. By the inductive hypothesis

¥} € Uisecslieei(Lu(Po) N G) = Lio(Lu(Py) N G)
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and hence ze L, ,(L,(P,) N G). Conversely, if ze L, ,(L,(P,) N G), then
2 is the pointwise limit of a bounded sequence {w,} C L;_,(L,(P,) N G).
By the inductive hypothesis L, s(L,(P,) N G) = L,_,(P,) N G. Hence
clearly ze L,(P,), and also ze G by the proof of Lemma 8.3. Thus
the proof is complete for ¢ < w.

Now let w <6 < 2 and assume the result is true for all e < é.
As in the previous case each ze L;,(P,) N G is the pointwise limit of
a bounded sequence {y,} € G N U.«;L.(P,). By the inductive hypothesis
{v.} € U.csL(L,(P)) N G), and hence ze L,(L,(P,) N G). Conversely, if
z€ Ly(L,(P,) N G), then z is the pointwise limit of a bounded sequence
{w,} € Uews L (L(P,) N G). By the inductive hypothesis {w,} € G N
U.«:L.(P,) and hence zeG N L;(P,), completing the proof of the
lemma.

LEMMA 4.6. Let {w,} be a bounded sequence in U.c.L.(P.) which
converges pointwise on S, to the function 2z, defined earlier in the
present section. If

2 — 0
Wyt = 202 Qppgpq + 2pbap®® + €0

for each mec w, then lim,%,% a,,, = 0.

Proof. If the conclusion is not true, then as in the proof of
Lemma 3.3 a subsequence {w,,} of {w,} exists such that inf;3,3 a, ,, >0
and such that the limits ¢, = limc,,, b = lim;3,b,,,, b, = lim;b, ,, and
a, = lim;¥.a,,, all exist (pew). Since z;' =’ by definition of z,,
the coefficient of each z,, in the unique expansion of zy' must vanish
and it is easily verified that {X,b,,2” + ¢, 2% and {¥, 2 a, ,.,} converge
pointwise to 2,b,2° + (¢, + b — X, b,)2’ and XY a,2° respectively, as in
the proofs of Lemmas 3.3 and 3.2 (note that the symbol b, is used
differently in those two proofs). Hence

2t = Y(a, + by)x? + (¢, + b — X,b,)2°.

Now the uniqueness of the expansion of z;' shows that a, + b, = 0 for
each p and ¢, + b — 2,b, = 1. Since a, and b, are nonnegative, they
must both vanish for each » and hence ¢, + b = 1. Now

1 = 2;'(sy) = limy(2,2,0,, + 2pbayp + €,)
= lim;2,% 0y + b + ¢

and hence lim;¥,%.a,,, =0, contradicting our assumption and thus
proving the lemma.

THEOREM 4.1. If {w,} is a bounded sequence in J.<.L.(P,) which
converges pointwise to 2z, them there exists a sequence
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{yad €GN Uecal(Ps) such that ||y, — w,||— 0.

Proof. Each wi' has the form
Wy = T3 0npe®pg + 2pbop2® + €,2°.
By Lemma 4.2 these exists a sequence {y,} C U.<.L.(P,) such that
Yu' = Yt = Tp(bap + I @apg)a® + 0,2

and %2° = ¢v° = 0 and uyL* = y2* = w2* for each #=£0,1. Since ob-
viously {y,} C G, if remains only to show that lim,||y, — w.]|| = 0.
First note that (y, — w,)"* = 0 and (y, — w,)** = 0 for all » = 1.
For each real » > 0 there exists by Lemma 4.6 an n.€® such
that ¥,¥ a,,, < r for all n > n,. For each u + 0 there exists ¢, e w
such that % = ¢;* and hence by Lemma 4.3,

—1,042s —1,792s
wowyt — er < UMWt — 3,2 <q, Qapg
= wpt = uTwyt

for each n > n,. Since ¥%* = w%"* for each w %= 1,
1@ — well = gy — wel| = flutwy® — wi]] < or

for each n > n, and w = 0, 1.
Finally, since z* = 2** for each z¢e Ly(P,),

”(yn - wn)z’lll = ”(yn - wﬂ)l'lll = HZP(anm,qu - annpqqu) H
< 2er

for each n > n,.
We have now shown that ||y, — w,|| < 2¢r for each # > n,, com-

pleting the proof of the theorem.

LEMMA 4.7. Let  be a countable ordinal, and let y € L;(L,(P) NG).
Lt ' =C+1ifl<owand I =Cif L= w. If ue U\{0} and v, (u™)
= (B, v) with 8> v >, then y“* is continuous and hence has the
form y'* = 2,3 ,0%%. If also ve U\{0} and v, (v™") = (v, 6) with B >
v >8>, then for each rew, X,a; = 2 a),.

