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APPROXIMATION AND INTERPOLATION

ARNE STRAY

Let X be a compact plane set, X° its interior, and sup-
pose E is a subset of dX = X\X°. H°°(X0) is the algebra of
all bounded analytic functions on X° and H£(X°) denotes all
bounded continuous functions on X° u E analytic in X°.

Interpolation sets for HE(X°) are studied if E is open
relative to dX.

If X satisfies certain conditions which involve analytic
capacity, it is shown that an interpolation set S for H°°(X°)
is an interpolation set for ϋ°°(0) for some open set 0 which
contains every point of X except the points on dX in the
closure of S. Similar results are proved for R(X) without
restrictions on X.

Introduction and notation* The paper is divided into three

sections. Section 1 is intended as a motivation for the problems to be
studied in the next section. We here prove a simple approximation
result for HB(X°) in case X — {z: \ z | ^ 1} and apply it to interpolation
problems.

The proofs here are based on the theory of iP-spaces, but the
ideas behind the proofs are the same as in the next sections.

In §2 we use the techniques developed by A. G. Vitushkin to
generalize the results of section 1 and the main theorem of Heard
and Wells in [6]. We also here make use of some results from [5].

In §3 we prove the results for H°°(X°) and R(X) concerning
interpolation and analytic continuation.

Problems of this kind were first studied by Akutowicz and Carleson
in [1]. Later one of their results has been extended but only in case
X - {z: |* | ^ 1} (See [3], [6] and [8]).

We have defined H£(X°) above. If B — dX we define as usual
HB(XQ) = A(X). We say that A(X) is pointwise boundedly dense in
H°°(X°) if every bounded analytic function on X° is a pointwise limit
of a bounded sequence from A{X).

Whenever S is a topological space C(S) denotes all bounded complex
valued continuous functions f on S and we put | | / | | = sup{|/(a?)|,
xe S). If Sa C we always assume it has the topology induced from C.

If / is a complex valued function defined on a set S and F is a
subset of S, we define \\f\\F = sup{|/(a?)|: xeF}.

The basic results from the theory of analytic capacity and rational
approximation will be used several times. A convenient reference is
[4, ch. VIII]. (See also [9] or [10]).

If E is a subset of the complex plane, y(E) and a{E) denote the
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analytic capacity and the continuous analytic capacity of E respectively.
If δ > 0, zeC then d(z, δ) denotes the open disc with radius δ

centered at z. If / is a bounded measurable function on C we put
11/11 = 11/11̂  where || ]]« is the essential supremum of ] / | with respect
to plane Lebesgue measure.

S2 denotes the extended complex plane with the usual topology.

1* Let D — {z: | z | < 1} and T = 3D be the circle group. If u is
a real integrable function on T we define the analytic function Hu(z) by

zeD .
-x eiθ — z

It is well known (see [7] p. 67) that we can factor an feHoa(D),
into / = fj2 where fl9 f2eH~(D), lim^|Λίrβ")I = 1 a.e., on T and
f2 = λ exp (Hu) where | λ | = 1 and Hu is as above. fι is called an
inner function, / 2 an outer function.

A Blaschke product is an inner function given by a product

B(z) = λ.g^Π ^ "» ~J where Σ (1 - l« l) < -
n an 1 - anz

The convergence is uniform on compact subsets of C at a positive
distance from the set {l/άn\n — 1, 2, •}• Let Ea T be compact and
B — Ί\E. Using the notation above we now have:

THEOREM 1.1. Suppose FaD is closed relative to D U B.
Given heH°°(D) and ε > 0 there exists feHβ such that \\h—

f\\F<s and 11/11 <Ξ ||fe||. If h is an inner (outer) function we can
choose f to be inner (outer).

Theorem 1 follows from the factorization Theorem mentioned above
and the following three lemmas:

LEMMA 1.1. Every inner function feHβ is a uniform limit of
Blaschke products in Hβ.

LEMMA 1.2. Given ε > 0 and a Blaschke product G e H°°(D) there
exists a Blaschke product Gr e Hβ such that \\G — Gr\\F < ε.

