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GROUP RINGS
SATISFYING A POLYNOMIAL IDENTITY II

D. S. PASSMAN

In an earlier paper we obtained necessary and sufficient
conditions for the group ring K [G] to satisfy a polynomial
identity. In this paper we obtain similar conditions for a
twisted group ring K:[G] to satisfy a polynomial identity.
We also consider the possibility of K[G] having a poly-
nomial part.

1. Twisted group rings. Let K be a field and let G be a
(not necessarily finite) group. We let K*[G] denote a twisted group
ring of G over K. That is K‘[G] is an associative K-algebra with
basis {Z |2z e G} and with multiplication defined by

Ty = Y@, v)vy , Y@, y)e K — {0} .

The associativity condition is equivalent to Z(yz) = (Zy)z for all
x, ¥, 2€ @G and this is equivalent to

(@, y2)Y (Y, 2) = (@, Y7(*y, 2) .

We call the function v: G x G— K — {0} the factor system of K'[G].
If v(x,y) =1 for all #, ye G then K'[G] is in fact the ordinary group
ring K[G]. In this section we offer necessary and sufficient condi-
tions for K'[G] to satisfy a polynomial identity. The proof follows
the one for K[G] given in [3] and we only indicate the suitable
modifications needed. The following is Lemma 1.1 of [2].

LEMMA 1.1. If xe @G, then in K'[G] we have
(i) 1=~1, 1)1
(ii) ' = v(@, 2™ v, 1) a!

= 7@ @) (L D)

ProprosITION 1.2. Suppose K'[G] satisfies a polynomial identity
of degree n and set k= (n!)®. Then G has a characteristic subgroup
G, such that [G: G)) = (k + 1)! and such that for all xe G,

[G: Co)] < B0,

Proof. This is the twisted analog of Corollary 3.5 of [3]. We
consider § 3 of [3] and observe that each of the prerequisite results
for that corollary also has a twisted analog.
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First Lemma 3.1 of [3] holds for K‘[G] with no change in the
proof. Of course ¥ must be replaced by Z in the formula

TP, + axTBy + o + B, =XV .

Second Theorem 3.4 of [3] also holds for K'[G] with no change in its
statement. The proof is modified just slightly so that the induective
result to be proved is as follows. For each z;, x;,, -+, ®,€G, then
either fj(zj! Zjpry * 0ty in) = 0 or for some Lre ‘%j& #(55:/‘7 i?jﬂ! ‘% i'n) =
ay for some ae K — {0}, ye 4,(G). Then replacing x’s suitably by
%'s the proof carries through as before. Finally Corollary 3.5 of [3]
holds for K'[G] since it is just a group theoretic consequence of
Theorem 3.4 of [3].

Let K![G] be a twisted group ring and let H be a subgroup of G.
Then by K'[H] we mean that twisted group ring of H which is
naturally contained in K*[G]. Let JK*[G] denote the Jacobson
radical of K*‘[G].

ProposITION 1.3. Suppose K'[G] satisfies a polynomial identity
of degree n and suppose further that G’ is finite and K‘[G'] is
central in K'[G]. Then G has a subgroup Z 2 G’ such that

[G: Z] < (n/2)*¢"
with K{[Z]/(JK'IG'] -+ K'[Z]) commutative.

Proof. Since K'[G'] is commutative, JK'[G'] is the intersection
of the maximal two-sided ideals of K‘[G’]. Moreover K'[G']/JK*[G']
is a finite dimensional semisimple algebra and hence it has at most

dim; K*[G']/JK[G'] £ |G|
maximal two-sided ideals. Thus we may write
JKGl=N"L, m < |G|

where I; is a maximal two-sided ideal of K*'[G’].

Fix a subscript 7. Then K‘[G’']/I; = F;, some finite field exten-
sion of K. Now K'[G’] is central in K*[G], so I, - K*[G] is an ideal
in K'[G]. It is now easy to see that K'[G]/(I; - K'[G]) is an F-
algebra with a basis consisting of the images of coset representatives
for G’ in G. Thus clearly K'[G]/(L; - K'[G]) is isomorphic to some
twisted group ring F%[G/G'], and this twisted group ring inherits
the polynomial identity satisfied by K*[G]. Thus by Proposition 1.4
of [2], G/G' has a subgroup Z; with [G/G': Z;] < (n/2)? and with
Fli[Z] central in F}i|G/G']. Let Z; be the complete inverse image
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of Z;in G. Then Z,2G", [G: Z] £ (n/2)* and for all @, e K'[Z]
we have ap — pacl; - Ki[G].
Set Z= NrZ;. Then

G: Z] £ IT[G: Z;] = (/2™ < (n/2)%¢ .
Moreover for all a, Be K*[Z] we have

aB — pae 'L - K'[G] = JK'[G'] - K*[G]
since K'[G] is free over K'[G']. Hence since K'[G] is free over
K*'[Z] we have

aB — pae K'[Z] N (JK'[G'] - K'|G]) = JK*'[G'] - K'[Z]

and the result follows.

