ON THE DENSITY OF (k, r) INTEGERS

Y. K. Feng and M. V. Subbarao

Let k and r be integers such that $0<r<k$. We call a positive integer $n, a(k, r)$-integer if it is of the form $n=a^{K} b$, where a and b are natural numbers and b is r-free. Clearly, $a(\infty, r)$-integer is a r-free integer. Let $Q_{k, r}$ denote the set of (k, r)-integers and let $\delta\left(Q_{k, r}\right), D\left(Q_{k, r}\right)$ respectively denote the asymptotic and Schnirelmann densities of the set $Q_{k, r .}$. In this paper, we prove that $\delta\left(Q_{k, r}\right)>D\left(Q_{k, r}\right) \geqq$ $\zeta(k)\left(1-\sum_{p} p^{-r}\right)-1 / k(1-(1 / k))^{k-1}$, and deduce the known results for r-free integers.

1. Introduction and Notation. In some recent papers, ([4, 5]) we introduced a generalized class of r-free integers, which we called the (k, r)-integers. For given integers k, r with $0<r<k, a(k, r)$ integer is one whose k-free part is also r-free. In the limiting case when $k=\infty$, we get the r-free integers. It is clear that $a(k, r)$ integer is an integer of the form $a^{k} b$, where a and b are natural numbers and b is r-free. Let $Q_{k . r}, Q_{r}$ denote the set of all (k, r) integers and the set of all r-free integers respectively. Also let $Q_{k, r}(x)$ denote the number of (k, r)-integers not exceeding x, with corresponding meaning for $Q_{r}(x)$. We write $\delta\left(Q_{k, r}\right)$ for the asymptotic density of the (k, r)-integers, that is,

$$
\delta\left(Q_{k, r}\right)=\lim _{x \rightarrow \infty} \frac{Q_{k r}(x)}{x},
$$

(provided this limit exists), and $D\left(Q_{k, r}\right)$ for their Schnirelmann density given by

$$
D\left(Q_{k, r}\right)=\inf _{n} \frac{Q_{k r}(n)}{n} .
$$

We define $\delta\left(Q_{r}\right)$ and $D\left(Q_{r}\right)$ analogously. Let $\psi(n)$ be the characteristic function of $Q_{k, r}$ and $\lambda(n)$ be defined by

$$
\sum_{d \mid n} \lambda(d)=\psi(n) .
$$

It is easily proved (see [3]) that the function $\psi(n)$ and $\lambda(n)$ are multiplicative and for any prime p

$$
\lambda\left(p^{a}\right)=\left\{\begin{array}{rl}
1 a \equiv 0(\bmod k), \\
-1 & a \equiv r(\bmod k) \\
0 & \text { otherwise }
\end{array}\right.
$$

Further,
(1. 1$) \quad \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}=\frac{\zeta(k s)}{\zeta(r s)}, \operatorname{Re}(s)>\frac{1}{r}$,
wh ere 做 is the Riemann Zeta function. In a previous paper [5], we shored that

$$
Q_{k, r}(x)=\frac{x \zeta(k)}{\zeta(r)}+E(x)
$$

where the error term $E(x)$ is $0\left(x^{\frac{1}{r}}\right)$, for $r>1$, uniformly in k. (We act ually gave an improved estimate for the error term, but this is not required here..)

It : fllors that

$$
\delta\left(Q_{k, r}\right)=\frac{\zeta(k)}{\zeta(r)}
$$

In this paper we will show that

$$
\delta\left(Q_{k, r}\right)>D(k, r) .
$$

The correspanding result for Q_{2} was first proved by Rogers [2], and for Q_{r} forall $\varphi>1$ by Stark [6]. We also obtain a lower bound for $D\left(Q_{z, r}\right)$, from which we obtain as a special case a result of Duncan [1] On a breer bound for $D\left(Q_{r}\right)$. The actual value of $D\left(Q_{k r}\right)$ is unknown exrepl for the case Q_{2}; Rogers [3] proved that

$$
D\left(Q_{2}\right)=\frac{53}{88} .
$$

2. Theorem.

$$
\left.\dot{\partial}\left|Q_{k}\right\rangle\right\rangle D\left(Q_{k, r}\right) \geq \zeta(k)\left(1-\sum_{p} p^{-r}\right)-\frac{1}{k}\left(1-\frac{1}{k}\right)^{k-1} .
$$

