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I'-EXTENSIONS OF IMAGINARY QUADRATIC FIELDS

ROBERT GoLD

Let p be an odd rational prime and E, = &(v—m) a
quadratic imaginary number field. There is a unique /'-
extension E of E;, for the prime p which is absolutely
abelian. For each positive integer 7 there is a subfield E,
of E which is cyclic of degree p" over E;, and by Iwasawa
the exponent of p in the class number of FE, is of the form
up® + 2n + ¢ for sufficiently large n. We here examine the
analytic formula for the class number of £, and in the case
p = 3 give a simple condition implying that ;= 0. It follows
easily from this condition that there are infinitely many
imaginary quadratic fields which have I'-extensions for the
prime 3 with the invariants ¢ = 0 while 2 = 1.

1. Amnalytic formula. Let & be the rationals, » an odd prime,
7 an integer =0, and {,.+:1 a primitive p**' root of unity. Let
F, be the subfield of «({,»+1) of degree p” over the rationals so
that F,/«” is cyclic, p is the unique ramified prime for the exten-
sion, and p is totally ramified. Let E, = «*(V/—m), a quadratic im-
aginary field where (m,p) =1 and let E, = F,.E,, the composite
field.

We attempt to study the order, ¢,, to which p divides the class
number of E,,

h‘En = pne b/ (p, #) =1

by use of the classical analytic formula for an arbitrary number
field k:

2R,

(1) 1:_1:111 (s = DE(s) = mhk

where, as usual, R, is the regulator of %; m,, the order of the group
of roots of unity; D,, the discriminant of k; and s and ¢, the number
of real and complex infinite primes of k.

We note the following sequence of lemmas:

LEMMA 1. mg, = my, =2 unless B, = @ (V'=3) or @ (V1)
Proof. By degrees: [E,: @] = 2p".

Note that in the two excluded cases (p, m,) =1 if (p, m) = 1.
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Lemmv 2. D, = D; D% and D, = p™ t,=(n+ 1p" —
(»-Dip—-1 -1

Proof. First statement is trivial, second is proved as follows.

Note that {,»+: is a distinguished element for the extension
& (Cme1)/F, in the relation its different bears to the different of the
extension [3]. The computation of the different of & ({,»+1)/F', becomes
then an exercise in determinants. The result combined with the
well known different of &7 ({,»+1)/&” gives the expression above.

LemMmA 3. R, = R, -2° some ac Z.

Proof. F, is the maximal real subfield of E, and the result is
then well known [1].

Now let &k = E,, respectively F,, in equation (1) and divide the
former by the latter. Taking into account the preceding lemmas
this simplifies to:

. 2 he,
(2) 0 CR®n ) = e T

5, = —‘}tn - —;—«n +pr— (" — Di(p— 1) — 1) .

On the other hand {, (s) = [T L(s, ) where the product is taken over
all Dirichlet characters belonging to the extension FE,/«” Since
9(E, /&) = %2 + % [/p* we can write {, (s) = IT L(s, xoxi), 1 = 0,1;
j=0,+-+,9p" — 1 where %, ¥ are the characters belonging to E,/&’
while 9, «+-, x?""' are the characters belonging to F,/«”. Hence
Cr,(8) =TI L(s, %)), 7=0,---,p"—1 and therefore {; (s)/Cr (5) =
11 L(s, oxi), 5=0, <+, p*—1. Furthermore the y?*, k=0, ---, p"'—1
are the characters belonging to F,_,/«” and therefore

CE»,L(S)/CF”(S) N ;
@) m—?n L(s, %oxi) -

<j<p®
Jyp)=1

Note in passing that ¥, is an even character and takes on the p"th
roots of unity as values. Comparing (2) and (3) we may write

B, b, T

n—1

4 L@, yxi) = :
( ) H ( XX) p““‘"‘s”—l)l/|DE0 [(:(;mw

0<g<p®
Grmat hF"hEn—i

Note that y, is primitive modulo d = D, = the conductor of
E /<, while yi, (4, p) = 1 is primitive modulo p"*' = the conductor of
F,je. It follows that y.x!, (4, p) =1 is primitive with modulus
w = dp"™* and is an odd character. It is well known then that
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(5) L@, xxd) = ZEXXD) 50 5 ik
W ok,

where 7(),x?) is the classical Gauss sum and | 7(x.x{) |=Vw. Comparing
now (4) and (5) and taking absolute values we see

| 1L 3% xoxi(k)k|

(5;8)=1 (kyw)=1
(6) 0T <pm o<k w — ERZ- .
dﬁO(Pn)p(n‘Fl){D(P”) thhEn-—l

Next we examine the sum appearing in (6).

pr+ly

Z xox (k) = Z‘. Z LoXi(@ + ap™)(i + ap™™)

d—1 p'n+l__l pntl
- aZO g, Yo(t + ap™ )i (i) + ap*? Z F@( + ap™+) .
But since
d—1 prtl_y pntl_g
&Z'o ;l Y@L + ap")i = Z Xi (@)t Z Yol + ap™) = 0
we have
pnti_g

Sy = 3 7 Z ax,( + ap") .

‘We now make the following assumption for the sake of simplifying
notation and proofs: (A) p*** = 1(d). It then follows that

S; = p*! Z Xi(®) Z L(la + a) .

