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SUMMABILITY AND FOURIER ANALYSIS

GEORGE BRAUER

An integration on SN, the Stone-Cech compactification of
the natural numbers N, is defined such that if s is a bounded
sequence and ¢ is a summation method evaluating s to o,

sd ¢ = o. The Fourier transform ¢ of a summation method

¢ is defined as a linear functional on a space of test functions
analytic in the unit dise: if

flzr= Sifme, 1zl <1, then gr) = [fmds

A functional which agrees with the Fourier transform of a
regular summation method must annihilate the Hardy space
H,. Our space of test functions is often the space M, of
functions j’:l’f(%)z”', analytic in the unit disc, such that

Hf{!l“,p = lim sup[(1 — 7')5“: | firv'rei®y v dj2=]V?
0
is finite for some p > 1. A functional I, which is well defined
on a space M, for some » = 2 such that L(1/(1 —2z)) =1 agrees
with the Fourier transform of a summation method which is
slightly stronger than convergence.

Let s = {s,} be an infinite sequence of complex numbers, that is,
a continuous function on the discrete additive semigroup of natural
numbers N. The sequence s has a continuous extension s° to BN,
the Stone-Cech compactification of N (s7 takes the value  if s ig
unbounded). Throughout the paper, the symbol B7 denotes the
Stone-Cech compactification of the space Z, and the continuous exten-
sion. of a function j defined on Z to gZ will be denoted by f?; for a
description of the Stone-Cech compactification we refer the reader to
Z, pp. 82-93]. We impose the norm
lls| = lim sup |s,

= LUB|s¥v), 7€ N — N

on the space m, of bounded sequences. Thus m, is isometric to
C{EN — N), the ring of continuous complex functions on SN — N;
sequences differing by a null sequence are identified in m,.

Let ¢ denote a summation method-that is, a linear functional on
a subspace of m,. We assume that the s-transform of every sequence
s to which ¢ is applicable is either a continuous function on N or
else a continuous function on the half open unit interval I: [0, 1).
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For example, if ¢ is representable by a summation matrix A = (a,.),
then the ¢-transform of a sequence s is the sequence ¢ given by

tn:kz'loanksk n:(),l,...’

which is continuous function on N; if ¢ is the Abel method .o, then
the ¢ transform of s is the continuous function on I given by

t(r)r(l—r)gosnr” 0r<1.

If ¢ is a regular and nonnegative summation method, then ¢ is a
functional of norm one on a closed subspace of m,. Moreover if we
denote the g-transform of s by ¢ then lim sup |¢| is a semi-norm on
m,. Thus by the Hahn Banach theorem, the linear functional ¢ may
be extended to a nonnegative linear functional on m, which satisfies

(1) |¢(s)| = limsup |2],

for each bounded sequence s; we shall denote this extension of ¢ also
by ¢; throughout the paper we will assume that ¢ has been extended
to m, in such a way that (1) is fulfilled. Such an extension is never
unique, and the results to be described hold for each such extension
é:

" As a linear functional on m,, ¢ gives rise to a nonnegative measure
on SN which we also denote by ¢. Since ¢ is a regular summation
method, the measure ¢ is concentrated on BN — N — we have

gﬂngs = 1. We shall write Ssdg_ﬁ for Ss[f]dg’ .
Using (1) we can show
REMARK. If s is a bounded sequence and ¢ 1is a regular mon-

negative summation method which is representable by either a summa-
tion matrixz or a sequence-to-function transformation, then

liminft < S sd¢ < limsupt,
v T
where t denotes the g-transform of s.

The Abel summation method .o induces translation-invariant
measures on BN. This summation method will play a vital role in
our discussion of Fourier transforms of sequences.