The prod will be given in two parts, corresponding to the two resul ts:

$$
\begin{equation*}
D\left(Q_{k}\right) \geq \zeta(k)\left(1-\sum_{p} p^{-r}\right)-\frac{1}{k}\left(1-\frac{1}{k}\right)^{k-1} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\delta\left(Q_{k r}\right)>D\left(Q_{k, r}\right) \tag{2.2}
\end{equation*}
$$

Proof of (2.1). The case $r>1$.
I \mathbf{t} is thay that

$$
Q_{r}(n) \geq n-\sum_{p}\left[\frac{n}{p^{r}}\right]
$$

p ran ging vere all the primes.

Since

$$
Q_{k, r}(n)=\sum_{a=1}^{\infty} Q_{r}\left(\left\lceil\frac{n}{a^{k}}\right]\right)
$$

it follows that

$$
\begin{aligned}
Q_{k, r}(n) & \geq \sum_{a=1}^{\infty}\left(\left[\frac{n}{a^{k}}\right]-\sum_{p}\left[\frac{a^{n / k}}{p^{r}}\right]\right) \\
& >\sum_{a=1}^{\infty}\left(\frac{n}{a^{k}}-\sum_{p} \frac{n}{a^{h} p^{r}}\right)-\left(n^{1 / k}-1\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\frac{Q_{k, r}(n)}{n} & >\sum_{a=1}^{\infty}\left(\frac{1}{a^{k}}-\sum_{p} \frac{1}{a^{k} p^{r}}\right)-\frac{n_{k / 1}-1}{n} \\
& =\zeta(k)\left(1-\sum_{p}^{P-r}\right)+\frac{1-n^{1 / k}}{n}
\end{aligned}
$$

Let

$$
f(x)=\frac{1-x^{1 / k}}{x}=\frac{1}{x}-x^{1 / k-1}
$$

then

$$
f^{\prime}(x)=\frac{1}{x^{2}}-\left(\frac{1}{k}-1\right) x^{1 / k-2}
$$

so that

$$
f^{\prime}(x)>0 \text { if }\left(1-\frac{1}{k}\right) x^{(1 / k)-2}>\frac{1}{x^{2}} \text {, i.e., }\left(1-\frac{1}{k}\right) x^{1 / k}>1 .
$$

Thus

$$
f^{\prime}(x)\left\{\begin{array}{l}
>0 \text { when } x>\frac{1}{\left(1-\frac{1}{k}\right)^{k}}, \\
<0 \text { when } x<\frac{1}{\left(1-\frac{1}{k}\right)^{k}}
\end{array}\right.
$$

when $x=(1-(1 / k))^{-k}$ we get the minimum value of f, which is equal to

$$
f\left(\left(1-\frac{1}{k}\right)^{-k}\right)=\frac{1-\left(1-\frac{1}{k}\right)^{-1}}{\left(1-\frac{1}{k}\right)^{-k}}=-\frac{1}{k}\left(1-\frac{1}{k}\right)^{k-1}
$$

Hence

$$
\frac{Q_{k, r}(n)}{n}>\zeta(k)\left(1-\sum_{p} p^{-r}\right)-\frac{1}{k}\left(1-\frac{1}{k}\right)^{k-1}
$$

and

$$
D\left(Q_{k, r}\right) \geq \zeta(k)\left(1-\sum_{p} p^{-r}\right)-\frac{1}{k}\left(1-\frac{1}{k}\right)^{k-1}
$$

For the case $r=1$,

$$
\begin{aligned}
Q_{k, 1}(n) & =\left[n^{1 / k}\right] \\
\delta\left(Q_{k, 1}\right) & =\lim _{n \rightarrow \infty} \frac{\left[n^{1 / k}\right]}{n}=0, \text { since } k \geqq 2 . \\
& D\left(Q_{k, 1}\right)=\inf _{n} \frac{\left[n^{1 / k}\right]}{n}=0 .
\end{aligned}
$$

So the result still holds in this case.
Remark 2.3. The above proof is easily seen to hold even when $k=\infty$. The corresponding result, namely,

$$
D\left(Q_{r}\right)>1-\sum_{p} p^{-r}
$$

is due to R. L. Duncan [1].
To prove the result in (2.2), we first obtain the following lemma.
Lemma 2.4. For any $\varepsilon>0$, we have
(i) $E(n)>n^{(1 / 2 r)-\varepsilon}$, for infinitely many integers n,
(ii) $E(n)<-n^{(1 / 2 r)-s}$, for infinitely many integers n.

