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ON THE DENSITY OF (k, r) INTEGERS

Y. K. FENG AND M. V. SUBBARAO

Let ft and r be integers such that 0 < r < ft. We call a
positive integer n, a(kf r)-integer if it is of the form n= aκby

where a and b are natural numbers and 6 is r-free.
Clearly, α(oo, r)-integer is a r-free integer. Let Qk,r denote
the set of (ft, r)-integers and let δ(Qk,r), D(Qk,r) respectively
denote the asymptotic and Schnirelmann densities of the set
Qk,r. In this paper, we prove that δ(Qk,r) > D(Qk,r) ^
C(ft)(l - ΣPp-r) ~ l/ft(l - (I/ft))*"1, and deduce the known
results for r-free integers.

1* Introduction and Notation* In some recent papers, ([4, 5])

we introduced a generalized class of r-free integers, which we called
the (ft, r)-integers. For given integers k, r with 0 < r < ft, a(k, r)-
integer is one whose ft-free part is also r-free. In the limiting case
when k — oo, we get the r-free integers. It is clear that a(k, r)-
integer is an integer of the form akb, where a and 6 are natural
numbers and b is r-free. Let Qkr, Qr denote the set of all (k, r)-
integers and the set of all r-free integers respectively. Also let
Q*,r(#) denote the number of (&, r)-integers not exceeding x, with
corresponding meaning for Qr(x). We write d(Qk,r) for the asymptotic
density of the (&, r)-integers, that is,

)

•-*• x
(provided this limit exists), and D(Qk,r) for their Schnirelmann density
given by

n

We define δ(Qr) and D(Qr) analogously. Let ψ(n) be the characteristic
function of Qktr and X(n) be defined by

Σλ(d) =

It is easily proved (see [3]) that the function ψ(n) and λ(^) are
multiplicative and for any prime p

X(p°) =

U Ξ O (mod k) ,

— 1 a = r (mod k) ,

v 0 otherwise.

Further,
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(l.ZL) ±m = m Re(8)>±.,
*=i n ζ(rs) T

w h ^re [(«) is the Riemann Zeta function. In a previous paper [5],
w e showed that

QkM ^ψ + E(x),
ζ(r)

w h e r e the error term E(x) is 0(xr), for r > 1, uniformly in ft. (We
actταally gave an improved est imate for the error term, but this is
n o t required here,)

I t follows that

ζ(r)

I n fchίs paper we will show t h a t

δ(Qk,r) > D(ktr) .

T h e corresponding result for Q2 was first proved by Rogers [2], and
for <3rίorallr>l by Stark [6]. We also obtain a lower bound for
D(& jc,r\ from which we obtain as a special case a result of Duncan
[1] o n a lower bound for D{Qr). The actual value of D{Qkr) is un-

except for the case Q2; Rogers [3] proved t h a t

wu = 1
2 * Theorem*

- Σ .
p

ΊΓhe proof will be given in two parts, corresponding to the two
r e s u l ts:

(2.1) D(y > ζ(fc)(i - Σ p-r) - f ( i - f
P k \ k

(2.2) δ(Qk r) > D(Qk,r) .

iFVooJ o/(2.1). The case r > 1.
I t is

p rarβLgίng over all the p r i m e s .
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Since

it follows that

«.,<»> = ΣG,([ί

Hence we have

n alcpr/ n

n

Let

then

so that

Thus

X X

7/ΛΛ _ 1 _ / -L __ 1 ^ l / Λ - 2

f'{x) > 0 if fl - AV(1'*>-2 > i , i.e., (l - ^λx1'" > 1
\ h / it; \ A; /

> 0 when a? >

< 0 when x <

(-1Γ

when a? = (1 — (l/&))~fc we get the minimum value of /, which is equal to
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Hence

and

For the

n

D(Q

case r =

Y

1,
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p

p-
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fcV

• τ)*"*

ί = 0, since k ^ 2 .

= i n f i l l = 0 .

So the result still holds in this case.

REMARK 2.3. The above proof is easily seen to hold even when
k — oo. The corresponding result, namely,

P

is due to R. L. Duncan [1].
To prove the result in (2.2), we first obtain the following lemma.

LEMMA 2.4. For any ε > 0, we have

( i ) E(n) > w(1/2r)~β, for infinitely many integers n ,

(ii) E(n) < —n{ιl2r)~6, for infinitely many integers n .

Proof. Let

U(n)
\

Σ ζ(r)

Since

C(rβ) ζ(r)

we have

Σ (E(n) - E{n -
- s - (n + I)"8) .
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Also, let

s Σ E(n)rrs-1 = R2(s) ,

n-s~1 = Rd(s) ,

Now suppose that for all n > n0, E(n) < nal2r)~\ Then the series
Rδ(s) converges for a > (l/2r) — e (a — Re(s)), and all but a finite
number of coefficients of R5(s) are nonnegative. Hence the abscissa
of convergence of Rδ(s) must be less than or equal to (l/2r) — ε. Let
a be its abscissa of convergence, that is a < (l/2r) — ε. Note that
(see [2], P. 661)

This implies R^s) also converges for a > a. But this is false because
Rt(s) has singularities on a — (l/2r). Thus we must have

for infinitely many integers n.
Next suppose that for all n > nQ, E{n) > — nal2r)~% then we

consider the series R6(s), proceed as in (i) and arrive at the same
contradiction.

Proof of the result (2.2). By the above lemma, there are in-
finitely many integers n for which E{n) < 0. For such n,

QkΛri) _ £(fc) , E(n) < ζ(Jc)
n ζ(r) n ζ(r)

which proves the theorem.
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