1. L? Spaces. If p=1 and ¢ is a regular summation method
which is representable either by a summation matrix or by a sequence-



SUMMABILITY AND FOURIER ANALYSIS 35

to-function transformation, we define L”(¢) as the space of sequences
s with the property that for each ¢ > 0 there is a bounded sequence
s such that the sequence |s — s |? has a ¢ transform whose limit
superior is bounded im absolute wvalue by ¢; this definition is more
restrictive than the usual definition of L” spaces. If s is a sequence
in an L? space we define

S sd¢ = lim g s9dg ,
BN =0 JBN

where {s”} is a set of bounded sequences which approximate s in the
sense that for each ¢ > 0, there is a bounded sequence s such that
the limit superior of the g-transform of |s — s'|? is less than & in
absolute value. We norm L* by:

lIsll, = (S |s|f’d¢>”p = lim [S ISI‘“Iqus]”p

(Clearly the limit is independent of the choice of {s“)}).
By Holder’s inequality we have that for 1 < g < p, L*(9) & L%¢),
and moreover ||s||, < ||s||,-

As usual we identify two sequences s and ¢ in L*(¢) if

lls —tl], =0.

THEOREM. Let ¢ be a regular nonnegative summation method and
let s be a sequence in L*(¢), p = 1. Let t denote the g¢-tramsform of
|s|>. Then

liminft < g |s|*d¢ < limsupt < oo .

In particular if ¢ evaluates the sequence |s,|* to &, then

S|s|”d¢:a.

Proof. We deal only with the case where ¢ is represented by a
summation matrix A = (a,,) — the case where ¢ is representable by
a sequence-to-function may be dealt with in a similar fashion. Let
s> be a set of bounded sequences approximating s, that is, for each
€ > 0 there is a bounded sequence s such that

limsup >, .. ls, — s, P < e
k=0

If we take ¢ =1,
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limsup D) a,, [sl”
bt
< 2° [lim Sup >, a,, s
-0

+ limsup 3 a,; s, — s, }”]
Lot

= 2" [limsup 3 @, s, " + 1] .

Hence limsup i¢] is firite.
Also

stdA::nnaimwwdA.

-0

Since each s“' is a bounded sequence.
liminf ¢, < liminf > a,,. 15,17 + C, &'

V159 7d4 + C e

A

limsup > a,, s + C &'
e =0

limsupt, + C.e'”

A

IA

where C, and C, are numbers not depending on ¢. If we let ¢ tend
to zero we have the theorem.
Holder’s inequality togethsr with the technique of the above
proof may be used to yield:
THEOREM. Let & be « regulur wmonnegative summation method
and let s be a sequence in L") » = 1. If t denoles the S-transform
of s. then

liminft < i sdo = limsupt .

In particular if o evaluaies s lo @, t/'/,eng sdo = G .
JEN

2, Fourier transforms. The Fourier transform ¢ of a summation
method ¢ is defined as a functional on a space M of test functions
f(2) = >, f(m)z' avalytic in the unit dise D: [zl << 1, given by

_ (fonyds

2N

i

O
o~
Th
~
i
L )

| s

the Fourier transform § of a sequence s = {s,} is defined as the linear
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W
=

functional on M given by
() = | s (Fmya.os
= (s doz, rem,

where .o7 is any measure on AN — N induced by the Abel method.
The more customary definition of the Fourier transform, namely
as the function of [0, 27] given by

S exp(—1 na)s, d. .Y, 0=2a<orn,
N

is insufficient; S. P. Lloyd has given examples of sequences s such
that |s,] = 1 for all « and such that S exp(—1 nw)s, d.%7 vanishes for
N

all & cf [6]. Later we shall make some remarks about sequences s
which may be written

Slc - Zan eXp(?: Qn k) y
where the Fourier coefficients a, are given by the formulas
a, = L s, exp(—1 a,k)d.o”
N

(that is, the sequence s, exp(iak) is Abel summable for all «), where
each «, is a number in [0, 27).
By H,, p =1 we understand the Hardy space of functions f

analytic in D: |z < 1 such that S | f(re'")df is bounded for 0 <
0
r <1 [ef. 5 pp. 39].

THEOREM. If L is a linear functional on a space of functions
analytic tn D which agrees with the Fourier transform 95 of a regular
summation method ¢, then

(1) L(f) =0
for each fe M which ts also in H,; also
(3) L1/ —-2)=1.