LEMMA 1.3. Given u ^ 0 in Lι(T) and ε > 0 there exists an outer
function GeHβ such that \\G — expH{u)\\F < ε and \\G\\ ^ 1.

Lemma 1.1. is proved in [7, p 176].

Proof of Lemma 1.2. Let B — UΓ J» where the union is disjoint
and each Jn is a half-open arc such that every compact subset K of
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B is covered by a finite number of the arcs. Let Dn = {z e D\{0}:
z/\z\e Jn}. Assume dist (Jn, F) > 0 for each n. From G we take a
subproduct G1 having only a finite number of factors with zeros in D1

and such that

G Γ1 II ^ ^

Then we take a subproduct G2 of Gι having only a finite number of
factors with zeros in D2 and such that \\G1 — G2\\F < ε/23. We proceed
in this way and get a sequence of Blaschke-products Gn.

Let G' be the subproduct of G which contains precisely the factors
common to all Gn.

Since Gn —> G' uniformly on compact subsets of the domain of
definition of Gr we clearly have \\G — G'\\F < e.

Proof of Lemma 1.3. Let uL = u\B and u2 = u — ut. Choose a

real valued function veL'(T) continuously differentiate on B such that
v ^ 0, v — 0 on E and such that $xvpzeF\Hi%l){z) — Hiv){z) \ < e/e Then
the function G = exp [H{v+U2)] is the required one. If u1 has compact
support v is easy to find. In the general case uι can be written as
a sum of such functions and then an "ε/2w-argument" works.

COROLLARY 1.1. If H°°\F is equal to C(F) then HB\F — H°°\F.

Corollary 1.1 is an immediate consequence of Theorem 1.1 and the
following lemma that will be useful to us several times:

L E M M A 1.4. Suppose T: X-+Y is a linear continuous map from

a Banach space X into a Banach space Y and there exist numbers t e

< 0, 1 > and M < oo such that for every ye Y with \\y\\ ^ 1 there

exist xeX such that \\y — Tx\\ < t and \\x\\ ^ M.

Then TX — Y and if ye Y then y — Tx for some xeX with

Proof. Let ye Y and \\y\\ — 1. Choose a sequence {ίcj c J such
that \\xn\\ ^ Jfcβ , n= 1,2, ••• and such that | | T ( Σ Γ O - y\\ ^ tm for
m = 1, 2, . Then x = Σ Γ X* e X, \\x || ^ M/(l - ί) and Tx = y. The
corollary follows now by letting X = H£, Y = H°°\F Π D and T: X->
Y be the restriction map.

2* We now generalize Theorem 1.1.

THEOREM 2.1. Suppose A(X) is pointwise boundedly dense in
H°°(X°). Then there exists a constant k such that if BadX is open
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relative to dX, heH°°(X0), FaX° is closed relative to X° U B and e >

0 we can find a function feH£(X) such that \\f\\ ^ k\\h\\ and \\f —

h\\F <e.

Proof. From the hypothesis we get constants c and r such that

( 1 ) Ί(Δ{Z, δ)\X°) ^ ca{A{z, rδ)\X°)

whenever z e C, δ > 0.

That (1) in fact is equivalent with the hypothesis of the theorem
follows from Theorem 2.2 in [5].

Choose for a fixed δ > 0 and k — 1, 2, , points zkδ and functions
φkδ: J(zkδ, δ) -> [0, 1] such that

( i ) φkδeQJ(zkδ,δ)
(ϋ) Σ Γ f e ^ l in C
(iii) \\dφkδ/dz\\^A/δ
(iv) No complex number is contained in more than 25 of the

discs j k = j(zkδ, δ) (See more about this construction in Ch. VIII in [4])
If / is a bounded measurable function on C and φ e C0(C) we define

(2) τφ(f)(ζ) = -L
7Γ ζ

We have by Stokes theorem:

( 3) Γ,(/)(O - /(C) Φ(Q + -[[ ~^p ^r (z) dxdy .
π J J z — ζ 3̂ ;

By (2) 2^(/) is analytic wherever / is analytic and by (3) Tφ(f) is
continuous whenever / is continuous.

