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AN ELEMENTARY DEFINITION OF SURFACE
AREA IN En+1 FOR SMOOTH SURFACES

Louis I. ALPERT AND L. V. TORALBALLA

The present paper concerns the difficulty which one
encounters in text books of Advanced Calculus of giving a
simple and elementary definition of area of a smooth non-
parametric surface in En+1 such that, within the same elmen-
tary framework, one can then prove that the area so defined
is equal to the classical area integral.

The authors were first made aware of the considerable
interest of such a task in 1955 with the publication of Angus
Taylor's now classic textbook "Advanced Calculus". The
following statement is taken from page 384 of this book:

"It is logically and aesthetically desirable to have a
definition of surface area which is directly geometric, and
which does not put too many restrictions on the surface. A
good definition ought not to depend upon the method of
representing the surface analytically, and should not be limited
to smooth surfaces. The demand for such a definition poses
a very difficult problem, however. It may surprise the student
to know that the problem has occupied the attention of many
able mathematicians over the last fifty years, and that the
end of research on the question is not yet in sight."

In the present paper we present an idea which seems to
answer the questions raised by Angus Taylor for surfaces
S: z=f(xi, , xn), which are continuous with their first order
partial derivatives. The idea is to develop a scheme for the
construction of sequences of suitably chosen polyhedra
inscribed within the given surface, such that the corresponding
sequences of the polyhedral areas converge to the classical
area integral for the surface, and hence to the Lebesgue
area of S.

In previous papers [1], [7] we discussed our definition of
area for surfaces S: z=f(xu x*) In [7] we took in considera-
tion surfaces z—f(xu #2) with / continuous with its first order
partial derivatives. In [1] we gave a necessary and sufficient
condition in order that for a surface z=f(xu x2) there are
sequences of inscribed polyhedra satisfying the requirements
of our definitions (see [1]).

J. A. Serret [6] in 1868 proposed a geometric definition of
area, but H. A. Schwartz [5] in 1882 proved that Serret's
definition was incorrect. Other geometric definitions of area
and constructions have been proposed, and we mention here
for example the ones of S. Kempisty [3] for surfaces S:
z=f(xi, X2) with /absolutely continuous in the sense of Tonelli.
For general expositions concerning area, in particular, Le-
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besgue area, we refer to the well known texts of T. Rado
[4] and L. Cesari [2].

l The n-ary vector product* Consider the (n + l)-dimensional
Euclidean space En+1, n^2. Let {Vlf V2, •••, Vn}, where for

i = 1, 2, . , n, Vi = (aih ai2, , α i fn+1) ,

be a set of n linearly independent vectors in En+1. For an arbitrary
vector X = (xu x2, , a?»+i) in En+1 define

φ(X) =

Xι X2

^ 1 1 ^ 1 2

CL2ι OJ22 &2,n+l

By elementary properties of the determinant, φ is a linear function
from En+1 into the reals; i.e. φ(Xί + X2) = φ(Xi) + (̂-3Γ?) for every
pair of vectors Xx and X2 in j&n+1, and φ(aX) = aφ(X) for every
vector X in JE

r%+1 and every real number a. Hence, there is a unique
vector Z = (zu z2, , zn+1) in En+1 such that

φ(X) = X ^ = α?^

for every vector X in E*+ι. We denote this vector Z by

Vix V.x x Vn

and call it the n-ary vector product of Vί9 F2, •••, Vn.
It is clear from elementary properties of the determinant that

FiX V2x x Vn is orthogonal to each F { . Moreover, if i l f i2, , ί%+L

is the natural vector basis of E%+1, then zό — iά*Z— φ{ί3) for each
3 = 1, 2, , tϊr + 1, and 7 1 x 7 ί x x 7 » can be expressed by the
formal determinant

«Ί ^2 * ' ' fr» + i

d U d l 2

 % % % d χ Λ + 1

Cc-2i ^12 Q/2fnJr±

The subspace of i£%+1 which is spanned by the vectors Vu F2,
is called an n-hyperplane in En+1. We say that the vector

is normal to this hyperplane.
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2* The n-hedra* Given a set of n + 1 points in i?*+ 1, if the
matrix of the coordinates of these n + 1 points is of rank n, this
set determines an w-hedron, or n-sίniplex. This is the closed convex
subset of S?*+1 which is bounded by the n + 1 (n — l)-hyperplanes
determined by the given set of n + 1 points. An w-hedron deter-
mines the ^-hyperplane in which it lies.

