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APPROXIMATION AND INTERPOLATION

ARNE STRAY

Let X be a compact plane set, X° its interior, and sup-
pose E is a subset of X = X\X°. H=(X°) is the algebra of
all bounded analytic functions on X° and Hz (X" denotes all
bounded continuous functions on X° U E analytic in X°.

Interpolation sets for H;(X°) are studied if £ is open
relative to dX.

If X satisfies certain conditions which involve analytic
capacity, it is shown that an interpolation set S for H=(X")
is an interpolation set for H>=(0) for some open set 0 which
contains every point of X except the points on 06X in the
closure of S. Similar results are proved for R(X) without
restrictions on X.

Introduction and notation. The paper is divided into three
sections. Section 1 is intended as a motivation for the problems to be
studied in the next section. We here prove a simple approximation
result for Hy (X" in case X = {z: |z| < 1} and apply it to interpolation
problems.

The proofs here are based on the theory of HP?-spaces, but the
ideas behind the proofs are the same as in the next sections.

In §2 we use the techniques developed by A. G. Vitushkin to
generalize the results of section 1 and the main theorem of Heard
and Wells in [6]. We also here make use of some results from [5].

In §3 we prove the results for H=(X°) and R(X) concerning
interpolation and analytic continuation.

Problems of this kind were first studied by Akutowicz and Carleson
in [1]. Later one of their results has been extended but only in case
X = {z:|z] £ 1} (See [3], [6] and [8]).

We have defined Hy(X° above. If B = 06X we define as usual
Hy(X°) = A(X). We say that A(X) is pointwise boundedly dense in
H=(X") if every bounded analytic function on X° is a pointwise limit
of a bounded sequence from A(X).

Whenever S is a topological space C(S) denotes all bounded complex
valued continuous functions f on S and we put [|f]|| = sup{| f(@)|,
xe S}. If Sc C we always assume it has the topology induced from C.

If f is a complex valued function defined on a set S and F is a
subset of S, we define || f||; = sup{| f(x)|: x€ F}.

The basic results from the theory of analytic capacity and rational
approximation will be used several times. A convenient reference is
[4, ch. VIII]. (See also [9] or [10]).

If E is a subset of the complex plane, ¥(E) and «(E) denote the
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analytic capacity and the continuous analytic capacity of E respectively.
If § >0, zeC then 4(z,6) denotes the open disc with radius 6
centered at z. If f is a bounded measurable function on C we put
NIl =l f]l. where || ||l.. is the essential supremum of | | with respect
to plane Lebesgue measure.
S* denotes the extended complex plane with the usual topology.

1. Let D={z: 2| <1} and T = oD be the circle group. If u is
a real integrable function on T we define the analytic function H,(z) by

H.(2) = ig &tz 2 uo)ds  zeD.
27 ) €'

It is well known (see [7] p. 67) that we can factor an f e H=(D),
into f = f.f, where f,, f.e H*(D), lim,.,|f.(r¢")| = 1a.e., on T and
f:= )\ exp (H,) where || =1 and H, is as above. f, is called an
inner function, f, an outer function.

A Blaschke product is an inner function given by a product

B() = A2k lella WhereZ(l—lanl)<oo .
The convergence is uniform on compact subsets of C at a positive
distance from the set {1/&,|n =1,2, .-}, Let EC T be compact and
B = T\E. Using the notation above we now have:

THEOREM 1.1. Suppose F'< D 1is closed relative to D U B.

Given he H=(D) and € > 0 there exists fe Hy such that ||h —
Fllz<eand [|£l £ |kll. If h is an inner (owter) function we can
choose f to be inner (outer).

Theorem 1 follows from the factorization Theorem mentioned above
and the following three lemmas:

LEMMA 1.1. Ewvery inner function fe€ HF is a uniform limit of
Blaschke products in Hy.

LEMMA 1.2. Given € > 0 and a Blaschke product G e H>=(D) there
ewists a Blaschke product G’ € Hg such that |G — & ||» < e.

LEMMA 1.3. Given v < 0 wn LY(T) and € > 0 there exists an outer
Sfunction Ge Hy such that ||G — exp H ., || <€ and ||G] < 1.

Lemma 1.1. is proved in [7, p. 176].