We also have (4) \\Tφ(f)\U ^ 4 diam Y dφ/dzW^ | | / | X | U where Y
is the support of φ. Let us also remark that / — Tφ(f) is analytic
in the interior of the set {z: φ(z) = 1} and that

f(z) - ^
dz

W ) ( )
7Γ j

which follows from (3) above.

We now prove Theorem 2.1. If he H°°(X°) we assume it extended
to a measurable function on C bounded by | |λ | | z o.

For n = 1, 2, we choose open sets Vn and compact sets Kn c Vn

such that VnΠVm= 0 if \n - m\ > 1 and B = U Γ ^ and F% Π î 7 =
0 for every %. We also require that KΓ\ Vn Φ 0 only for finitely
many n if KaC\((dX)\B) is compact.

For each n we choose δn > 0 and functions {̂ Λn}?=1 supported on
discs Akn with radius δw as described above.
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We put Gkn = TΦkβι) and In = {k: Δkn C\KnΦ 0 } . The inequality
(1): 7((z, δ)\X°) ^ Ctf(j(z, rδ)\X°) for zeC, δ>0 combined with the
proof of "the principal lemma" (See p. 174-176 in [9] or p. 211-213
in [4]) gives the existence of functions Hkn e C(S2) analytic outside a
compact subset of j(zkn, (r + 2)3n)\X° such that Gkn — Hk% has a triple
zero in the series development about °o and HίΓ^ll ^ α | | λ | | where a
depends only on c and r.

Exactly as in [5] at p. 192-193 we get that fn = Σnn(GkΛ - Hkn)
satisfies

(a) H Λ H ^ & I I Λ I I
(b) If {w: \z - w\ ^ NSn} Π Akn = 0 for any ke In then \fn(z) \ ^

Here b depends on c and r. Suppose now 1 > s > 0. By (b) we have
if (δ j- 1 dist (Kn, C\Vn) is sufficiently large:

(c) H/.llc/r.<2^

Put g = h - Σ r . , / ^ . Then ||flr|| S P ! l ( l + ε + b)< (b + 2)\\h\\, g
is analytic in X" and continuous on K2n-1 for w = 1, 2, . The
continuity follows since

g = (h- f^d + (Σ Λi-0

and

A - / ^ = h- Tφh+ Σ* Hij
J2n—1

where φ = Σ/2w_i ^ equals one in a neighbourhood of iΓ2*>-i We now
replace h by #, and (JBΓ2Λ_!, V2n^ by (iΓ2%, F2M), for n = 1, 2, ••• and
repeat the argument. Since the TVoperator preserves analyticity and
continuity we get a function feH£(X°) satisfying | | / | | ^ (& + 2)2||Λ||

- / | U ^ \\h-g\\F + \\g -f\\F< ε since Vn Π F = 0 for every

A subset F of 1° u S is called a peak set for H"(X°) if whenever
0 =) ί7 is open relative to X° [j B and ε > 0, there exists / e HB(X°)

such that / = 1 = | | / | | on F and | / | < ε on ( I u ΰ ) \ θ . Peak inter-
polation set is defined in the same way.

THEOREM 2.2. Let X, B be as above and assume the hypothesis of
theorem 2.1. Then we have for a set S closed relative to X° (J B:

(i) If each compact subset of S Π B is a peak interpolation set for
A(X) then S Π B is a peak interpolation set for Hζ{X°). If in addition
L — H°°(X°) \sχB is closed in C(S[B) then H™ \ S consists of all bounded
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continuous functions f on S such that f\SKBeL
(ii) conversely if S is a (peak) interpolationset for HB then every

compact subset of S is a (peak) interpolationset for A(X) and H°°(X°) \S\B =

To prove Theorem 2.2 we need to generalize Lemma 3 of [6]. The
next lemma is stated for the algebra ίZj° but the result is valid in
the setting of a general sup norm algebra defined on a compact Haus-
dorίf space. (With HB(X°) replaced by an algebra of functions defined
in a natural way).

