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UNIQUELY REPRESENTABLE SEMIGROUPS II

J. T. BorRREGO, H. CoHEN, AND E. E. DEVUN

A semigroup S is said to be uniquely representable in
terms of two subsets X and Yif X- Y =Y-X =S, 2y, = %29
is a nonzero element of S implies z; = 2, and %; = ¥, and
Y1%1 = Ya&2 iS @ nonzero element of S implies y;, = ¥, and
2, = 2, for all 2,,2.€ X and y,y:€ Y.

In this paper we are concerned with semigroups S with
no zero divisors, E(S) = {0,1}, and which are uniquely repre-
sentable in terms of two subsets X and Y which are iseomor-
phic copies of the unusual unit interval. Here we show
the nonzero elements of the semigroup S can be embedded
in a Lie group.

The authors would like to express their appreciation to Professor
G. D. Crown for taking part in discussions concerning this paper.

NoTATION. S will represent a semigroup without zero-divisors,
E(S) = {0,1} (E(S) is the set of idempotents of S), and which is
uniquely representable in terms of X and Y which are isomorphic
copies of the usual unit interval. We will let T = S — {0} where 0
is the zero of S. Also X°= X — {0} and X" = X — {0,1} where 1
is the identity for S. Similarly, Y°=Y — {0}, and Y* =Y — {0, 1}.

Define ¢: X°X Y- X° X Y° by 4z, y) = (¢', ¥') where 2’ and %'
are the unique elements of X° and Y° respectively such that zy = y'z'.
Also define ¢: X° x Y°— X° X Y° by «+(x,y) = (@', y’) where 2’ and
9y’ are the unique elements of X° and Y° respectively such that
yx = 2'y’. It is easy to show ¢ and ++ are homeomorphisms. Also
for fixed v, m¢|: X° X {y} = X% | : X° X {y) — X° are strictly in-
creasing functions, and for fixed x, 7 |: {2} X Y°— Y° and

T {2} x Y- Y°
are strictly increasing functions.

LEMMA 1. Let x,e X", If m|:{x} X Y°— Y° is @ homeomor-
phism, then T |:{x} X Y°— Y° is a homeomorphism for all xe X°.

Proof. Fix {y,} a decreasing sequence in Y° with y,— 0, and
xe X°with « = 2,. To show 7,6 |:{x} X Y°— Y° is a homeomorphism
we need only show 7,4 | (2, ¥y, — 0. Let z,e X° with 2,2 = 2,. Then
there exist sequences {g,}, {r.} contained in X°, {s,}, {f,} contained in
Y? such that 2y, = 2.2y, = ©.8,9, = t,7,. Since

t'n = ﬂ2¢ |(x1! y’n) —'_)09 Sy = 7T2¢I (x! y’n) —0.
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Since 2¥" — 0, to finish the proof we need only show
Tl o} Xx YV — Y°

is a homeomorphism. Select sequence {g.}, {r,} in X°, {s,}, {¢,} in Y°
such that =%, = %.s,9, = t.r.. Since s, = 76| (@, ¥,), S» — 0. Thus
t, = T0 | (1,9,) = 0. Thus mg|: {23} X Y°— Y°is a homeomorphism.
A similar statement for 7,¢|: X° X {y} — X° can be made.

LEMMA 2. mg|:{x} X Y°— Y° is a homeomorphism for all x e X°
or T,¢|: X" X {y} — X° is a homeomorphism for all ye Y°.

Proof. Let ze X" with mg|:{x} X Y°— Y° not a homeomor-
phism, and let ye Y. Fix {y,} a decreasing sequence in Y° with
9, — 0. There exist sequences {¢g,} in X° {s,} in Y° such that

XYy = SulQny Sn 7 0

and ¢,— 0. Also there exist sequences {r,} in X° {t,} in Y° with
q,y = t,r.. We claim r, — 0. For if not ¢, — 0 and thus

TYnY = Sululn »
with s,t, — 0. However this implies 7,6 |:{x} X Y°— Y° is a homeo-
morphism. This is a contradiction. So r,— 0, and thus
gl X° X {y} — X°

is a homeomorphism.