We now come to our main result on twisted group rings satisfy-
ing a polynomial identity.

THEOREM 1.4. Let K'[G] be a twisted group ring of G over K.
Let G2 A2 B be subgroups of G with B finite and central in A
and with K'[A]/(JK![B] - K'[A]) commutative.

(i) If [G: A] < o« then K'[G] satisfies a polynomial identity of
degree n = 2[G: A] - | B].

(ii) If K'[G] satisfies a polynomial identity of degree m, then
there exists suttable A and B with [G: A] - | B| bounded by some fixed
Sfunction of n.

Proof. The proof of (i) is identical to the proof of Theorem 1.3
(i) of [3]. Observe that JK'[B] - K'[|A] = K'[A] - JK'[B] is an
ideal of K'[A] by Lemma 1.2 of [1].

We now consider part (ii). Let K'[G] satisfy a polynomial
identity of degree n. Set

a=am) = nl) b= bn) =a""".
Then by Proposition 1.2 G has a subgroup G, with
[G: GO] g (a + 1)!, Go = Ab(Go)

where 4, is defined in [3].
Set

c=c(m) = )", d=dn) = (n/2)".

Then by Theorem 4.4 of [3], |G;| =¢c. Let G, = C4(G;). Then
G. = G, so G, is a finite central subgroup of G,. Moreover

lGilé(% [Go:Gllé(?!.
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Let xeG,. Then conjugation by Z induces an automorphism of
K*'[G;]. Moreover since G; is central in G, we have

TYT = M)y

for all ye G,. It follows easily that A, is a linear character of G,
into K, that is \,e Hom (G{, K — {0}). In addition, it follows easily
that the map z — \, is in fact a group homomorphism

G,— Hom (G}, K — {0}) .
Let G, denote the kernel of this homomorphism. Then
[G: G)] = |Hom (G, K- {0) | = |G| =¢c.

Set B=G,. Then BS G, so |B|=<c¢ and K![B] is central in
K'[G;]. By Proposition 1.3, G, has a subgroup A 2 B with

[G:: Al < (/2" < d

and with K'[A]/(JK'[B] - K'[A]) commutative. Since | B| < ¢ and
since

[G: A] = [G: G)] [Gy: G]IG:: Go} [Ge: A] £ (@ + 1)) -¢c-c-d
the result follows.

It is interesting to interpret this result for various fields. If K
has characteristic 0 and if B is a finite group, then K*‘[B] is semi-
simple by Proposition 1.5 of [1]. Thus

COROLLARY 1.5. Let K'[G] be a twisted group ring of G over K
and let K have characteristic 0. Let A be an abelion subgroup of G
with K'[A] commutative.

(i) If [G: A] < oo then K'[G] satisfies a polynomial identity
of degree n = 2[G: A].

(ii) If K'[G] satisfies a polynomial identity of degree m, then
there exists such a group A with [G: A] bounded by some fized func-
tion of m.

COROLLARY 1.6. Let K![G] be a twisted group ring of G over K
and let K have characteristic p > 0. Let G2 A2 P be subgroups
of G with P a finite p-group central in A and with K[A]/(JK'[P]-
K'[A]) commutative.

(i) If [G: A] < = then K'[G] satisfies a polynomial identity
of degree m = 2[G: A] - | P|.

(ii) If K'[G] satisfies a polymomial identity of degree m, then
there exists suitable A and P with [G: A] + | P| bounded by some fixed
function of n.
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Proof. Let B be given as in Theorem 1.4 and let P be its nor-
mal Sylow p-subgroup. Then P is also central in A. Moreover by
Proposition 1.5 of [1] JK![B] = JK'[P] - K‘[B] so the result clearly
follows.