LEMMA 2.1. Suppose KaB is closed relative to B and every
compact subset of K is a peak interpolation set for A(X).

Then for every ge C(K) we can find f e H£(X°) such that f\K =
g and \f\ < \\g\\ on X° (j B\K.

Proof. Put Y — X° U B and choose open sets Vn and compact sets
KnczVn suchthat K= \JT Kn and Vn Π Vm = 0 if \n - m\ > 1. We
also require Vnf]M^ 0 only for finitely many n if Ma Y is compact.
P u t Vo = K-ι = K0= 2) and /0 = 0. Choose geC(K) w i t h \\g\\ = 1
and let t e <0, 1>.

We shall construct a sequence {fn} c A(X) such that we have for
k = 0 f l , 2 , . . . .

(1, k): fk = g - Λ-! on Kk

(2, ft): | | Λ | | ^ l + ί

(3, k): \fk\< t2-k~1 on (X\Vk) U Kk^

(4, k): fk = 0 on (Kk^ ΓΊ Kk) U (Kk+1 Π Kk+2)

(5, ft): \\fk-g\\Kk+1<l + t .

Assume / 0, •••,/» constructed and n ^ 0.
Choose now h e ^4(X) satisfying (i, n + 1) for i = 1, 2. Then h = 0

on iί% Π iΓw+1 (this is trivial if n = 0 and follows from (4, w — 1) if
n ^ 1 since then h = g — (g — fn^) = fn^ on ϋΓ% Π JBΓn+1.

Since Kn+ι is a peak-set it is now clear how to modify h so also
(3, n + 1) is valid. By (4, n) h — g on iΓ%+1 Π Kn+2.

Therefore | h — g | < ί on a subset TΓ of iΓ%+2 open in the relative
topology. We assume W Γ) FΛ+S = 0 . Choose now hγ e A(X) such that
h, = 1 = P J I on ίΓΛ+1, fti = 0 on if%+2\Wand 0 ^ ^ ^ 1 on Kn+1 U iΓw+2.
We can assume W =) iΓw+1 Π Kn+2

If we put / n + 1 — hhγ then we have what we want.
Since the initial step (n = 0) is trivial, we now have constructed

a sequence {fn} such that Fn = ΣΓ /* satisfies
(1) 112^11* ^ 2 ( 1 + ί) + ί < 5
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(2) Fn converges uniformly on compact subsets of Y and has a
limit F in H£ with | | F | | ^ 5.

Suppose now that x e K. Then xe Kn for some n. By (1, n) fn-^x) +
fn{x)-ΰ(x) = 0 and by (3, ft) for ft = 1,2,. . . \F(x)-g(x) | < Σ ^ i ( * 2—*) =
ί. By Lemma 1.4 every # is equal to f\K for some/e ίZj3 with | | / | |
^ 5/(1 - t) ^ 6 if ί is small-

Having established this partial result we look at the proof and
see that it shows the following:

LEMMA 2.2. Given e > 0 and subset FaY closed in Y for which

FΠK= 0 .

Then there exists a function f in H™ such that f = l on K, \f\

< ε on F and \\f\\ < 6.

Proof. Assume in the proof above that g = 1 on K and Vnf)F =
0 for all n and choose the functions small on F.

From Lemma 2.2 and the fact that if geC(K) g = f\K with
feHβ and | | / | | <£ 6||βr|| we can prove Lemma 2.1. In fact the rest
of the proof follows from Lemma 4.4, Lemma 4.5 and Theorem 4.6
in [2]. In [2] only functions on a compact set Ω are studied. But
if Ω is replaced by Y and compact subsets of Ω are replaced by closed
subsets of Y, the results in [2] can be used word for word.