Proof of Lemma 1.2. Let B = U7 J, where the union is disjoint
and each J, is a half-open arc such that every compact subset K of
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B is covered by a finite number of the arcs. Let D, = {ze D\{0}:
z/|zled,}. Assume dist (J,, F/) > 0 for each n. From G we take a
subproduct G, having only a finite number of factors with zeros in D,
and such that

5
HG_ GIHF<§'

Then we take a subproduct G, of G, having only a finite number of
factors with zeros in D, and such that ||G, — G,||» < ¢/2°. We proceed
in this way and get a sequence of Blaschke-products G,.

Let G’ be the subproduct of G which contains precisely the factors
common to all G,.

Since G, — G’ uniformly on compact subsets of the domain of
definition of G’ we clearly have ||G — G|, < e.

Proof of Lemma 1.3. Let u, = u|; and %, = v — u,. Choose a
realvalued function ve L'(T) continuously differentiable on B such that
v=0,v=0 on E and such that sup,.,|H.,(# — H.,(2)| < ¢/e. Then
the function G = exp [H,+.,] is the required one. If %, has compact
support v is easy to find. In the general case u, can be written as
a sum of such functions and then an “e/2"-argument” works.

COROLLARY 1.1. If H=|, ts equal to C(F') then HF |, = H=|,.

Corollary 1.1 is an immediate consequence of Theorem 1.1 and the
following lemma that will be useful to us several times:

LEMMA 1.4. Suppose T: X — Y is a linear continuous map from
a Banach space X into a Banach space Y and there exist numbers te
<0,1> and M < o such that for every ye 'Y with ||y|| =<1 there
exist ¥ € X such that ||y — Tx|| <t and ||x|| < M.

Then TX =Y and if ye€Y then y = Tx for some xe€X with
@l = M/(1 — ).

Proof. Let ye Y and ||y]| = 1. Choose a sequence {z,} € X such
that ||z,|| < M¢*, n = 1,2, --- and such that || T «,) — y|| = ¢t for
m=1,2,+++. Thenz =>7r=z,cX ||z|| < M/Q1—t)and Tx = y. The
corollary follows now by letting X = Hy, Y= H=|FNDand T: X—
Y be the restriction map.

2. We now generalize Theorem 1.1.

THEOREM 2.1. Suppose A(X) is pointwise boundedly demse in
H=(X°. Then there exists a constant k such that if BC 0X vs open
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relative to 0X, he H*(X"), FC X° is closed relative to X° U B and ¢ >
0 we can find a function fe Hy(X) such that || f]| = E||R|| and || f —
hilr <e.

Proof. From the hypothesis we get constants ¢ and 7 such that
(1) 7(4(z, NX) < ca(d(z, rO)\X°)

whenever ze C, 6 > 0.

That (1) in fact is equivalent with the hypothesis of the theorem
follows from Theorem 2.2 in [5].

Choose for a fixed 6 > 0and k = 1, 2, ---, points z,, and functions
S5t 4(21s, 0) — [0, 1] such that

(1) ¢ue Ci 4(21s, 0)

(ii) 3 ¢w=1inC

(il]) [|dgu/0z | < 4/

(iv) No complex number is contained in more than 25 of the
dises 4, = A(z1s, ) (See more about this construction in Ch. VIII in [4]).

If f is a bounded measurable function on C and ¢ € C,(C) we define

(2) T(F)Q) = i“Ma_?@ dudy .
T z — 0%
We have by Stokes theorem:
(3) TA(AQ) = F©-60) + L i S@ 9% ;) dgdy .
T z—( 0%

By (2) T,(f) is analytic wherever f is analytic and by (3) T,(f) is
continuous whenever f is continuous.
We also have (4) || T,(f)|l. < 4 diam Y-0¢/0Z||.. ||f|x||l- Where Y

is the support of ¢. Let us also remark that f — T,(f) is analytic
in the interior of the set {z: ¢() = 1} and that

To(f(=) = = 1) 22 @) day
which follows from (3) above.

We mow prove Theorem 2.1. If he H>(X’) we assume it extended
to a measurable function on C bounded by || A]|xe.