Proof. The proof will be by induction on {. If ye L(L,(P,) N G)
= L,(P,) N G, there is a bounded sequence {w,} < P, which converges
pointwise to y. The sequence {w,} can be chosen so that each w, is
a finite linear combination of elements of {x,:se .54}, and hence there
exists a countable subset o of & such that each w, has the form w, =
3 yeobnsts, Where each b,, is nonnegative and for each n only a finite
number of the b,, are nonzero. If u+0 and v,(u™) = (B, 7), then
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W = U by . = UL, Z (g

Sﬁsr

where
a’:pq = Z{bm: Sp =P, S = Q}’

Now y"* = w'y** by Lemma 4.4 since y ¢ G; hence y“* is the point-
wise limit of the bounded sequence {3,¥,a%,,2,}. The function y"* is
in L,(Q) and hence has the form

yl'u = szqa;qxw + Zpb;mp;
by the proof of Lemma 8.2, a?, = lim,a?,, for all p, ¢ and
b; = C_Iyl'u(tpp) - an;q = limnzqa;pq - Sqa;q

for all p.

Now assume further that v, (u™) = (8, v) with v > 1, and let » =
2if vy>2and N =11if vy =2. Then (v,\) € B, so there exists v, ¢
U\{0} such that v,(7) = (7, M. Since {X,5,0%s) and {5,2,a%,)
are bounded pointwise convergent sequences in Q, it follows from the
note following Lemma 3.2 that for each real ¢ > 0 there exist integers
p, and n, such that %,,, ¥,a%,, < ¢ and ¥,,, 3, <¢ for all n = n,.
Since

2p2q>p1a:pq = Z{bns: Sy > px} = Zp>r12qagblpq <e
for each n > n,, it follows that if f, = 2,<, 2 ¢, 0n2e%0es
Nu tws® — fll < eZ{at,,;: p > p, or ¢ < p,} > 2ce

for each n = n,. Since ||f,|| < ||w"'w%*|| < w™' sup,||w,| for each =,
it follows that for each n = n,, f, belongs to the compact subset

guvm = {Epéplzqéﬁlkpqqu: kpq g 0, ZpSquqsplkpq § w Supn”wn”}

of C[0; 3]. By compactness some subsequence {f,} of {f,} must converge
to an element f of &,,, and since {u'w}!} converges pointwise to
y-*, it follows that ||y** — f|| < 2ce. Thus, for each &> 0 there
exists an f e C[0; 3], depending on ¢, such that ||y"* — f|| < 2ce. Since
C[0; 8] is complete in norm, y**ec C[0; 3] and must therefore be equal
to X, 3 ak,2,,.

Now if 0%ve U and v,(v™') = (v,8) with v >4 > 1, then for all
n and 7,

3,0, = Z{buis, = 1} = I @

Since y"° = X, ¥ a},%,, it follows that
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Eqa:q = c_lyl'v(t'rr) = limnC-'l’U"lw‘f;v(t,.,.)
= lim,%,a,, = lim,%,a%,,.

On the other hand the bounded sequence {¥,¥a%,x,} converges point-
wise to y'* = 2,2 as®,. By the note following Lemma 3.2, for each
¢ > 0 there exist p, and n, such that ¥,,, ¥.az,, <e for all n = n,
and also %,., Y.a;, <e€. Hence

|20y, — lim,2as,, | < 2 + | 2,5,05, — lim, 2,2, ar,, |
= 2e.

Since ¢ is an arbitrary positive number,
S0y =lim,% a4, = 3,al,.

This completes the proof of the lemma for { = 0.

For the induction step let 0 < { < £, assume the desired result
holds for each n < {, and let y, ', u, 8, and v be as in the state-
ment of the lemma. Then there exists a bounded sequence {y,} in
Uy« L,(L,(P,) N G) which converges pointwise to y. Since 1 <’ < v
< a, there exists v, € U\{0} such that v, (v7") = (v,{’). For each =
there exists 7, < { such that y,e L, (L,(P,) N G), and it follows that
B> > >, for each n, where 7, is de fined in terms of 7, as {’
was defined in terms of {. By the induction assumption y;* and yi™
are continuous and have the form y;*=2%,% a%,2,, and yy =23 ,% a% 2
and Y,a%,, = F,aw, for all » and r.

As in the proof for { = 0, for each ¢ > 0 there exist %, and p,
such that ¥, ar,, < ¢and %,,, 2 .a,, < ¢ for all n = n,. Hence, since
2at,, = 2 an, for all n and r, it follows that for n = n,, the distance
between yy* and the compact subset

“@;’x = {Zpgplzqsplkpqqu: kpq g Oy Zpéplzqulkpq é SUPWHW“ H}

of C[0; 3] is less than 2ec. Since {y."} converges pointwise to y"*, the
compactness of =7, implies that ||y"* — w]|| < 2ec¢ for some continuous
w depending on €. Then the completeness of C[0; 3] implies that y"*
€ C[0; 3] and therefore, since also y"*e L,(Q), that y"* has the form
szqa';qqu'

If also 0=£ve U and y,(v™") = (v,0) with 8> v > > {’, then y"*
and each y4’ are continuous and have form corresponding to y“* and
yy* respectively. Further, by the induction assumption, ¥, a%,, = 2 .ai,,
for all » and r. Hence

2, = c 'y, = lim,e 'Yy (¢,,) = lim, 2,7,
= lim, % a%,..