We now prove the rest of (i) in Theorem 2.2:
Let ε > 0 and put M - {h e C(S): h \ Sczx e H~(X°) \ S Π X0}.
It is sufficient to prove that H£ \ s = M. Clearly Hβ \saM. Assume

heM and | |λ| | = 1. Choose by Lemma 2.1 f^eHg such that fγ — h
on Sf)B and \\f.\\ ^ 1.

Since H-(X0)\SΠX0 is closed in C(SΠX°) there exists by the
open mapping theorem a constant &x independent of h — ft and f\ e
H~{X°) with H/ϊll ^ k,\\h - Λ| | ^ 2k, such that /ί = Λ - Λ on SΠΓ.
Choose by Theorem 2.1 a function / 2 6 H$X)\s(X°) with | | / 2 | | ^ A;||/J||
and | | / 2 - /έlUnzo < ε.

Choose an open set VZDSOB such that max (|/2|, | / ί | < 2ε on
F Π S ί l Γ a n d by Lemma 2.1 f^eHζ{X°) such that / 3 = 0 on SίΊ5,
| | / 3 | | ^ 2 and | l - / 3 | < ε on S\V.

Put f = f, + ΛΛ Then | | / | | ^ 1 + 2 ^ and ||λ - / | | s < 6ε.
Choosing ε < 1/6 we have that HB(X°) \S = M by Lemma 1.4.

Proo/ o/ (ii). That H~{X°) \S\B = C(S\J5) is a simple normal family
argument.

To prove the statements about A(X) one takes a compact subset
K of S and geC(K) with | | # | | ̂  1. There exists a constant & inde-
pendent of g and g^eHβ such that gx — g on if and H^H ^ &. Fix
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ίe<0,l>.
As in the proof of Theorem 2.1 we fix δ > 0 and choose functions

Gn and Hn corresponding to gι and 3 and put fδ = gι — Σ i (Gn — Hn)
where 1= {n: j(zn, δ) Π ((dX)\B) Φ 0}.

Let V be open and containining (dX)\B and assume V f] K = 0 .
We have | | / δ | | ^ kkλ and where &x depends only on c and r appearing
in (1) in the proof of Theorem 2.1.

Choosing δ small compared with dist (K, V) we get
(a) \\fδ-g\\κ<t and
(b) Hft-ΛII^ΛJlΛlU.
From (a) and Lemma 1.4 one get that A(X)\K — C{K) since

fδ\xeA(X).
Suppose now S is a peak interpolation set for H%. Let .F be a

compact subset of X disjoint from K and ε > 0. Let ε' > 0 and choose
g1 such that g1 = # on -EΓHflrJI = | | # | | and |gj < e' on ί7 (J V Choosing
ε' small and remembering (b) we can get fδ as small as we please on
F. Then as in the proof of Lemma 1.4 we can find h e A(X) such
that h\κ = g, \h\ < e on F and | |λ| | ^ 1/(1 - t). But then K is a peak
interpolation set for A{X). (This follows as in the proof of Lemma
2.1).

3* We assume in this section 0 Φ U = JΓ° for some compact
subset X of C.

THEOREM 3.1. Suppose S is a relatively closed subset of U and
Hco{U)\s is a closed subspace of C(S). Suppose there exist constants
c and r such that (*): Ύ(J(Z, δ)\U) ^ CΎ(J(Z, rδ)\X) whenever zeC, δ>0
and Λ(Z, ί ) Π S = 0 . Then there exists an open set 0 Z) X\(S\S) such
that H~(0)\s = H~(U)\8.

COROLLARY 3.1. Suppose A(X) is p.b. dense in H°°(U) and every
f G A(X) belongs locally to R(X) in X\(S\S). Then the conclusion of
Theorem 3.1. holds.

Proof of the corollary. The hypothesis of the corollary implies via
Vitushkin's theorem (Thm. 8.1. on p. 214 in [4]) and Theorem 2.2 of
[5] that (*) holds.