For n =1, 2, --- we choose open sets V, and compact sets K, C V,
such that V,NV,=0 if [n —m|>1and B=Ur K,and V,NF =
@ for every m. We also require that KNV, @ only for finitely
many n if Kc C\((0X)\B) is compact.

For each n» we choose 0, > 0 and functions {4,,};7., supported on
dises 4., with radius §, as described above.
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We put Gy, = T, (h) and I, = {k: 4, N K, %+ @}. The inequality
@): Yz, )\X°) = Ca(g(z, roO)\X°) for ze C, 6 > 0 combined with the
proof of “the principal lemma” (See p. 174-176 in [9] or p. 211-213
in [4]) gives the existence of functions H,, e C(S* analytic outside a
compact subset of 4(zi., (r + 2)0,)\X° such that G, — H,, has a triple
zero in the series development about - and |[|H,,|| < a||k|| where a
depends only on ¢ and 7.

Exactly as in [5] at p. 192-193 we get that f, = 3}, (Gi, — Hin)
satisfies

@ [[fall = bllkl|

() If {w:|z— w| =< NN e = @ for any ke I, then | f,(2)| <
bll|| 374 L/m? .

Here b depends on ¢ and ». Suppose now 1> ¢ > 0. By (b) we have
if (6,)™ dist (K,, C\V,) is sufficiently large:

) 1 Fallerv, < 5o lIA -

Put g = b — 37 fenre Then |lg|| S IRI(Q + e+ 8 <O+ 2]kl g
is analytic in X° and continuous on K,, , for n =1,2 ..., The
continuity follows since

g=(h— fo) + (]%fzj—x)

and

b= fon=h—Th+ S H,
where ¢ = 3};, , ¢; equals one in a neighbourhood of K,, ,. We now
replace b by ¢, and (K,,_,, Vi) by (K., Vo), for m =1,2, -+ and
repeat the argument. Since the T;-operator preserves analyticity and
continuity we get a function f e Hy(X°) satisfying || f|| < (b + 2)*|| ||
and ||k — fllr = ||k —gllr +|lg — fllr <€ since V,N F = @ for every
n.

A subset F' of X°U B is called a peak set for Hy(X°) if whenever
0D F is open relative to X°U B and ¢ > 0, there exists fec Hy (X9
such that f=1=|{|f|l on F and |f| <¢ on (XU B)\0. Peak inter-
polation set is defined in the same way.

THEOREM 2.2. Let X, B be as above and assume the hypothesis of
theorem 2.1. Then we have for a set S closed relative to X° U B:

(i) If each compact subset of SN B is a peak interpolation set for
A(X) then SN B is a peak interpolation set for Hy(X®. If in addition
L = H>(X" s\ s closed in C(S\B) then H;|S consists of all bounded
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continuous functions f on S such that f|su€ L
(i) comversely if S is a (peak) interpolationset for Hy then every
compact subset of S is a (peak) interpolationset for A(X) and H*(X°) |s\z=

C(S\B).

To prove Theorem 2.2 we need to generalize Lemma 3 of [6]. The
next lemma is stated for the algebra Hy but the result is valid in
the setting of a general sup norm algebra defined on a compact Haus-
dorff space. (With Hy(X") replaced by an algebra of functions defined
in a natural way).

LEMMA 2.1. Suppose KC B 1is closed relative to B and every
compact subset of K is a peak interpolation set for A(X).

Then for every ge C(K) we can find f € Hy(X") such that f|K =
g and | f| <|lg|l on X°U B\K.

Proof. Put Y = X°U B and choose open sets V, and compact sets
K,cV, such that K=Ur K, and V,NV, =@ if [n — m| > 1. We
also require V, N M ++ @ only for finitely many » if M C Y is compact.
Put V,=K ,=K,= @ and f,=0. Choose ge C(K) with ||g||=1
and let ¢e<0, 1).

We shall construct a sequence {f,} € A(X) such that we have for
k=0,1,2 +--.

Lk: fi=9— fi.on K,

@,k Ifell=1+¢

B, k): |fil <t27" on (X\V)) U K,
“4,k): fi=0o0n (K, N Ki) U (Kiss N Kiso)
G, R fe—9llg, <1+t.

Assume f, -+, f, constructed and % = 0.