Finally in the above if K is a perfect field of characteristic p,
then by Lemma 2.1 of [1], K’[P] = K[P] so K'[P]/JK'[P] = K. It
then follows easily that

K'[A]/(JK‘[P] - K*[A]) = K" [A/P]

is in fact some twisted group ring of A/P.

2. Generalized polynomial identities. Let £ be an algebra
over K. A generalized polynomial over E is, roughly speaking, a
polynomial in the indeterminates &, {,, -+, , in which elements of F
are allowed to appear both as coefficients and between the indeter-
minates. We say that E satisfies a generalized polynomial identity
if there exists a nonzero generalized polynomial f(¢,, &, +--, C,) such
that f(a,, &, +++,a,) = 0 for all a,, a,, ---, a, € E. The problem here
is precisely what does it mean for f to be nonzero. For example,
suppose that the center of E is bigger than K and let a be a central
element not in K. Then FE satisfies the identity f({) = af, — {a
but surely this must be considered trivial. Again, suppose that E is
not prime. Then we can choose nonzero «, 8¢ E such that E satis-
fies the identity f({,) = af,8 and this must also be considered trivial.
We avoid these difficulties by restricting the allowable form of the
polynomials.

We say that f is a multilinear generalized polynomial of degree n
if

f(CI? Cz: M Cn) =a§ fa(Cu Czy M) Cn)

and
%q
fa(Cn Czy cccy Cn) = 2 A 4 jca(l)al a,jCa(Z) e Xy, d.jca(n)an,n,j
J=1

where «;, ;€ E and a, is some positive integer. This form is of
course motivated by Lemma 3.2 of [3]. The above f is said to be
nondegenerate if for some o¢e S,, /7 is not a polynomial identity satis-
fied by E. Otherwise f is degenerate.

In this section we will study group rings K[G] which satisfy
nondegenerate multilinear generalized polynomial identities. Let
4 = 4(G) denote the F. C. subgroup of G and let 6: K[G] — K[4(G)]
denote the natural projection.
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LEMMA 2.1. Suppose K[G] satisfies a nondegenerate multilinear
generalized polynomial of degree m. Then K[G] satisfies a polynomial
identity as given above with

e}
Z}lﬂ(ao,l,j)ﬂ(al,l’j) coe 0(05”’1,1.) £0.

Proof. Let K|[G] satisfy f as above. Since f is nondegenerate,
by reordering the {’s if necessary, we may assume that f (&, &, =+, &)
is not an identity for K[G]. Thus since f* is multilinear there exists
Xy Loy o»+, 2, € G with

Oifl(xnxzy ""xn)

el

= Z‘lao»l»jxlal,lyja% e Wy, i By, e
=

If we replace {; in f by x,{; we see clearly that K[G] satisfies a
suitable f with

al

() 0=+~ Ziao,l,jal,l,i R ST
=

For each ¢, j write
&g = % BiiYe

where g;;. € K[4] and {y,} is a finite set of coset representatives for
4 in G. We substitute this into (*) above. It then follows easily
that for some k,, %,, -+, k, we have

21
0~ Z{ BoirgYeoBrieYe, *** BrikyYe,
=
Thus if 2; is defined by z; = ¥, ¥s, - - ¥s,_, and 2, = 1 then
@y 1 1 .
0+ Z.l ,8021:0,81;‘1‘:1 tee Bny;k,n .
Now Bije, = 0(a;,i,;Y%;) SO

—1
z; —_ — —
Biir; = 02,1,y %) = 0(z:00,,, 274)

It therefore follows that if we replace {; in f by 2:7}.{2;., and if, in
addition, we multiply f on the left by 2z, and on the right by z;%,,
then this new multilinear generalized polynomial identity obtained
has the required property.

LEMMA 2.2. Let a,, @y +++, &, Biy B2y *++, Bu € K[G]. Suppose
that for some integers k and t
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| U Supp ;| = 7, IliJSuppsil =3

and

(U Supp ;) N 4,(G) < 4.(G)

with k= 1rst". Let T be a subset of G and suppose that for all
xe G-T we have

axp + axB + -+ + a,x28, =0.
Then either [G: T] < (k+ 2)! or

O(a@)B, + O (a)Bs + =+ + O(a,)B. =0

Proof. Let A = |J;Suppa;, B= ;Supp B; and write
A= AN = {91 G2 ++*) 9}
A" =A—di =Y Yo *** Un)
B={2,2,+",2) .

Here of course m + n =r. Set W= M Cs(g;). Since by assumption
A' € 4,(G) we have clearly [G: W] < t. Observe that for all xe W,
x centralizes 6,(«;).