Given two vectors U and V in g**+1, the angle a = (U, V) bet-
ween U and V is determined from the equation U V = (Z7)(F)cos α.
Given two %-hyperplanes in gPw+1 by their dihedral angle we shall
mean the acute angle between their normals. An w-hedron n of
whose faces (n-1 hedras) are at right angles is called a right n-
hedron. Given an w-hedron T in ί?n+1, we define the area of T to be
the ^-dimensional volume of T in the standard manner.

3* Projections* We distinguish χn+1 and call it z. Given an
w-hedron T in En+\ its projection on the (xu x2, , xn) hyperplane
need not be an ^-hedron. This occurs, for instance, if T is orthogonal
to the hyperplane. We assume here that T lies on an hyperplane
H: z — c + mγxγ + + mnxn. Then, the projection of T on the
(xίf x2, , xn) hyperplane, or Proj T, is also an ^-hedron. If a is the
dihedral angle between the hyperplane H determined by T and the
(xl9 x2, •••, Xf) hyperplane, A is the area of T, and A' is the area of
Proj T, then A — A! secα, where

sec a = (1 + ml + + ml)112 .

4. Surfaces in &n+K Let E be an open and connected set in
the (xl9 x2, , xn) hyperplane such that its closure E is capable of
being decomposed as the union of %-hedra in the natural manner.
We say that E is polyhedral. Let / be a real-valued function defined
and continuous on E. The locus in 'zfn+1 of the points (xl9 x2, , xnf z),
where z — f(xlf x2, •••, xn), a function having E for domain, is called
an n surface in ^ * + 1 , or more briefly a surface. We wish to give a
definition of the area of this surface in the case where / is conti-
nuously partially differentiable on E. We refer to such a surface
as a continuously partially differentiable surface.

Let Γ: xx = F^t), •••,#« = Fn(t), a <£ t ^ b, be any parametric
curve in E passing through (x°L, •••, x°n) for t = ί0. Then its image
on S, or

C: Xι - Ftf), -..,». = F.(t), z = flFM, , Fn{t)\ ,

α ^ ί ^ 6, is a curve on C passing through Q for t = ί0. Assuming
that each ctei/dlί exists and is continuous on [α, 6], it follows that
there exists a tangent vector v to Γ at (a?J, •••,#!), and a tangent



264 LOUIS I. ALPERT AND L. V. TORALBALLA

Vector V to C at Q. If Γlf , Γn are n such curves in E, if
CΊ, , Cn are the corresponding curves on S, and if we have chosen
the curves Γ in such a way that the n vectors v19 , vn are linearly
independent, then the corresponding n tangent vectors Vl9 , Vn

determine an w-hyperplane H in En+1.

One shows that for all such sets of curves in S, the correspond-
ing w-hyperplane is unique. We refer to its normal line as the normal
to S at Q.

If T is an w-hedron all of whose vertices are in S, we say that
T is inscribed in S. By D(T), the deviation of S on T, we mean
the supremum of the set of the acute angles between the normal to
T and the normals to the portion of S which is subtended by T (i.e.,
the portion of S whose projection on the xl9 x2, •••,#» hyperplane is
identical to that of T).

Let {Plf P2, , Pm} be the vertices of a decomposition of E into
a finite set of n-hedra. For each i, let Q{ = /(P<). The set

determines a polyhedron which is inscribed on S. This polyhedron
is composed of a finite set of w-hedra which are inscribed on S. By
the norm of such a polyhedron we mean the largest of the diameters
of its faces. By the deviation norm of the polyhedron we mean the
largest of the deviations on its faces. By the area of this polyhedron
we mean the sum of the areas of the %-hedra which compose it. We
refer to these w-hedra as the faces of the polyhedron.

5* The geometric basis* We make use of the following addi-
tional properties of if *+1.

(a) Let Uu U2, •••, Un be any n vectors in g*n+1, such that
IcosίϊTi, Uo)\ < k, 0 < k < 1, for every i Φ j . Then for each ε > 0
there exists d > 0 such that if U[, Ul, , Uή are any n vector such
that \sm(Uif Ui)\ < δ, for each i, then

|sin(i71xC72, x U%, U[xUix---U$\ <e .

(b) Let P e E. Let U be any vector in the xl9 x2y , xn plane.
We define the directional derivative of / in the direction U in the
standard manner.