Choose now he A(X) satisfying (¢, » + 1) for 2 =1,2. Then h =0
on K,N K,,, (this is trivial if » = 0 and follows from (4, n — 1) if
n=1since then h =g — (9 — fut) = for0on K, N K,,,.

Since K,., is a peak-set it is now clear how to modify & so also
3, n+ 1) is valid. By 4, n) h=9 on K,,, N K,

Therefore |k — g| <t on a subset W of K,., open in the relative
topology. We assume WNV,.s = @. Choose now &, € A(X) such that
hy=1=|h)onK,;,h, =0on K, \Wand0=h <1onkK,,, UK,
We can assume WO K,,, N K,z

If we put f,... = hh, then we have what we want.

Since the initial step (» = 0) is trivial, we now have constructed
a sequence {f,} such that F, = >\ f, satisfies

1) [|Flx<21+¢t+t<5b
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(2) F, converges uniformly on compact subsets of ¥ and has a
limit F in Hy with ||F|| < 5.

Suppose now that x € K. Then xz € K, for some n. By (1, n) f,_.(x) +
fa(®)—g(®) =0and by (3,k) for k=1,2, - | F(x) —g(@) | <5, (¢-277) =
t. By Lemma 1.4 every g is equal to f|K for some fe Hy with || f]|
<5/(1—1t) <6 if ¢ is small.

Having established this partial result we look at the proof and
see that it shows the following:

LEMMA 2.2. Given € > 0 and subset F'C Y closed in Y for which
FNK=Q.

Then there exists a function f in Hy such that f=1 on K, |f|
<eon Fand || f]] <6.

Proof. Assume in the proof above thatg =1on Kand V, N F =
@ for all n and choose the functions small on F.

From Lemma 2.2 and the fact that if geC(K) g = f|K with
feHy and || f|| <£6]|/g|| we can prove Lemma 2.1. In fact the rest
of the proof follows from Lemma 4.4, Lemma 4.5 and Theorem 4.6
in [2]. In [2] only functions on a compact set 2 are studied. But
if 2 is replaced by Y and compact subsets of 2 are replaced by closed
subsets of Y, the results in [2] can be used word for word.

We now prove the rest of (i) in Theorem 2.2:

Let ¢ > 0 and put M = {he C(S): h|scx € H2(X)|SN X.

It is sufficient to prove that Hy|s = M. Clearly Hy|sC M. Assume
he M and ||h|] = 1. Choose by Lemma 2.1 f, € Hy such that f, =%
on SN B and ||f,]| £1.

Since H=(X°|SNX° is closed in C(SNX°) there exists by the
open mapping theorem a constant %k, independent of » — f, and flie
H=(X") with || fi|| £ k.||h — f.|| £ 2k, such that f; =h — fLon SN X"
Choose by Theorem 2.1 a function f,e H3ys(X% with || f.]] < k|| fi]|
and || f: — fillsox <&

Choose an open set VO SN B such that max (| f.], | fi] <2¢ on
VN SN X°and by Lemma 2.1 f,e HZ(X°) such that f, = 0 on SN B,
| 5]l =2 and |1— f,| <e on S\V.

Put f = f.+ fofee Then [[f|| =1+ 2kk, and [[h — fl|s < 6e.
Choosing ¢ < 1/6 we have that Hy (X |s = M by Lemma 1.4.

Proof of (ii). That H=(X")|s\z = C(S\B) is a simple normal family
argument.

To prove the statements about A(X) one takes a compact subset
K of S and ge C(K) with ||g|| £1. There exists a constant & inde-
pendent of ¢ and g, € Hy such that g, = ¢ on K and ||g.|]| £ k. Fix
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te0, 1>.

As in the proof of Theorem 2.1 we fix 6 > 0 and choose functions
G, and H, corresponding to g, and é§ and put f; =g, — >, (G, — H,)
where I = {n: 4(z,, 6) N (0 X)\B) + O}

Let V be open and containining (3X)\B and assume VN K = @.
We have || f;|| £ kk, and where k, depends only on ¢ and » appearing
in (1) in the proof of Theorem 2.1.

Choosing 6 small compared with dist (K, V) we get

@ Ilfs—gllg<t and

®d 9. = fill = kullgillve

From (a) and Lemma 1.4 one get that A(X)|x = C(K) since
Silx € A(X).