Exactly as in the last part of the proof for { = 0 it is seen that
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Y,a¢, = lim,¥,a%,,. This completes the proof of the induction step
and hence of the lemma.

LEMMA 4.8. If ye Ly(L,(P,) N G) for some countable { and if u, v
e U\{0} with v,(u™) = (B, V) and v, (v™") = (B, ) for certain ordinals
B, 7,0 then in the expression

Y = 2,2 a5, + 2,bp07 + ¢’
and the corresponding expression for y“® it must be true that y“*(27)

=y"'@2™,c* =c’, and by + X, ar, = by + 2,5, for each p.

Proof. By Lemma 4.5, ye¢ G. Hence, by Lemma 4.4, y** = u~'y**
and yl,v — v—lyz,v.

If £ =0, then y is the pointwise limit of a bounded sequence {y,}
of functions of the form y, = J,., b,x,, where o, is a finite subset of
&~ and each b,, is nonnegative. For each p and n,

UYL (Epn) = ¢Z{bys 55 = D} = VYR (Ep0)-
Since {y%*} converges pointwise to y**,
Y () = w7y (C0n) = V7Y () = ¥ (Er0)
for each p, and hence it follows irhmediately that

b; + 205, = 7Y (t,,) = 7Y ()
= b; + 2 qa/;q

for each p. Since y** and y"* are Baire functions of the first class,
¢* =0 =c". Hence

yllu(zﬂ) = Zp(bz + ZqQZQ) = yl'v(z_l)'

For the induction step let £ > 0 and assume the statement of the
lemma holds for each » < {. By hypothesis there exists a bounded
sequence {y,} in Uy<;Ly(L,(P,) N G) which converges pointwise to .
Under the usual notation the relations

b, + 2 ,0%,, = b, + 2ah,

¢t = ¢, and ¥4*(2™) = y."(27!) must hold for all » and p. It is seen
immediately that y“*(27") = ¥**(2™") and y"*({,,) = ¥"°(t,;) for all p,
from which the remaing desired relations for y“* and y"* follow. The
proof is thus complete.

THEOREM 4.2. Let { be a countable ordinal, and let L’ be defined as
in Lemma 4.7. If ye L{(L(P,) N G) and 0+u € U with v, (u™) = (B, V)
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and B> (', then y**ec@ + Q..

Proof. 1f { =0, then ye L,(P,) and hence trivially y"*e L,(Q),
which is equal to @ + @, by Lemma 38.2.

If £ > 0 and the desired result is true for each 7 < {, then 2 <
¢’ < B8 < a and hence there exists v e U\{0} such that v, (v™") = (8, {').
There exists a bounded sequence {y,} in Uy<;Ly(L(P,) N G) which con-
verges pointwise to y. Since g >’ > % for each » < { it follows
from Lemma 4.7 that each y.’ is continuous and hence belongs to Q.
Hence y“’e L,(Q) = @ + @,. Thus in the usual notation for y“* and
y** it follows that ¢’ = 0, but then also ¢* = 0 by Lemma 4.8, hence
¥ e @ + Q,, and the proof is complete.

The following theorem justifies the claim made at the beginning
of the present section.

THEOREM 4.3. The element z,c L(P,) has the property that ||z.||
=1 but that if {w,} is a bounded sequence in Us<.Ls(Ps) converging
pointwise to 2., then lim,|w,|| = c.

Proof. By Lemma 4.1 and the remarks preceding it we know that
2.€ L (P,) and ||2,]| = 1. If {w,}is a bounded sequence in s<.Ls(P,)
converging pointwise to z,, then by Theorem 4.1 there exists a sequence
{#.} in G N Us<aLs(P.) such that ||y, — w,|| — 0. Clearly lim,[|w,||=
lim,||y.]] Now by Lemma 4.5,

L.(L(P)NG) if25a<w

{v. C )
Use LA L(P)NG) if o £a< Q.