The proof of Theorem 3.1 starts with the following lemma:

LEMMA 3.1. Assume the hypothesis of Theorem 3.1.
Suppose K(z(dX)\(S\S) is compact and 7 D K is open. Let ε > 0.
There exists an open set V0Z)K and a constant M such that if

h e L°°(dxdy), hluβH^iU) and 11 h\ |«, = 1 we can find a bounded function
f on C analytic in X° (J Vo such that \\f — h\\cw < ε and \\f — h\\ <
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M\\h\\v where M depends only on c and r.

Proof. From the hypothesis we have (*) Ύ(A(Z, δ)\U) ^ CJ(A(Z, rδ)\
X) if z e C, δ > 0 and j(z, δ) Π S — ψ. Suppose φ is continuously diffe-
rentiable and supported on A = j(z, δ). Then by (*):

(I) \Tφh'{oo)\ = I — [ ( h-^rdxdy\ ^ 4 δ e | | Λ | |w π J J dz

Now we use some of the notation from §2. Put Gk = TΦkδ{h) where
φks e OfGKSfc, <?)) and j£fc = A(zk, (r + 2)δ)\X Then by (I) we have if /jk =
Δ{z*, δ)

(Π) i G U o o ) | ^ l 6 c P | | ^ 7 ( ^ ) .

Let Wk be the analytic center of Ek and β{Ek) the analytic diame-
ter of Ek. (See [4] on p. 209 for definitions).

Let / = {k: jk Π K Φ 0}. We can assume Vf) S = 0 and £ chosen
so small that A^A? + 2)8) a Vit he I. Then it follows from the proof
of (iii) =* (i) in Theorem 8.1 in [4] that

(III) β(Gk, Wk) = \λ \\h(z - Wk) - ^ ^ cft(r)||Λ||7 7(Ek)β(Ek)

where k(r) depends only on r.
Now it follows from Lemma 6.3 on p. 209 in [4] that there exist

functions f[k\ f(

2

k) analytic outside a compact subset of Ek such that
| | / H I + II/HI ^ 20 and such that 0-/ί f c ) (oo)^/f(co) = (/f)'(-) -
£(/» Wk), (f(

2

k)y(oo) = τ ( ^ ) and yS(/,, TΓ*) = Ί{Ek)-β{Ek).
But then we can choose complex numbers a and 6 such that Hk =

a fϊ + b f\ satisfies:
(i) Gk — Hk has a triple zero at infinity
(ii) 11-fiΓfcll ^ c ikί(r)||A||F where M(r) depends only on r.
It is important that the singularities of Hk depends only on the

singularities of /? and f\.

Define now / = A - Σ i (Gfc - ^ ) We have | |G* - £Γfc|| ^ α | | Λ | | Γ

where a depends only on r and c.
Since dist {K, C\V) > 0 we can exactly as at p. 193 in [5] show

that | | / — h\\C\γ < ε if 8 is small. It is important that we can use
the same δ for any h satisfying ||A[{βo ^ 1.

Since Σ i Φk = 1 in a neighbourhood of K the function h — Σ z Gfc =
Λ — TΣlΦk(h) is analytic in C7 and in a neighbourhood V of if. ( V
depends only on δ). Remembering how the functions Hk were chosen
we have proved the lemma.

The proof of the next lemma is almost a copy of an argument
from §2.
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LEMMA 3.2. Suppose ε > 0 and assume the hypothesis of
Theorem 3.1. There exists a constant k and an open set Oz)X\(S\S)
such that if heH°°(U) and | |Λ | | ^1 , there exists feH°°(O) such that
\\f\\<k and \\f - h\\s < e.

Proof. We put dX\(S\S) = \JT Kn where each Kn is compact and
Vn =)Kn is open such that Vn Π Vm Φ 0 => \n — m\ ^ 1, and Vnf]S =
0 for all n and VnΠKΦ 0 only for finitely many n if KaC\(S\S)
is compact.