Suppose now S is a peak interpolation set for Hy. Let F be a
compact subset of X disjoint from K and ¢ > 0. Let ¢’ > 0 and choose
g, such that g, = g on Kl|g,|| = ||¢9|] and |g,] < ¢ on FU V. Choosing
¢’ small and remembering (b) we can get f; as small as we please on
F. Then as in the proof of Lemma 1.4 we can find e A(X) such
that h|x =g, |h| <€ on F and||lh|| <1/ — t). But then K is a peak
interpolation set for A(X). (This follows as in the proof of Lemma
2.1).

3. We assume in this section @ # U= X° for some compact
subset X of C.

THEOREM 3.1. Suppose S is a relatively closed subset of U and
H=(U)|s s a closed subspace of C(S). Suppose there exist constants
¢ and r such that (*): 7(4(z, H)\U) £ ev(4(z, r0)\X) whenever ze C, 6 >0
and 4(z,0) NS = @. Then there exists an open set 0 > X\(S\S) such
that H=(0)|s = H=(U)|s.

COROLLARY 3.1. Suppose A(X) is p._b. dense in H>(U) and every
f e A(X) belongs locally to R(X) in X\(S\S). Then the conclusion of
Theorem 3.1. holds.

Proof of the corollary. The hypothesis of the corollary implies via
Vitushkin’s theorem (Thm. 8.1. on p. 214 in [4]) and Theorem 2.2 of
[5] that (x) holds.

The proof of Theorem 3.1 starts with the following lemma:

LEMMA 3.1. Assume the hypothesis of Theorem 3.1.

Suppose K< (0X)\(S\S) is compact and V > K is open. Let e > 0.

There exists an open set VoD K and a constant M such that if
h € L=(dxdy), h|, € H*(U) and || h]|.. = 1 we can find a bounded function
f on C analytic in X° U V, such that ||f — hllew <€ and || f — k|| <
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M|k, where M depends only on ¢ and 7.
Proof. From the hypothesis we have (x) 7(4(z, H\U) < ev(4(z, 76)\

X) if zeC, >0 and 4(z,0) NS = ¢. Suppose ¢ is continuously diffe-
rentiable and supported on 4 = 4(z, 6). Then by (x):

ooy = | L(( 5 92 < 99
O 1T (=) = |2 S dudy| < diel|hl || 52| V(e rinX) -
Now we use some of the notation from §2. Put G, = T;,,(h) where
61 € Co(4(zy, 0)) and E, = (2, (r + 2)6)\X. Then by (I) we have if 4, =
A(zk! 5)
D) | G(e0)| = 16¢]||h|]4,7(EY) -

Let W, be the analytic center of F, and G(E,) the analytic diame-
ter of E,. (See [4] on p. 209 for definitions).

Let I={k: £, N K # @}. We can assume VNS = & and 6 chosen
so small that 4(z, (r + 2)6) c Vif ke I. Then it follows from the proof
of (iii) = (i) in Theorem 8.1 in [4] that

a8, W = | ([ — W 22| < ek 111}y HEDS(ED
where k(r) depends only on 7.

Now it follows from Lemma 6.3 on p. 209 in [4] that there exist
functions f{®, f¥ analytic outside a compact subset of E, such that
LA+ 1F57]] = 20 and such that 0 = f{¥(e0) = f{P(c0) = (f*)(c0) =
B(f s Wi, (£39)(c0) = v(E)) and B(f, Wi) = 7(EL)- B(E)).

But then we can choose complex numbers a and b such that H, =
a ff+ b f satisfies:

(i) G, — H, has a triple zero at infinity

(i) [|Hill <c M(r)||k]l, where M(r) depends only on 7.

It is important that the singularities of H, depends only on the
singularities of f¥ and f~.

Define now f =h — >, (G, — H). We have ||G, — H,|| < al|h|,
where a depends only on » and e.

Since dist (K, C\V) > 0 we can exactly as at p. 193 in [5] show
that || f — hllcw < e if 0 is small. It is important that we can use
the same ¢ for any % satisfying ||All. < 1.

Since >}; ¢, = 1 in a neighbourhood of K the function 4 — 3, G}, =
h — Ts,,(h) is analytic in U and in a neighbourhood V' of K. (V'
depends only on 6). Remembering how the functions H, were chosen
we have proved the lemma.