Suppose that

7= 019(6(1),81 + 6k(a2)/82 + oo 0k(au)18u + 0

and let veSupp v. If y; is conjugate to wz;' in G for some <, j
choose h;;€ G with hjjyh;; = vz;t.
Write «; = 6,(;) + «; and then write

o = DY Bi= > bz .
Let x ¢ W-T. Then we must have

0 =a"'axp + x7'axB: + -+ + 27,20,
= [0 (@), + 0 (@)B: + + - + O(a,)B.]
+ [a"8 + & B + - -+ + @B, .

Since v occurs in the support of the first term it must also occur in
the second and hence there exists y;, z; with » = y#z; or

Y = vt = hijyh; .
Thus € Cy(y;)h;;. We have therefore shown that
W< T UWUs; Co(yihs;
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Let w,, w,, -+-, w; be a complete set of coset representatives for
W in G. Then d = [G: W] £ t" and the above yields
G=Tw, UTw,J---UTw,US
where
S = \ Co(y)hijw. .

2,75C

Now the number of cosets in the above union for S is at most
rsd < rstt < k

by assumption on k. Moreover ¥, ¢ 4, so [G: Cy(y;)] > k for all 7.
Thus by Lemma 2.3 of [3] S # G and then Lemma 2.1 of [3] yields
[G: T] < (k+ 1)!

where
T = U. Tw, .
Thus
G:TI=(k+D!d=(kE+ D! (kE+ 2

and the result follows.

We will need the following group theoretic lemma.

LEMMA 2.3. Let G be a group. The following are equivalent
(1) [G:4(@)] < e and [4(G) | < ee.
(ii) There exists an integer k with [G: 4,(G)] < oo.

Proof. Suppose that G satisfies (i) and set n = [G:4], m = | 4'|.
If xe 4, then by Theorem 4.4 (i) of [3], [4: Ci(x)] < m and hence
[G: Cyx)] < nm. Thus (ii) follows with &k = mn.

Now suppose that (ii) holds. Since 4(G) 2 4,(G) and [G: 4] <o
we conclude that [G: 4] < .. Now 4(G) is a subgroup of G so every
right translate of 4, in G is either entirely contained in 4 or is dis-
joint from 4. This implies that [4: 4,] < - and say

4 =4y, U4y, U -+ Uy, .

Since each y;€ 4 we can set n = max; [G: C(y;)] < «o. If xe4 then
x € 4y, for some ¢ and this implies easily that [G: C(®)] < nk. Thus
[4: Ci(x)] < nk and by Theorem 4.4 (ii) of [3], |4'| < o=.

We now come to the main result of this section

THEOREM 2.4. Let KI[G] be a group ring of G over K and sup-
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pose that K [G] satisfies a nondegegerate multilinear polynomial iden-
tity. Then [G: 4(G)] < o and | 4(G)' | < .

Proof. By Lemma 2.1. we may assume that K [G] satisfies

JECh Gy e, 8) =20 ﬁ Q0,080 0,iCo

cer i, jCa(n)an,a 7
oeS, j=1

with

%1
jzzlx 0(“0,1,]‘) 3(0(”_1 j) e 0(“,,, 1,_7') # 0 .

We first define a number of numerical parameters associated with f.
Set

[ Supp «;,, ;|
and

Now consider

2q

U =UE_SJ U iL=JOSupp 0(ct;,,5) -

j=1

Then U is a finite subset of 4(G) so there exists an integer b with
U< 4(G). Set

t=0b"" and k= rsit.

We assume now that [G: 4,] = - and derive a contradiction.
For i =10,1,:--,n define S* S S, by
St = {GGSn|0'(1) = 19 0(2) =2, "':0-(7:) = 7’} .

Then S°=S,, S"=<1)> and S* is just an embedding of S,_; in S,.
We define the multilinear generalized polynomial f; of degree n—1t by

fi(CHu Ci+2, cty Cn)

= Z >0 ,,)0(t,4,5) =+ Ay 0, )W 0,0 541)

¢ an—l.o jca(n)an g.j °
geS? j=1

Thus f, = f and

9
fn = _gll 0(“0,1-5)0(6(1,1.3') o 0(0(1»—-1,1,;;)“” 1,5

is a nonzero element of K [G] since
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05D = 350000 )0(@) +++ Oy, )0 £ 0.