Looking at the functions Hk constructed in Lemma 3.1 and noting
that if / is a bounded measurable function TΦk(f) is analytic wherever
/ is analytic, we see that the technique used in the proof of Theorem
2.1 combined with Lemma 3.1 yields a function / such that

( i ) H/IU ^2M+2 = k (M is as in Lemma 3.1)
(ii) | | / - λ | U < e
(iii) / is analytic in U and in an open set containing UΓ Kn and

this open set does not depend on h.

We now prove Theorem 3.1. Since HC°(U)\S is closed in C(S) there
exists a constant L such that every g e C(S) equals h \ s where h e H°°(U)
and \\h\\ ^L\\g\\. Let ε > 0.

We choose the open set 0 as in Lemma 3.2 and apply the lemma
to h/L. We get a function /ie jff°°(0) such that \\fx\\ ^ k (k is as in
Lemma 3.2).

Then the function / = Lf1 satisfies:
(i) | |<7-/ |U<:εL
(ii) | | / | | < : kL.

If we choose e < 1/L we can prove Theorem 3.1 via Lemma 1.4.
There is a result similar to Theorem 3.1 for the the function

R(X):

THEOREM 3.2. Let X be a compact subset of C and EczX a closed
subset. If R(X)\E is closed in C(E) then there exists a compact set
Γ=)X such that X\Ea Y° and R(Y)\E = R(X)\E.

If E is a peak set for R(X) then it also is for R{Y)

Proof. We proceed in exactly the same way as in the proof of
Theorem 3.1.

Instead of the condition (*) to get the functions fίk) and f(

2

k) used
in Lemma 3.1 we now use Theorem 8.1 on p. 214 in [4].

Let A = {he C(&): h\xe R(X)} .

Consider the following map T defined on A: Given he A then
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modify it to / = h — XΓ /» exactly as in the proof of Theorem 3.1.
Then (as in the same proof) modify / to

T(h) = / - Σ 0 . = Λ - Σ Λ - Σ 0 .
n n n

We can arrange it so that
(i) II/JI ^ c, sup{|/Kzi) ~ h(z2)\: z» z2eC, \z, - z2\ ^ 1/n)
(ii) I I Λ I U . ^ i P I I ^ -

where cx is an absolute constant. These inequalities also hold if fn

is replaced by gn and h is replaced by /•
It follows that T maps A into C(S2). Since the Tφ operator is

linear it follows that T also is and we have \\T(h)\\ <; a\\h\\ where a
is an absolute constant.

From the proof of Theorem 3.1 it follows that there exists an open
set Oz)X\E such that T(h) is analytic in 0 for all h in A. Choose a
locally finite covering of (dX)\E consisting of closed discs A% such that
Ji c 0 for each i.

Put Y = XU(\J?Δi)
To prove that Th\γe R(Y) for he A we may assume h is analytic

in a neighbourhood of X. If h is such a function then fn = 0 for all
but a finite number and the same holds for {gn}. This is because
Tφ(h) — 0 whenever ψeC1 and Λ is analytic in a neighbourhood of the
support of φ. But then it is easy to see that Th\γe R(Y).

It remains to show that E is a peak for R(Y) if it is a peak set
for R(X). Suppose therefore that Fez Y is compact and FΓ)E = 0 .

Let βτGi2(X)|£. Let slf ε2 > 0. Choose he A such that h = g on
E, \\h\\ = \\g\\ and \h\ < ει on C\W where T7is an open set containing
E to be specified. Assume \\g\\ ^ 1.

We shall have FczC\W, Recall that Th = (h - Σ Γ / ) - ΣΓί/
Let JV be a number such that |Σϊ/»(«)! ^ ε2 and (Σm^*^)! ^ ε2

whenever m^ N, \\h\\ ^ 1 and ^ ί UΓm-i Vn and he A.
We assume C\TF^ Vn iί n <2N + 1 and F ί l F ^ 0 if n^ N.
From the way / n is constructed we have | | / Λ | | ^ c2 | |Λ||F2%l and

H/nllcxFĝ i ^ ^2| |^I|F2 %_1 2~W where c2 is an absolute constant.
These inequalities also hold if fn is replaced by gn and h is replaced

by h — ΣΓ fn and y2«-i is replaced by V2n.
But then ||Λ - Σf"1/• - Σ Γ ^ J U ^ ^ + max{||/J|, n = 1 . . .