LEMMA 3. T s right reversible or T is left reversible.

Proof. We will assume 7,¢|: X° X {y} — X° is a homeomorphism
for all ye Y. We will show T is right reversible. Let s,s,eT
with s, = 2¥y,, 8, = %%, and y, < ¥,. Thus Ts, N Ts, = Tey, N Ty, = ¢
if Teyy:* N Tx, #+ 6. Let yx, = 2 y9;*. If ©, < o, then

Tysxx;' N'T +# ¢
and hence Ty,x, N Tx, # ¢. If x, < x;, then Ty,x, N T, # ¢ if
Ty, N Taxxs™ +~ ¢ .

Thus to show T is right reversible we need only show T, N Ty, +# ¢
for all z,e X™,y,e Y". Now 7g¢|X° X {y}— X° is onto and thus
there exists z,€ X® such that 74| (%, v,) = 2, and thus zy, = ysw,
for some y,€ Y°. Hence To, N Ty, * ¢. If wo|{a} X Y - Y° is a
homeomorphism for all xe X°, T is left reversible.

Now T is a right (left) reversible cancellative semigroup [2]. Hence
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[4] T is algebraically embedded in a group G of left (right) quotents
of T. Note that for every element ge G we have g = st where

s,teX°UXT'UY'UY".

Also it is easy to see that there exist xe X™, ye Y* such that
2T NyT # ¢ and Tx N Ty += 4.

LEMMA 4. If z,e X™, 9y, e Y* with 2, T N y.T # ¢ and Tz, N Ty, # &,
then for x,€ X™, 2, = 2, ¥.€ Y™, y, = ¥, there exist xe X", yec Y* such
that x.y;* = y'2.

Proof. Now Tx,N Ty, + ¢ for x, =z, and y,=y,. Thus there exist
s,te T sx,=ty,, Let s=uwy, and ¢t = 2,9,. Thus Y2, = CYY,. If
T, < %, then 27w, ¢ X*. Thus x; 29,0, = 4.9, or letting .2, = xy, with
x,€ X% 9y;€ Y’ we have «'w%y, = ¥.%.. This contradicts S being
uniquely representable, so x, = x,. Hence x;'z,¢ X° and thus w2, =
250y, O Xy =y a ey, But x'e, € X O, so there exist ;¢ X% 9, Y°
such that x;'2zy, = v, Hence ;" = yi'Wss. Now %:7'y;e Y. For
if y;'y,e Y we would have x, = y;'y.2:9. and letting xy. = y,x, with
2,e X’ y,€ Y°we would have x, = ;' 'yy.2, with vy, € Y, 2,¢ X°
But this contradicts S being uniquely representable. Note that a
similar argument yields that there exist xe X°, ye Y* such that
Yoyt = 7Y,

LEMMA 5. If there exist x,e€ X, vy, y¥,€ Y with y,x, = %,Y,, then
for each xe X% ye Y°, there exist y' € Y° such that yx = xy'.

Proof. Let z,e¢ X%, 9,9, Y*" with yx, = 2,4,. We will divide
the proof into two parts.

Part 1. We will show that for each ye Y there exist ' e Y™
such that yx, = x,9’. To prove the above we need only show that
there exist y;€ Y* such that /%y @, = 2y, Now /y, 2, € T so there
exist @, € X°, y,€ Y° such that v/ », = xy,. Also let 2,€ X°, ;€ Y°
with 7y, %, = 2. Now y.x, = vy, vy, @ = V7, ®Ys = %Y, Thus
¥ = and ¥, =y¥y,. The map mq|: X" X {y/y,} — X° is strictly
increasing and T | @ | (@, v/ Y VY) =T | @1V y,) = % = @,
thus 7y | (@, 1Vy,) = »,. Hence 1y @ = 29,