Letting w, = 2.4} ay.(« + k) one can easily deduce that w, = w,,
Wira = Wy, and w, = wo + d 2k Xo(@). Then

prt+i_

S; = n“ Z Xl(@)wo +d Z Xo(@)

pntlg pnt1y
= p"Hw, Z‘. x:(@)+d 5_‘. xl(z)E_‘.xo(a)
pntl_y

= ap"S, Fil)-ac; where @ = 1a) .

Comparing this last result with (6) we see that

prilar hz h
(7) I3 agil) = 250,
Ll i
and again a; = 35 X(a).

We reduce our concern now to the power of p occurring in each
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member of (7). By results of Iwasawa (p, hs,) = (D, hr,_,) = 1 while
for sufficiently large n: ord, (h;,) = up"+rn+c, ord, (hg, ) = pp" '+
An — 1) + ¢ ([2]). Therefore

pntl_y

(8) ord, TI '3, ayi(i) = pp(m) + .
0<y<p? i=0
It is clear that a;e 2° and hence X%, '~'a,¥/(i) is an integer in
& (). In fact, [T 3 a;¥i(7) is simply the absolute norm of this
integer. Hence

po) -+ = ord, 13 (T i)

( 9 ) pntl_y
= ord, 2 ax,(7) .

Here p is the unique prime of < ({,») dividing ».

We now rewrite > .y, () in terms of an integral basis of & ({,»).
Let g be a primitive root modulo p**!, i.e. g generates (2 /p"~™)*.
Then 322" a;,(i) = %" @, 1.(9") where 0 < g, < p*** and g, =
g°(p**"). Then n = y,(¢9) is a primitive p"th root of unity and

¢(pntly—1 ¢(pntly—1

Xl(gs)ags = SZ_(‘, 7]3“418 .

Since 1,7, -+, p¢**"~* form a % -basis for the integers of &({,») we
may rewrite this last sum, using identities of the form 1 4 7*"™" +
oo 7]‘7’—“””_1 =0, as

oprth—1 o(p™M)—1  p—2
e, = 7y (@ -« ipn)
9s Is+ip” 9P (™) +t+ip™

=0 s=0 =0

where 0<t<p " and t=s(p"!). It follows from (9) then that

@(pM) —~1

(10) #w(pn) + A= Ord Zl 77 Z (a93+1p - a9¢(p”)+t+iv") °

For sufficiently large n the left member of (10) is = @(p") if
and only if ¢ > 0. However the right member is greater than @(p")
if and only if p¢®™ = (p) divides the algebraic integer in brackets.
Since this integer is written in terms of an integral basis it is
divisible by (p) if and only if the coefficients of %° is divisible by p
for every s. Hence ¢ > 0 if and only if p divides

P—2
(11) Z.:l) (ags+ipn - aﬂ¢(pn)+t+ipn) §=0,1,---, g)(pn) - 1.

2. Special case of p = 3. If we specialize to p =3, s =0 we
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may proceed in the following manner. For p =3, s=0 equation (11)
reads
(12) @, + Ay — Oy — A

(3n) 937 +0(3m) °

Clearly g, =1, ¢ = 3"*' — 1; while for appropriate choice of g we
have g,4n = 3"+ 1 (resp. 2.3" + 1) and gyuny.5m = 2-3* — 1 (resp. 3" — 1).
Hence (12) reads, letting M(m) = >.7 X, (@),

M) + M(3**") — M(3") — M(2-3" — 2)

(13) (resp. M(0) + M(3" — 2) — M(2-3") — M(3" — 2)) .

Clearly M(0) = 0 and recalling that (A) 3"*'=1 (d) we see that
M3 —2) = M(d—1) =0 as well. Since yx,(—1) = —1 we have
the trivial but useful identity M(m) = M(kd — m — 1), kd — m — 1 > 0.
By this it follows that M(2-3"—2)= M(kd+1—38"—2)=M(kd—38"—1)=
M(3") (resp. M(3" — 2) = M(2-3")). Hence (13) reduces to —2M(3")
(resp. —2M(2-3")) and so g >0 if and only if M(3") =0 (3) (resp.
M(2-3") =0 (3)).

Again by (A): M(2:3") = M(kd +1 — 3") = M(3" — 2) = M(3") —
%e(8™) — %o(83" — 1). Since both congruences above must be satisfied it
follows that £« > 0 if and only if %,(3") + x(3" — 1) = 0 (3). Multiply-
ing by X.(3) =0 we have [{(3") + %o(3" — D] = %:(3) = Xo(1) — %o(2)-
Hence we may finally state in the language of Iwasawa

THEOREM. Let E. = \J E, be the absolutely abelian ['-extension
for the prime 3 of &(V —m); (m,3) =1. If 2 does mnot split in
&V —m)|& then the invariant p equals 0.

EXAMPLE 1. E, = «&(V —5). Since 7,3) = +1, 3 splits in
& (V' —5)/«” and it is easy to see from the structure of the genus
field for E,/E, that x = 1. On the other hand, %,(2) = 0 and there-
fore zt = 0. Obviously all «2(v'—m) for m = 7,10 (12) behave in
this manner.

EXAMPLE 2. E, = «#(v/—23). This field has class number 3 and
is therefore of some interest. Unfortunately y,(2) = 1, but we may
use the remark above that g > 0 if and only if M(3") =0 (3). By
(A): M(3") = M(37") = M(8) in this case. But M(8) =4 *= 0 (3) and
so again p = 0.
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