JV - 1} + max{||firn||: w = 1, ΛΓ - 1} < εx + c2s, + c2((c2 + 1)8, + ε2).
But if now 1/2 > ε3 > 0 is given, ^Gi2(Z)|^ and \\g\\ ^ 1 we can

choose εx, ε2 and h such that

(1) Hflr- 2%|U<ε 8 <l/2

(2)

(3)
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where c3 is absolute.
But then by Lemma 1.4 there exists feR(Y) such that

J \E — y, 11/ II ^ z z~zr — ΔCz a n a | | / \\F <. ΔC^3 .
JL — •!•/"

Since c3 is absolute and F and ε3 are arbitrary E is a peak-set
for i2(F). The rest of the proof is essentially Bishop's "1/4 — 3/4
theorem". (See Thm 2.1 on p. 5 in [10]).

Let HR(X) denote the set of all functions on X° which are pointwise
limits on X° of bounded sequences in R{X).

LEMMA 3.3. A bounded analytic function f on X° is in HR(X)
if and only if there exist constants c and r such that

-p- 7U(z,rd)\X)\\f\\
oz

for some bounded measurable extension f of f to C and whenever zeC,
δ > 0 and φeCZ(j(z,δ)).

Proof. If (*) holds for some bounded measurable extension / of
/ then feHR(X) by the proof of Thm. 8.1 at p. 214 in [4].

Using this theorem and assuming {fn}aR(X), \\fn\\ ^ &||/|| and
fn—*f pointwise on X° one get that (*) is valid for some extension
/ of / being a w* clusterpoint of {/J in L°°(dxdy). (We assume each
fn extended to C(S2) and still bounded by | |/Jlz)

Using Lemma 3.3 one can prove the following result:

THEOREM 3.3. If X is compact, SaX° is closed relative to X° and
HR(X)\S is closed in C(S) then HR(Y)\S = HR(X)\S for some YZDX

such that Y°Z)X\(S\S).

Proof. Define for each / in HR(X) \\f\\ = inf{supJ|/J|: fneR(X),
fn—*f pointwise on X0}. Then HR(X) is a Banach space.

Applying the open mapping theorem to the restriction map HR(X) —>
C(S), Theorem 3.3 is proved in the same way as Theorem 3.1. The
set Y is constructed as in Theorem 3.2.

Comments on Theorem 3.1. Suppose A is subspace of H°°{ U) and
TφhluβA whenever h is a bounded measurable extension of an he A
and φ is continuously differentiate with compact support. We shall
then say that A is invariant under Tφ.

The following result holds:
Suppose AaH^iU) is invariant under Tφ and h\veA whenever
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h is analytic in a neighbourhood of X. If it is possible to choose the
sets {Vn} appearing in the proof of Theorem 3.1 in such a way that
f e A whenever / — limw fn where {/J is a bounded sequence from
A and the convergence is uniform on those relatively closed subsets
F of U satisfying F Π Vn Φ 0 only for finitely many n, then Theorem
3.1 is valid with H°°(U) replaced by A and jff°°(0) replaced by JEL(O) Π A.

Example of such an A. Let U — {z: \z\ < 1} and let QadU.

Define A as those / e H°°( U) such that l i m ^ f(r eiθ) exist whenever
eiθ e Q.

In the diameters of the components of the complement of X is
bounded away from zero, and explicit construction of the set 0 in
Theorem 3.1 can be carried out. This depends on some estimates of
the analytic capacity and diameter of compact connected sets. (See
Theorem 2.1 and Lemma 6.1 in Ch. VII of [4]).

I wish to express my appreciation to A. M Davie for several
valuable comments and suggestions. Without his help I hadn't proved
Theorem 3.3 and he simplified the original proof of Lemma 1.2. I also
wish to thank Dr. Otte Hustad for valuable discussions on the subject.
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