Defining {’ as in Lemma 4.7, one sees easily that each y, € L; (L.(P.)
N G) for some {, such that o > {,. Now there exists u, € U\{0} such
that v, (u') = («, v) for some v < a; for example, take v =1 if a =
2 and v =2 if @ > 2. Then by Theorem 4.2, y;“cQ + @, = L,(Q) for
each n. Now 2. = 2° by definition, and hence lim,||y,"“|| = ¢ by
Theorem 1 of [7]. It follows that o

lim, |[w,|| = lim,||y,|| = lim,[|yu" || = c.
COROLLARY 4.1. Let T be the mapping of Theorem 2.1 for the

space X,, and let Go = Tz,. Then G, Ku(Jx Po) and [|G.]| =1, but if

{F.} is a sequence in Us<.Ks(Jx P.) such that F, ———»Ga, then lim, || F,||
= C.

Proof. It is immediate from Theorem 2 1 that G, e K.(Jx, P.) and

[|1Gall = 1. If {F,} C Us<aKs(Jx P.) and F, s G., then by Theorem 2.1
the sequence {T'F,} is in Us.Lp(P,) and ||T-'F,|| = || F,|| for each
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n. Now sup,||T'F,|| = sup,||F,|| < « since {F,} is w*-convergent.
For each te¢ S, let f,c X* be defined as in the proof of Theorem 2.1.
Then

(T7'F,) (@) = F.(f)) — Gu(f2) = 2(?)
for each ¢, and hence
lim, || F, || = lim, || T-'F,|| = c.

5. Our main theorems will now be proved through consideration
of product spaces, as defined in [2, p. 31], of spaces of the type X,.
Since X,, P, and G, depend on the given number ¢ = 1 as well as on
«, the objects mentioned will henceforth be indicated with double sub-
scripts as X, ., P,,, and G,., respectively. Recall that if I is a set
and X, is a Banach space for each se I, then the product spaces
I, ,X¥ and I7,,,X5* are respectively the dual and bidual of the
Banach space /1., X, under the natural identifications.

THEOREM b5.1. For each countable ordinal a = 2 let Y, be the
Banach space 11 co(w)an,a and let

Qa = nne‘w{y € Ya: y(’ﬂ/) € Pnz'a}'

Then Y, is separable, and Q, 1s a norm-closed cone in Y, such that
K.(Jy Q) is mot morm-closed in Y:*.

Proof. It is evident that Y, is separable and @, is a closed cone
in Y,. An easy transfinite induction argument shows that for each
n the functional F, belongs to K.(Jy Q.), where F,(n) = G ,,, and F,(7)
= 0 for all ¢ = ». Hence X n"'F,e K,(Jy Q. for each positive integer
m, and therefore ¥,.,n"'F,c K,(J; Q.. If {H,} were a sequence in
Us<eKs(Jy Qo) such that H, AN Y n'F,, then for each 7¢ w it would

follow that
{Hk(i)}kc Uﬁ<aKﬁ(JX-2 P2 )

i S A

and

w* . .
H,(1) — 20 'F, (1) = 177G
It would then result by Corollary 4.1 that
lim, || H, || = lim, [[H(9) || = 4,

but then since ¢ is arbitrary the sequence {H,} would be unbounded
in norm, contradicting the fact that a w*-convergent sequence in Y:*
must be bounded [3, p. 60]. Hence X, n'F, ¢ K,(J; Q.), and the proof
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is complete.

THEOREM 5.2. For each countable ordinal a = 2 there exists a
separable Banach space W, containing a nmorm-closed cone R, such that
if 2= B = «a, then Ky(Jy R.) s not norm-closed im Wi*.

Proof. Let A, = {8:2=< B < a} and for each ge 4, let Y, and
Qs be as defined in Theorem 5.1. Let W, = 11, ,,Y; and R, = Nscq {w
€ W.: w(B) €Qs). Then the Banach space W, is separable since 4, is
countable, and R, is clearly a norm-closed cone in W,. For each ge
A, there exists by Theorem 5.1 a sequence {g;,} in Kﬁ(JYﬁQﬂ) which
coverges in norm to an element ¢;,e Y}* not in Ks(Jy,Qs)- If o, is
defined for each integer » = 0 by +.(v) = 0 for v = g and v;,.(8) =
$s,40 it is easily shown that {y.}uco © Ko(Jy R,) and {y;,,} converges
in norm to +y, but that v,,¢ K;(J, R,. Hence for each ge A,
K;(Jy R.) fails to be norm-closed in W3*.

THEOREM 5.3. There exists a Banach space Z contaning a norm-
closed cone P such that if B is a countable ordinal = 2, then K(J,P)
fails to be norm-closed in Z**.

Proof. The proof is almost identical with that of Theorem 5.2.
Let A={3:2=p8<9,Z=1I1,,Ys and P = ses{zeZ: 2(B)c Q.
Since A is uncountable, the Banach space Z is nonseparable. It is
clear that P is a closed cone in Z. The pooof that K,(/J,P) fails to
be norm-closed in Z** for each g e A is identical with the corresponding
part of the proof of Theorem 5.2, in which it was shown that K,(J, R.)
fails to be norm-closed in Wi* for each ge A,.
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