Let _# be the set of monomial polynomials obtained as follows.
For each o, j we start with

ao,a,jca<1)a1,a,jCa(z) co i, o) Xnso, s

and we modify it by (1) deleting some but not all of the {; (2) re-
placing some of the «;,; by 6(a;,,); and (38) replacing some of the
a;,; by 1. Then _# consists of all such monomials obtained for all
o, j and clearly _ is a finite set. Note that .~ may contain the
zero monomial but it contains no nonzero constant monomial since in
(1) we do not allow all the {; to be deleted.

For 1 =0,1,:---,n define 7 S _# by pe_ if and only if
L,y &y +++,¢; do not occur as variables in g#. Thus _#, < {0} where 0
is the zero monomial.

Under the assumption that [G: 4,] = - we prove by induction
on 1=0,1, ---,n that for all z,.,, %;.s, -+, 2, € G either

f’i(xi-ﬂy Liray ** %y xn) = 0

or there exists ge _# with Supp £ (%11, Tipsy +++, @) N 4 # @. Since
fo = f is an identity satisfied by K[G] the result for 7 = 0 is clear.

Suppose the inductive result holds for some 7 — 1< n. Fix
DTivyy Xivgy *+, 2, €G and let e G play the role of the 7th variable.
Let e . If Supp p(x;y, <+, 2,) N4, +# @ we are done. Thus we
may assume that Supp ¢(x;s, -+, 2,) N4, = @ for all pe _~. Set
Ay — A= AN

Now let pre 77, so that p involves the variable {;. Write p =
HCp' where ¢ and f” are monomials in the variables (.., +-+, (,.
Then Supp p(x, X;pyy *++, ,) N 4, # & implies that

xe hf———ldkhll—l — Akh’——lhﬂ—-l

where A’ e Supp ¢/ (%1, -+, 2,) and A” e Supp ¢"'(x;1\, -+, 2,). Thus it
follows that for all te G — T where

T — U Akhl—lh!l—-l

MEN;_q

1 28Y 344
we have Supp ¢ (x, 4y, +-,2,) N4, = @ for all pe _~_,. Thus by
the inductive result for ¢—1 we conclude that for all xe G—T we
have fi_.(z, %1y, ++,%,) = 0. Note that T is a finite union of right
translates of 4,, a subset of G of infinite index.

Now clearly
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fi—-l(x! Livry =y xn)

2q
= Z > 0(a, a,j)ﬁ(am,j) co o Az, i) Ximy 0, {0 Coiirry *** Um0, om X o

geS? j=1
+/ E;/ P(Tigs vy XY Xisry = ooy )
L E s 'i
where the % ({;:,, -++, {,) are suitable monomials. Since
fi—l(x’ Lir1y * %y xn) =0

for all xe G—T we can apply Lemma 2.2. However we must first
observe that the hypotheses are satisfied.
Let » and s be defined as in Lemma 2.2. Using the basic fact that

| Supp @ | = [Supp e | | Supp 5|
for any a, ge K[G] it follows easily that
r<a"tt =1, s<a"tt=s,.

Now pe_« implies that Supp ¢t (@isss +++,2,) N4, = @. Therefore
the only left hand factors of 2 which have some support in 4, come
from the first of the two sums above. Here we have

Supp 0(a; ,;) € U < 4,

and (4,)"" & 4y+1= 4,. Thus the intersection of the supports of these
left hand factors with 4, is easily seen to be contained in 4,. Finally

k = 7ot = rst”

so the lemma applies.

There are two possible conclusions from Lemma 2.2. The first is
that [G: T] < . Since T is a finite union of right translates of 4,
this yields [G: 4,] < o, a contradiction by our assumption. Thus
the second conclusion must hold. Since as we observed above

‘9k(#(xi+19 ey xn)) =0
and clearly
0, [0(cty 5,5)0(10,5) ==+ O(Aiz ,1)Ui10,5]
= 0(“0,0,3')6(“1.0'1') ce 0(“1’—2,0’1‘)0(“'&—-1,0,]’)

we therefore obtain

ag
0=2>> 0(cto 5 )0(A; 5 5) *+* Oy 6. 5)Xi 6 Botir) *** Anes 0 [ Com®no.j

geSt j=1

= fi(@is1y Tivay *+ ¢, By)

and the induction step is proved.
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In particular, we conclude for 7 = n that either f, = 0 or there
exists pte _#, with Suppp N 4, # @. However f, is known to be a
a nonzero constant function and _#, < {0}. Hence we have a contra-
diction and we must therefore have [G: 4,] < . By Lemma 2.3 this
yields [G: 4(G)] < = and | 4(G)’| < o so the result follows.