Under the hypothesis that / is continuously partially differentiable
on E, then the directional derivative of / is uniformly continuous on
E, i.e., for each ε > 0 there exists δ > 0 such that if (x[, x[, , x'n)
and (xϊ, x", , x») are in E and p((x[, x'2, , x'n), (x['9 x'2', , x")) < δ,
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then the absolute value of the difference between the directional
derivatives at (x[, x2, , x'n) and (x[\ x", , x'l) in the direction of
the vector from the first point to the latter, is less than ε.

The directional derivative is uniformly Lipschitzian on E.
( c ) There exist positive numbers k and d, k < 1, such that if

P, Pγ and P2 are any three distinct points in E such that

( 1 ) p(P,Pd<δ

(2) p(P,JQ<δ and
(3) C O S ( H , P K ) = 0 ,

then cos (QQ19 QQ2) < k, where Q = f(P), QL = /(Px), Q2 = /(P a).

( d ) Let Pi and P2 be any two distinct points in E, Qt —

and Q2 = /(P2) Let PXP2 be the linear interval determined by P1 and
P2 and QXQ2 be the linear interval determined by Q1 and Q2. Let the
curve C = f{PyP^. Then there exists a point R in C such that the
tangent line to C at R is parallel to QλQ2.

( e ) With the notation as in (d), let the deviation D(Ply P2) denote
the supremum of the acute angles φ between QXQ2 and any tangent
line to C. Then for every ε > 0, there exists δ > 0 such that if
0 < p(P19 P2) < δ, then D(Pl9 P2) < ε.

( f ) For each ε > 0 there exists δ > 0 such that if Pt and P2

are any two distinct points of E such that p(Pλ, P2) < δ, then ψ < ε,
where ψ is the acute angle between the normals to S at /(Pi) and

(g) If i? is polyhedral, it can be decomposed into a set of n-
hedra each of which is a right %-hedron. Moreover, for each real
number r, there exists a decomposition of E into a set of right n~
hedra, the diameter of each of which is less than r.

We now proceed to the main theory.
We consider infinite sequences of polyhedra inscribed on S. A

sequence (Πl9 Π2, •) of such polyhedra is said to be a proper sequence
if the corresponding sequence (Nlf N2, •••) of norms and the corres-
ponding sequence (φu φ2, •) of deviation norms both converge to zero.

We now give our definition of the area of the surface S = f(E),
where / is continuously partially differentiable on E. If to every
proper sequence (Πu /72, •••) of polyhedra inscribed on S the corres-
ponding sequence (Al9 A2, •••) of the polyhedral areas converges, then
we say that S is quadrable and refer to the necessarily unique limit
of (Au A2, •) as the area of the surface S.

THEOREM 1. Let f(xly x2, •••,#*) be defined and be continuously
partially differentiable on E. Then there exists a proper sequence
(Π^ Π2, •••) of polyhedra inscribed on S.
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Proof. For every positive number r, there exists a decomposition
of E into a finite set of right w-hedra whose diameters are all less
than r. Their vertices determine a finite set of points in S whose
projection is precisely the set of these vertices. This set of points
in S determines a polyhedron Π which is inscribed on S. We show
that by making the norm of the docomposition of E sufficiently small,
we can make the deviation norm of 77 arbitrarily small.

Let ε > 0 be given.
By property (g) there exists a decomposition of E into a set of

right w-hedra the diameter of each of which is arbitrarily small. By
property (c) there exist real numbers k, δl9 k < 1, such that if
PPtP2 Pn is a right w-hedron in E, (with P the right angled
vertex) of diameter < δlf then | cos (QQi, QQό) \ < k for % Φ j , where
Q. — f(p.) and Qj — f{P3). Let the decomposition of E be by right
w-hedra each of diameter less than δt.

By property (a), there exists a positive number θ such that if

sin (QQi, QQi') < θ for each i, then the acute angle between

QQ,x QQ2 x x QQn

and QQ[ x QQ2 x x QQr

n is less than ε/3.
By properties (d) and (e) there exists a positive number δ2 such

that if PP^z Pn is a right %-hedron of diameter less than δ2,
then, for each i, the acute angle between the chord QQi and the
tangent line at Q to the curve in S subtended by QQi is less than θ.
It follows that the acute angle between the normal to the polyhedral
face QQXQ2 Qn and the surface normal at Q is less than e/3.