Part 2. To finish the theorem we need only show that there
exist x,e¢ X* with %, > «, and ¥y, %" ¢ Y* such that yz, = x2,5’'. Since
the map s—s® is onto we can pick 2,2, X% ¥, y.€ YY" with
Y@, = (€95)° and @3y, = Y2 Now y@,a.y; = 9,4, = 2,%. Pick ;€ X%,
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yYs€ Y such that x5, = v, Then 2y, = ¥y, = Y2.LY; = CYsYse
Thus z; = z,. Select y; e Y such that x,y;, = yx,. So

Y&Xls = TslYs = Ysky «

Thus z,2, = «,. Hence x, > x,. Now there exist z,¢ X%, y,¢ Y* such
that 0.y, = Y. SO Y&, = T WYYk, = Yol®,. Hence x, = xx,. But
X, = X2 = 2.%,. Thus 2, = 2, and y,2; = Y% = 2(¥:%,). This completes
the proof.

Let R and R’ be the relation = or <.

LemMA 6. If x,%.e X% ¥y, %€ YY" with xy, = ¥:x, *,Rx, and
Yy, Ry, then for x;,x,e X%, Y5y YY" with xy, = yx, we have x,Rx,
and yY.R'y,.

Proof. Consider the map 7 |: X° x {y} — X° and let
7l'1¢((l71, yl) = X

and 7,é(®,, ¥) = 5. Suppose x;Rx,. Now x,Rx, and thus there exist
xe X" such that 7 ¢(x, y) = x. Hence there exist ye Y™ such that
xy, = y2. By Lemma 5 we see x4, = 'z, for some %' ¢ Y™. Thus
x; = 2; and «;Rx;. The same type of argument yields y,R'y; where
T3, = Ys%;. Applying them again we get x,Rx, and y,R'y,. This
completes the proof.

For seT, let s"=1. Fix 2e X*%, ye Y* with 2T NyT # ¢ and
Tx N Ty # ¢. Now consider G with the topology generated by the
following neighborhoods. For ¢ real ¢e (0, 1) define

N1,t) = {x*y*: a, B (—t, 1)} .

For geG, g =sr withs, re X°U XU Y°U Y°'. The neighborhoods
for g will consist of sN(1, )» where N(1, ) is a neighborhood of the
identity.

LEMMA 7. If N(,t) is a neighborhood of the identity, then there
exist N(1,q) a meighborhood of the identity such that

N(,q)-N(1,q) < NQ@, 1) .

Proof. From Lemma 6 and from the fact %' —1, 2" —1 we
can pick N such that for » > N the following hold: (1) y'"2? = z,¥,
and z, € (%, 1] implies 2?¢ (2!, 1], () =" e (x**, 1], and ()

Yt = wlyl

with 2?¢ (2t 1] implies ¥, e (%, 1].
From Lemma 4 there exist 7,e X*,¥y,e Y" such that
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y—llnxlln — xng—/—n—l .

Since z'/* = ytryUngtln = ytnE, 5, we see that y'"Z, = x'"y,. Thus
from the above Z, e (x*2,1] and 7,e (¥'%,* or ¥, *e[1, y~**). That is
there exist N such that for

n > N, @', y=") C {(x*, ¥): a, B e (—1/2,0) U (0, t/2)} .
Using the same procedure we can find M large enough such that

{q/,‘(x]./]ll’ yx/zu)’ fw‘(x—llM, yl/M), q/,,(xllM, y—llM)’ w(x—uyy y—llM)’ (xuu, yllM) ,
(@, y=M} {2, ) a, Be (—1/2,0) U (0, £/2)} .

Now by Lemma 4 and Lemma 6
{y*z: a, Be (—1/M, 1/ M)} C {x*y*: ., B € (—1/2, t/2)} .
Hence N(1,1/M) N(@1,1/M)c N, ¢t).

LEMMA 8. G 1is a topological semigroup.

Proof. To prove this we need only show that for each
seX'UX'uy'yy

and N(1, t) a neighborhood of the identity there exist N(1, q) a neigh-
borhood of the identity such that sN(1, ¢) © N(1, t)s. We will assume
seY'U Y. Now N(, t)s = {a®sy®: @, Be (—t, t)}. Now pick r such
that {sz*:ae(—r,r)}C{&*y’s: a, Be (—1t/2,t/2)}. Set ¢ = min {r, {/2}.
Then sN(1, ¢) € N(1, t)s.