3. Polynomial parts. Let E be an algebra over K. We say
that E has a polynomial part it and only if £ has an idempotent e
such that eFe satisfies a polynomial identity. In this section we ob-
tain necessary and sufficient conditions for K[G] to have a polynomial
part.

We first discuss some well known properties of the standard poly-
nomial s, of degree n. Here

8, (L0 Coy o0 v, ) =G§S4 ('—1)0C0(1)Ca(2) e Ca(n) .

Suppose A is a subset of {{, &, +++,,} of size a. Then we let s,(4)
denote s, evaluated at these variables. This is of course only deter-
mined up to a plus or minus sign.

LEMMA 3.1. Let a,, a, -+, a, be fixed integers with
a +a,+ - +a =n.
Then

8a(Cis Coy + 0y ) :4 42 . isal(Al)Saz(AZ) st SaT(AT)
where A,, A,y -+, A, run through all subsets of {{, L, +-+, ) with
'Azl = a; and AlUAZU"'UAr: {Cn C29 "'7Cn}'

Proof. Consider all those terms in the sum for s, such that the
first a, variables come from A,, the next a, variables come from A.,,
etc. Then the subsum of all such terms is easily seen to be

i_sal(Al)Saz(A2) st sa,.(Ar) °
This clearly yields the result.
THEOREM 3.2. Let K[G] be a group ring of G over K which

satisfies a polynomial identity. Then K|[G] satisfies a standard poly-
nomial identity.

Proof. If K has characteristic 0 then Theorem 1.1 of [3] and
proof of (i) of that theorem show that K[G] satisfies a standard
identity. If K has characteristic p > 0 then Theorem 1.3 of [3] and
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a slight modification of the proof of (i) of that theorem show that
K|[G] satisfies

Szn(cly Czy ety CZn)SZn(C2n+U C2n+2’ cccy Cm) °°c

e SZn(CZ(m-—l)n+1! C2(m—1)n+27 c0 Yy CZmn) .

Of course it also satisfies this polynomial with all possible permuta-
tions of the 2mn variables. Thus by Lemma 3.1 K[G] satisfies S;p,.

THEOREM 3.3. Let K[G] be a group ring of G over K. Then
the following are equivalent.

(i) [G:4(G)] < o= and | 4(G)'| < oo.

(ii) KI[G] satisfies a nondegenerate multilinear generalized poly-
nomial identity.

(iii) KI[G] has polynomial part.

(iv) KI[G] has a central idempotent e such that eK |[G] satisfies a
standard identity.

Proof. (iv)= (iii). This is obvious.

(iii) = (ii). Let ¢ be an idempotent such that F = eK[G]e satis-
fies a polynomial identity. By Lemma 3.2 of [3], E satisfies an iden-
tity of the form

g(Cu Czy c Cn) =a§ baCo(])Co‘(z) e Ca(n) .

If ae K[G] then of course eaxec E. This shows immediately that
K [G] satisfies the multilinear generalized polynomial identity

f(Cl, Loy voey Cn) = Z boeCou)eCu(z)e s eCm)e .

geS,
Moreover f is nondegenerate since b, = 0 for some ¢ and then
fa,1,---,1)="be+0.

(ii) = (i). This follows from Theorem 2.4.
(i)=(iv). Suppose first that K has characteristic 0. Let H =
A(G)" so that H is a finite normal subgroup of G. Set

¢ — l_;_l;ﬂxeK[G] .

Then ¢ is a central idempotent in K[G] and eK|[G] is easily seen to
be isomorphic to K [G/H]. Now G/H has an abelian subgroup 4(G)/H
of finite index so by Theorem 3.2 and Theorem 1.1 of [3],

¢K[G] = K[G/H]
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satisfies a standard identity.

Now let K have characteristic » > 0 and let A = C,(4(G)).
Then A is normal in G, [G: A] < « and A’ < 4(G)’ so A’ is central
in A. Let H be the normal p-compliment of A’ and define ¢ as
above. Then again e¢ is central in K[G] and eK|[G] = K|[G/H].
Since G/H has a p-abelian subgroup A/H of finite index it follows
from Theorem 3.2 and Theorem 1.3 of [3] that K[G/H] satisfies a
standard identity. This completes the proof of the theorem.
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