By property (f) there exists a positive number δz such that if
the diameter of the w-hedron PPX PΛ is less than δ3, then the
angle between the surface normals at any two points of the portion
of S which is subtended by the polyhedral face QQ1 Qn is less
than ε/3.

Let δ be the least of δu δ2, δ3. If D is any decomposition of E
into right w-hedra each of diameter less than S, then if QQt Qn

is any of the polyhedral faces, the supremum of the angles between
the normal to the w-hedron QQ^ Qn and the portion of S which
is subtended by QQi Qn is less than ε.

Thus, corresponding to a sequence (εly ε2, •••) converging to zero,
there exists a sequence of polyhedra with corresponding sequence of
norms converging to zero and also with corresponding sequence of
deviation norms converging to zero.

THEOREM 2. Let f(xly x2, , %n) be defined and continuously
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partially differentiable on E. Then, for every proper sequence
(Πu Π2, •) of n-hedra inscribed on S = f(E), the corresponding
sequence (Al9 A2, •••) of polyhedral areas converges to the multiple
integral

_(1 + z\ + + zlj1'2dxxdx2 ..'dx%.
)E

Proof. For the sake of notations, let zXh denote dz/dxh, h = l, -,n.
For each ra, the projection of Πm constitutes a decomposition Dm of
E into a finite set of w-hedra. Let the w-hedron j m r = QQX Qn be
a face of Πm and let Δf

mr = ProJiQQ, Qn) = PPX P n . Let βmr

be the acute angle between the normals to j m r and to /mr. Let ^4mr

and A'mr denote the respective areas of Δmr and Δ'mr. Then Amr — A!mr

sec/3mr where βmr is the angle between the 2-axis and the normal to
Δmr. The area of Am of Πm is given by Σ 4 ' * r sec /3w r.

Let P m r be any point in Δf

mr and let Qmr be the point of S whose
projection is P m r . Let θmr denote the acute angle between the surface
normal at Qmr and the z-axis.

We associate to the sequence (Πl9 Π2, •) certain related sequences:

π 2, " ' )

The sequence (φl9 φ2, •••) is the corresponding sequence of devia-
tion norms. The sequence (Σ19 Σ2, •••) is the corresponding sequence
of polyhedral areas, Σm = ^jrA

f

mr sec βmτ. In the fourth sequence,
Σ'm = ΣrA'mr sec θmr. Here, sec θmr is the value of (1 + z\ + s£J1/2

at some point of Δ'mr. Thus the sequence (Σ[, Σ2, •) is a sequence
of Riemann sum of the function (1 + z\ + + zlj112 on £* with
corresponding sequence of norms converging to zero. Since

(1 + z\ + + »2 \l/2

is continuous on E, the sequence (Σ[, Σ's, •-•) converges to the mul-
tiple integral

( 1 + z\ + + 4J I / 2 da, dxZ" dxn .

We now consider the sequence (Σ19 Σ2, •••)• Let θ denote the
acute angle between the surface normal at a point in S and the z-
axis. Sec 0 = (l + ^ + . . . + 4J 1/ 2 is bounded on E. Thus there
exists an angle 0* > 0 such that θ < 0* for all points of 1? (i.e., for
all points of S). Since sec# is uniformly continuous on the closed
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interval [Θ, θ*] for every η > 0 there exists τ > 0 such that if
0 < θ1 < θ*, θ < θ2 < θ* and \θί - Θ2\ < τ, then |secθ1 - secΘ2\ < 27,

We now compare the sequences (Σly Σ2, •) and (Σ[, Σ'2, •).
Let ε > 0 be given. Take e/2V where V is the volume (area) of

E. There exists τ > 0 such that if \θ1 - Θ2\ < r, then

sec ^! — sec
2V

Since (^, ̂ 2, •••) converges to zero, there exists a positive integer Nx

such that if m > Nt then ^m < r. Thus if m > JVlf then

| ^ - ^ 1 = I J rX r(sec^ r - secOl < ̂ γΣA^ = «|

Since (I'J, I'J, •••) converges to I , there exists a positive integer

N2 such that if m> N2 then

of N, and JV2. If m > N, then

X - J I < e/2. Let 2̂  be the larger

< I v __ y I
^ I ̂ m ^ m I "

Thus, (ΣUΣ2, •••) converges to ί.
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