Proof. Let

$$
\Sigma\left(\psi(n)-\frac{\zeta(k)}{\zeta(r)}\right) n^{-s}=R_{1}(s)
$$

Since

$$
\sum\left(\psi(n)-\frac{\zeta(k)}{\zeta(r)}\right) n^{-s}=\frac{\zeta(k s) \zeta(s)}{\zeta(r s)}-\frac{\zeta(k) \zeta(s)}{\zeta(r)}
$$

we have

$$
\begin{aligned}
R_{1}(s) & =\sum\left(\psi(n)-\frac{\zeta(k)}{\zeta(r)}\right) n^{-s} \\
& =\sum(E(n)-E(n-1)) n^{-s} \\
& =\sum E(n)\left(n^{-s}-(n+1)^{-s}\right)
\end{aligned}
$$

Also, let

$$
\begin{aligned}
s \sum E(n) n^{-s-1}=R_{2}(s), \\
\sum E(n) n^{-s-1}=R_{3}(s), \\
\sum n^{(1 / 2 r)-\varepsilon} \cdot n^{-s-1}=R_{4}(s), \\
\sum\left(n^{(1 / 2 r)-\varepsilon}-E(n)\right) n^{-s-1}=R_{5}(s), \\
\sum\left(n^{(1 / 2 r)-\varepsilon}+E(n)\right) n^{-s-1}=R_{6}(s) .
\end{aligned}
$$

Now suppose that for all $n \geq n_{0}, E(n) \leq n^{(1 / 2 r)-s}$. Then the series $R_{5}(s)$ converges for $a>(1 / 2 r)-\varepsilon(a=R e(s))$, and all but a finite number of coefficients of $R_{5}(s)$ are nonnegative. Hence the abscissa of convergence of $R_{5}(s)$ must be less than or equal to $(1 / 2 r)-\varepsilon$. Let α be its abscissa of convergence, that is $\alpha \leq(1 / 2 r)-\varepsilon$. Note that (see [2], P. 661)

$$
\left|n^{-s}-(n+1)^{-s}-s \cdot n^{-s-1}\right| \leq|s||s+1| n^{-a-2}
$$

This implies $R_{1}(s)$ also converges for $a>\alpha$. But this is false because $R_{1}(s)$ has singularities on $a=(1 / 2 r)$. Thus we must have

$$
E(n)>n^{(1 / 2 r)-\varepsilon}
$$

for infinitely many integers n.
Next suppose that for all $n \geq n_{0}, E(n) \geq-n^{(1 / 2 r)-\varepsilon}$, then we consider the series $R_{6}(s)$, proceed as in (i) and arrive at the same contradiction.

Proof of the result (2.2). By the above lemma, there are infinitely many integers n for which $E(n)<0$. For such n,

$$
\frac{Q_{k, r}(n)}{n}=\frac{\zeta(k)}{\zeta(r)}+\frac{E(n)}{n}<\frac{\zeta(k)}{\zeta(r)},
$$

which proves the theorem.

References

1. R. L. Duncan, The Schnirelmann density of the k-free integers, Proc. Amer. Math. Soc., 16 (1965), 1090-1091.
2. E. Landau, Handbuch der Lehre von der Verteibungder primzahlen, Chelsea (reprint), 1953.
3. K. Rogers, The Schnirelmann density of the square-free integers, Proc. Amer. Math. Soc., 15 (1964), 515-516.
4. M. V. Subbarao, and V. C. Harris, A new generalization of Ramauujan's sum, J. London Math. Soc., 41 (1966), 595-604.
5. M. V. Subbarao, and Y. K. Feng, On the distribution of generalized r-free integers in residue classes, (To appear in Duke Math.).
6. H. M. Stark On the asymptotic density of the k-free integers, Proc. Amer. Math. Soc., 17 (1966), 1211-1214.

Received July 28, 1970 and in revised form January 26, 1971.
University of Alberta