The proof of the next lemma is almost a copy of an argument

from §2.
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LEMMA 3.2. Suppose €>0 and assume the hypothesis of
Theorem 3.1. There exists a constant k and an open set 0> X\(S\S)
such that of he H*(U) and ||h|| <1, there exists f e H=(0) such that
Il <k and |[f — h|ls <e.

Proof. We put 0X\(S\S) = U~ K, where each K, is compact and
V,DK, is open such that V, NV, # @ =|n—m|<1,and V,NS =
@ for all » and V,NK # @ only for finitely many = if Kc C\(S\S)
is compact.

Looking at the functions H, constructed in Lemma 3.1 and noting
that if f is a bounded measurable function T, (f) is analytic wherever
S is analytic, we see that the technique used in the proof of Theorem
2.1 ecombined with Lemma 8.1 yields a function f such that

(i) |[flle<2M+2=Fk (Mis as in Lemma 3.1)

(i) [[f =nhlls<e

(iii) f is analytic in U and in an open set containing U= K, and
this open set does not depend on A.

We now prove Theorem 3.1. Since H=(U)|s is closed in C(S) there
exists a constant L such that every g € C(S) equals k| where h e H=(U)
and ||k|| < L||g|l. Let ¢ > 0.

We choose the open set 0 as in Lemma 3.2 and apply the lemma
to h/L. We get a function f,€ H=(0) such that ||f,||=< %k (k is as in
Lemma 3.2).

Then the function f = Lj, satisfies:

(1) llg = fllsseL

i) |[[fIl < kL.

If we choose ¢ < 1/L we can prove Theorem 3.1 via Lemma 1.4.

There is a result similar to Theorem 3.1 for the the function
R(X):

THEOREM 3.2. Let X be a compact subset of C and EC X a closed
subset. If R(X)|y is closed in C(E) then there exists a compact set
Yo X such that X\EC Y° and R(Y)|; = R(X)|;-

If E is a peak set for R(X) then it also is for R(Y).

Proof. We proceed in exactly the same way as in the proof of
Theorem 3.1.

Instead of the condition (x) to get the functions f* and f{¥ used
in Lemma 3.1 we now use Theorem 8.1 on p. 214 in [4].

Let A ={heC(S: h|yc R(X)}.
Consider the following map T defined on A: Given he A then
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modify it to f = h — D7 f. exactly as in the proof of Theorem 3.1.
Then (as in the same proof) modify f to

We can arrange it so that

(1) |[fall = e sup{|M(z,) — h(z) | 2, 2,€ C, |2, — 2| < 1/}

@) |l Fallew, < e llbll-27
where ¢, is an absolute constant. These inequalities also hold if f,
is replaced by g, and & is replaced by f.

It follows that T maps A into C(S®). Since the T, operator is
linear it follows that T also is and we have |[|T(h)|| = a||h|| where a
is an absolute constant.

From the proof of Theorem 3.1 it follows that there exists an open
set 0D X\E such that T(2) is analytic in 0 for all ~ in A. Choose a
locally finite covering of (0X)\E consisting of closed discs 4; such that
4: < 0 for each <.

Put Y = XUWUr 4.)-

To prove that Thly€ R(Y) for he A we may assume / is analytic
in a neighbourhood of X. If & is such a function then f, = 0 for all
but a finite number and the same holds for {g,}. This is because
T,(h) = 0 whenever ¢<c C" and & is analytic in a neighbourhood of the
support of ¢. But then it is easy to see that Thl|y, € R(Y).

It remains to show that E is a peak for R(Y) if it is a peak set
for R(X). Suppose therefore that FFC Y is compact and FNE = @&.

Let ge R(X)|z. Let ¢,¢, > 0. Choose he A such that - =g on
E, ||h]] = |lg]| and |k] < &, on C\W where W is an open set containing
E to be specified. Assume ||g]|| < 1.

We shall have FFC C\W, Recall that Th = (h — X7 f.) — 327 G-

Let N be a number such that |>.n f.(?)]| < ¢ and | Y2 9.(2)| < &,
whenever m = N, ||h]| =1 and z2¢ U5, V, and ke A.