Now G is a locally compact topological semigroup which is
algebraically a group. By [9] G is a topological group. Moreover
since @ is locally euclidean [8] G is a two-dimensional Lie group.

THEOREM 9. T s embedded in G.
Proof. The inclusion map ¢: T — G is an iseomorphism into.

It should be pointed out here that an alternate and more general
method for embedding semigroups in groups has been constructed by
D. R. Brown and Michael Friedberg [4].

COROLLARY 10. If D is a uniquely divisible semigroup on the
two-cell with E(D) = {0,1} (E(D) is the set of idempotents for D),
then D — {0} is embedded in a Lie group.

Proof. In [2] it was shown that D — {0} is uniquely representable
in terms of two usual unit intervals. Thus D — {0} is embedded in
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a Lie group.

Examples and characterization. The authors would like to ex-
tend their appreciation to J. Lawson for supplying us with the
information for the characterization of the uniquely representable
semigroups.

(1) Let (I,°) denote the closed unit interval with the usual
multiplication. Then (I,°) X (I, *)/[({0} X I) U (I x {0})] is the only
commutative which is uniquely representable in terms of two usual
unit intervals [6], [7].

If S is non-abelian, then G is a non-abelian Lie group and G can

be represented by the real matrices (g 2{) with > 0 [1].

In the examples below we will take S to be the semigroup in-
duced by one point compactification of the subsemigroups of G. The
point added will always be the zero for S.

It is to be noted that Example 4 is anti-isomorphic to Example
2 and Example 5 is anti-isomorphic to Example 3.

(2) Let S be the topological semigroup generated by taking the

one point compactification of the scmigroup of matrices g ?1/> with

2>0,y=0,z+y=<1. Note S is uniquely divisible and thus S
is uniquely representable in terms of two usual unit intervals [2]. Also
S is not left reversible. It is easy to see that if W is the semigroup
induced by the one point compactification of any collection of matrices

(‘g 21/> withO<z=<land y=Zak—1), y< B —1) for two real
numbers « and B, W is iseomorphic to S.

(8) The one point compactification of the semigroup (g ?1/> with
0<x=<1,y=0 is a uniquely divisible semigroup on the two-cell. S
is uniquely representable in terms of (g (1)> U {0} and (%) Z1’>U{0}.
This semigroup is both left and right reversible. Furthermore,

@ D6 1=6"E 1).

Also if W is the one point compactification of any semigroup of
matrices (g ?1/>Withyga(x— D,0<zs=lorysa@x—1),0<zs1

for some real number «, then S is iseomorphic to W. We will say
S is half commutative if for each xe X° ye Y° there exists y'e Y°
such that zy = y'=.

(4) Let S be the one point compactification of the semigroup

T Y) with » =1, y=0,y<2—1. Then S is uniquely divisible,
01
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left but not right reversible, it is not half commutative. Also if W
is the semigroup formed by the one point compactification of the

semigroup (g :‘1/> withezl,y=zalx—-1),y<px—-1,8>a Wis

iseomorphic to S.
(5) Consider the semigroup S formed by the one point com-

pactification of the semigroup (900 7‘1/) x=1,y=0. S is uniquely divi-

sible, half commutative, right and left reversible. S differs from
Example 3, since S has no copy of Example 2 contained in it, but
Example 3 has a copy of Example 2 in it. Also if W is the one

point compactification of the semigroup (g" ?{) zzl,yzalx—1), a

real, or x = 1,y < a(x — 1), then W is iseomorphic to S.

These are all of the semigroups which are uniquely representable
in terms of two usual unit intervals. Note that they are all uniquely
divisible.

COROLLARY 11. If S is uwmiquely representable im terms of two
usual unit intervals and without zero divisor and E(S) = {0, 1}, then
S s uniquely divisible.
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