Proof. If fe H, then f(z) = 2., f(n)z", |2] < 1, and {f(w)} is a
null sequence [cf. 5 pp. 70]. Since ¢ is a regular method, ¢ must
evaluate {f(n)} to zero. Hence $(f) =0 for each fe H N M. To
establish (3) we simply note that since ¢ is regular, it must evaluate
the sequence {1,1, ---} to one, that is ¢(1/(1 — 2)) = 1.
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Our spaces of test functions will be
(a) the space M,, p > 1, of functions

fl&) = 3, fmyzr
analytic in D, such that
1 1w, = Tim sup(t — 7| | 1707 exp io) paoje |
r—]l— 0

is finite-throut the paper the symbol p’ denotes the number p/(p — 1):
Two functions f, g are identified in M, in case

(1 — 7)o S“ | fr? exp i6)
0
— g(, exp 10) |*df

tends to zero as r tends to one. We norm each space M, by || [/,
(b) the space of functions

fe) = 3 fwyz

such that

1 1L, = limsup(l — 7) [f(r expi0)]|

is finite. We identify two functions f and ¢g in M., in case
(L —7) |f(rexpif) — g(r expib)]|

tends to zero as r tends to 1. We norm M.. by || [[,_. For 1< p<q<eo
we have M, & M, of [3 pp. 623-625].
A linear functional L on a normed space M will be said to be

welldefined if L(f) = L(g) whenever ||f —g|| =0, f, ge M.
For p > 0 a sequence s will be said to be strongly Abel-p-sum-

mable to o if

Iim (X —7) > s, —aPr=0.
r—1 n=0
The method of strong Abel-p-summability is regular for p > 0.

THEOREM. If 2 < p < o, and L ts a well-defined linear fune-
tional on M, such that

(4) Ll —2 =1,

then there is a summation method ¢ which includes strong Abel-p'-
summability such that
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¢(f) = L(f) feM,.

Proof. We define a summation method ¢ by gﬁN sd¢ = L(S),
where S(z) = >\, s,2", whenever the right hand is defined. If fe M,
then L(f) is defined and ¢(f) =S Fmydé = L(f). Now let {s,} be

N

strongly Abel-p’-summable to ¢. Then (1 —17)>.|s, — o|?'r*— 0.
Since 3, (s, — 0)z" = S(z) — 0/(1 — z) we have, by the Hausdorff-Young

theorem cf [7, pp. 145], (1 — 7) S" 1S ei?) — a1 — 176 [2df — 0;
thus ||S — a/(1 — 2)|lx, = 0. Since L is well defined,

LS) = oL/l — 2) = &

by (4). Hence S sd¢ = o, that is, the method ¢ includes strong-
N

Abel-p’-summability.
Similarly

THEOREM. If L is a well defined linear functional on M. which
satisfies (4), then there is a summation ¢ which includes strong-Abel-
1-summability such that ¢(f) = L(f), f€ M..

If a summation matrix A = (a,,) has a sizable convergence field,
then lim,_.. max, |a,..| = 0; for example this condition must be satis-
fied if A has the Borel property (cf [3]).

We denote by A the the Fourier transform of the summation
method represented by the matrix A.

THEOREM. If A = (a,.) is a mon-negative regular row-finite sum-
mation matric such that lim, . lub, |a,.] =0, G = Qp = Gpe+ -+,

then A(1/(L — z¢®) =1 or 0 according as a is or is mot congruent to
zero modulo 2.

Proof. We have 1/(1 — ze') = S> emz". If a=0 (mod 27),
then A(1/(1 — z¢®)) =1 by the regularity of A. If a % 0 (mod 27),
then since the sequence {a, ,} is noninereasing in £,

é @nie™*® | = 8a,0/7

where 7 is the distance of the point & from the multiples of 2.
Thus A evaluates to zero each sequence {¢"*} such that « is not a
multiple of 27, that is, AQ/(1 — z¢**) = 0 if a@ = 0 (mod 27).
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THEOREM. Let P denote the Norlund summation method, so that
the P-transform of a sequence s is the sequence {37 DuiS:/P.}, where
the numbers p,, P, satisfy the conditions

Po=3p, p=01), P—co.
Then for almost all a in [0, 27)
P(1/1 — zexpia) = 0.
This result is proved in [1, pp. 325-325].