We assume C\WDV, if n <2N+1and FNV,= @ if n = N.

From the way f, is constructed we have || f.|| = cllhlly,, , and
| fallews,_, = CllR]ly,, ,»27" where ¢, is an absolute constant.

These inequalities also hold if f, is replaced by g, and % is replaced
by h — 32 f. and V,,_, is replaced by V,.

But then [[h — 3307 fo — 27 gullr 60 + max{|| ful,n=1---
N — 1} + max{||g,ll: =1, +++ N — 1} < &, + ¢g, + (e, + 1)e, + &,).

But if now 1/2 > ¢; > 0 is given, gc R(X)|; and ||g|| =<1 we can
choose ¢, ¢, and & such that

(1) llg — Thlz < & < 1/2
(2) | Thllr < &
(3) ”Th”écz«x”hnécs



474 ARNE STRAY

where ¢, is absolute.
But then by Lemma 1.4 there exists f e R(Y) such that

fle= g9, Hf“ = 1 _031/2 = 2¢;, and Hf”F < 20485 .

Since ¢, is absolute and F' and &, are arbitrary E is a peak-set
for R(Y). The rest of the proof is essentially Bishop’s “1/4 — 3/4
theorem”. (See Thm. 2.1 on p. 5 in [10]).

Let HR(X) denote the set of all functions on X° which are pointwise
limits on X° of bounded sequences in R(X).

LEMMA 3.3. A bounded analytic function f on X° is in HR(X)
if and only if there exist comstants ¢ and r such that

() [(TaFY ()] = 08 || 22| 7(ate, raN\ D) 117

for some bounded measurable extension f of f to C and whenever zc C,
0> 0 and ¢€ Ci(4(z, 9)).

Proof. If (x) holds for some bounded measurable extension f of
f then fe HR(X) by the proof of Thm. 8.1 at p. 214 in [4].

Using this theorem and assuming {f,} C R(X), || f.ll = k|| f]] and
f.— f pointwise on X° one get that (x) is valid for some extension
f of f being a w* clusterpoint of {f,} in L=(dzdy). (We assume each
f. extended to C(S? and still bounded by || f.|l%)-

Using Lemma 3.3 one can prove the following result:

THEOREM 3.3. If X is compact, SC X° is closed relative to X° and
HR(X)|s ts closed in C(S) then HR(Y)|s = HR(X)|s for some YD X
such that Y°>DX\(S\S).

Proof. Define for each f in HR(X) || f|| = inf{sup,|| f.l|: f.€ BR(X),
f«— f pointwise on X°}. Then HR(X) is a Banach space.

Applying the open mapping theorem to the restriction map HR(X) —
C(S), Theorem 3.3 is proved in the same way as Theorem 3.1. The
set Y is constructed as in Theorem 3.2.

Comments on Theorem 3.1. Suppose A is subspace of H=(U) and
T,h|, € A whenever h is a bounded measurable extension of an he 4
and ¢ is continuously differentiable with compact support. We shall
then say that A is invariant under T,.

The following result holds:

Suppose A H=(U) is invariant under 7, and h|,€ A whenever
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h is analytic in a neighbourhood of X. If it is possible to choose the
sets {V,} appearing in the proof of Theorem 3.1 in such a way that
fe A whenever f = lim, f, where {f,} is a bounded sequence from
A and the convergence is uniform on those relatively closed subsets
F of U satisfying FNV, # @ only for finitely many n, then Theorem
3.1 is valid with H=(U) replaced by A and H=(0) replaced by H..(0) N A.

Example of such an A. Let U={z:|z] <1} and let QcdU.
Define A as those fe H=(U) such that lim,., f(r ¢’) exist whenever
ele Q.

In the diameters of the components of the complement of X is
bounded away from zero, and explicit construction of the set 0 in
Theorem 3.1 can be carried out. This depends on some estimates of
the analytic capacity and diameter of compact connected sets. (See
Theorem 2.1 and Lemma 6.1 in Ch. VII of [4]).

I wish to express my appreciation to A. M. Davie for several
valuable comments and suggestions. Without his help I hadn’t proved
Theorem 3.3 and he simplified the original proof of Lemma 1.2. I also
wish to thank Dr. Otte Hustad for valuable discussions on the subject.
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