THEOREM. If s is a sequence in L°(.7), 1 < p <2, then § is «a
bounded functional on M,, and

1517 < limsup(l — ) 3 s, [%"
Proof. If p < 2, then by the Hausdorff-Young theorem
o ~ , 1/p’
(17 )
7n=0
= {10 exp oy aoje=|” L rem, .
0

Hence, if se L?(.5), we have by Holder’s inequality

SN = S Y{Snf(vz)}d:g:/_

oN

< tim sup (1 = (S s, ) (S 17w )

é HfH)Ip lim Sum[(l —_ 7ﬁ)<§‘olsn[p,}a¢z>‘ll/p

Since the last member is bounded, § is a bounded functional on M,.
If s is a bounded sequence such that the sequence {|s,|?} is Abel sum-
mable, then [|§]| < ||s||, — when § is considered a linear functional
on M,.

THEOREM. If s 1s a sequence in L*(.7) 2 < p < o=, then
18] =z [ls|l/lim sup(l — 7) 3. [s, "7,

when § is considered a fuwctional on M,, provided that the sequence
{Is, 1"} is mot Abel summable to zero. If the sequence {|s,|?} is Abel
summable, then ||§]| = lisll. If §(f) =0 for all fe M,, then ||s|l, = 0.

Proof. We let
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fn) = |s,1"%5, if s, =0,
=0 if s, =0.

If follows from the Hausdorff Young theorem that f(z) = > f(n)z”' eM,,
and

1 £y, = lim sup[(1 — 7) 3 [ f(m) [ r"]*’
= lim sup[(l —7) i }snlﬂ’o""]\/pl .

n=u

Hence if || fl;, # 0,
181 = 18O M,
= sl 7/lim sup[(1 — ) 5 [s, [ .
If the sequence {|s,|’} is Abel summable to a nonzero value,
WSl = llslls "/l ™ = |lslly «

If § annihilates M, it must annihilate the function f defined above,
and thus ||s||, = 0.

We make a few remarks about the sequence s which may be
written as exponential series

s, = S a, explic,k) =01, .-,

n=0
where the numbers «, lie in the interval [0, 27) and the numbers «,
are given by the formulas

a, = | seexp(—in .
AN

= lim (1 — 7) >} s, exp{ —ict, k)rt n=0,1,--,

= n —U

(we assume that the sequence {s, exp (iak)} is Absl summable for
each « in |0, 27)). We also have

a, = S(1/1 — zexp(—iw,)) .

We have the following version of the Riesz Fisher theorem:

THEOREM. If > |a,l> < <, then the Fouwwrier transforms of the
exponential polynomials

. i . .
st = > a, exp(la,k) , J=12 .-,

niq

converyge to a bounded linear functional ¢ on M, in the sewnse that
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lim|jo — 87|l =0,

and

lolF = 3 lal = lim 189,
when each 89 is comsidered a functional on M.

Proof. Let f(z) = 3, f(n)z" be a function in M,. Then
189°(f) — 897 (N
= | (2 . exptiai)) Fyd.r

(I, | = o exptiant [asz) " 1 71,

(£ 1) 15 1,

J

A

A

which tends to zero as j’ and j” tend to infinity, where the above
integration is carried out with respeset to k. Therefore, for each
fe M, the sequence {§Y'(f)} is a Cauchy sequence of numbers and
hence converges. Let o(f) = lim §Y(f). It is readily verified that
o(f) depends linearly on f. Also

|0(£)] = |1im §9(£)|
i 12
< (S 1el) 1 £l 5

hence if we regard ¢ as a functional on M, ||| < . |e;»" If
we take

f@) = 3 f(k)z*,

where
7o) = 3% a, exp(—iab)
then the sequence {|f(k)|}? is Abel summable to 3}i_, |a,? thus
[, 1700 d.sz = 11£ 11 = 3 o

Since s9'(f) = 3 |a, % ||8?9]* = 33, |a,]*. Since ||o|| = lim;... [|§9]l,
ol = 3, lan .
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