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ON L(S)-TUPLES AND /-PAIRS OF MATRICES

THEODORE S. MOTZKIN

In this paper we study L(S)-tuples of matrices, a class of
/v-tuples that includes as special cases the L-pairs studied by
Motzkin and Taussky, and the Z-pairs defined by Taussky for
complex elements and diagonable first matrix. Some light on
these concepts and a few relevant results are produced by
linking them to properties of algebraic hypersurfaces and
especially curves with respect to an exterior point.

1* Characteristic hypersurfaces. Let I (the unit matrix),

Al9 , Ak (k ̂  2) be n by n matrices (n ̂  2) with elements in a
field F of characteristic / and algebraic closure F. Let σQ1 , σk

be the homogeneous coordinates of a variable point (σ0, s) in projec-
tive ^-dimensional space over F.

DEFINITION 1. The characteristic determinant and hypersurface
of the A -tuple Aιf , Ak are defined by D =Ξ D(σ0, s) = \σj — σ^ —
••• - σkAk\ and D = 0.

The point s — 0, called origin, is not on D — 0. Two λxtuples
related by similarity have the same characteristic determinant and
hypersurface. For two linearly independent ά-tuples defining the
same linear family, the characteristic hypersurfaces are protectively
related.

2* Generality of characteristic hypersurfaces* (1) For / = 0,
every curve of degree n not through the origin is characteristic
curve of at least one (almost always of, but for an orthogonal simi-
larity, only one) pair of symmetric matrices with elements in F. For
no k ^ 3 and n ^ 2 does the corresponding assertion hold.

"Almost always," as in the sequel, means that all exceptions, if
any, fulfill some nonidentical polynomial relation between their defining
constants.

The first part of (1) follows from a result of Grace [4] (Dixon [5],
credited with the proof by Room [6, pp. 126-127], admits that one
case escapes him). The second part follows from a simple count of

constants, viz. (n j~ j — 1 for hypersurfaces vs. n 4- k(n ~Z ) f°

orthogonally similar ^-tuples,

(2) For / = 0, every quadric and cubic surface not through the
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origin is characteristic surface of at least one (almost always of, up
to a similarity, only one) triple of matrices with elements in F. For
no values k — 3, n ^ 4 and no k ^ 4, n ^ 2 does the corresponding
assertion hold.

For statements equivalent to the first part cf. [6, p. XXI] Lasker
[7, p. 439] and Wakeford [8, p. 409]. For the second part the count
of constants rests on their number for nonsimilar ^-tuples, which is
1 + (k - l)n2 for k ^ 2.

3* L(S)-tuples* DEFINITION 2. For a λxtuple A19 , Ak and
prescribed s = (σ19 , σk), the roots of sA = σ^ + + okAk are
defined as the points (σo,σlf * ,σk) for which D = 0.

Let S be a set of points s = (σlf , σk) in protective (k—l)-space
So over F. The space So will be thought of as the hyperplane at
infinity σQ = 0 of Λ -space. If s* is the straight line connecting the
point (0, s) and the origin (1, 0) then the roots of sAy counted with
the proper multiplicities as points of intersection of D = 0 and s*,
form a set D8 of n points.

DEFINITION 3. The Axtuple (Aί9 , Ak) is said to be L(S) (or an
L(S)-k-tuple or L(*S)-tuple, or to have property L(S), or to split
linearly over S) if there exist λu, , Xkn in F, such that, identically
in σ0, D = lx ln for all (σlf , σk) in S, with ^ = σ0 — λnOΊ —
• — Xkισk, , ln = σ0 — λ ^ — . . . — λj.Λ<7|..

This expresses a property of the characteristic hypersurface with
respect to the origin: the roots D8, for s in S, lie on n hyperplanes
lγ = 0, •• , ln = 0 that do not pass through the origin, and v-fold
roots lie on v of these hyperplanes.

As an example, let k = 2, i lf , ln and a set S consisting of n
points given, with S* = 0 the product of the equations of the n lines
s* Then any matrix pair having αS* + /9?i ln = 0 (α, /3 ̂  0, 0)
as characteristic curve is LOS).

4* Special sets £• For S = So, property L(S) does not involve
the origin and amounts to demanding that the characteristic hyper-
surface D = 0 split into n, not necessarily distinct, hyperplanes lλ = 0,
Zn = 0. This is exactly property L of [1], geometrically characterized
in [2], in its obvious generalization from k = 2 to general A ̂  2:

(3) L(S0)=L.
At the other extreme we have:

(4) If the points of S are linearly independent then every A-tuple



ON L(S)-TUPLES AND J-PAIRS OF MATRICES 641

of matrices is L(S).

In fact, in whichever way we partition the points Ds> s in S, into
n sets D19 , Dn each having exactly one point on each line s*, there
exists at least one hyperplane through all points of each set.

5* Unindependent S. The next smallest sets S are the uninde-
pendent sets:

DEFINITION 4. A set of points is called unindependent if there is,
except for a factor, exactly one linear relation, with coefficients not all
zero, between its points.

( 5 ) If the points s19 , sr (r ^ 2) are linearly independent and
span the projective (r — l)-space SL then either (A19 •••, Ak) is L ^ )
or there exist at most (n — r)(nr — 1) points s0 such that S = (s0, s19

• , sr) is unindependent and that (A19 , Ak) is L(S).

Indeed suppose that (A19 , Ak) is not L(S^ and therefore r <L n,
and that exactly nγ among the at most nr projective (r — l)-spaces
connecting points of D = 0 corresponding to sί9 , sr belong to D — O
Then to each sQ there corresponds at least one point of D = 0 on one
of the nr — nx other (r — l)-spaces, while each of the latter contains
at most n — r points of D = 0 that do not correspond to sif , sr.
Hence there exist at most (n — r){nr — n^ points sQ; but for %ι — 0
each s0 consumes even n of the (r — l)-spaces.

From (5) follows:
(6) For n = 2 an L(S)-tuple is also L(SX), where SΣ is the linear

space spanned by S.
Thus, for n = 2, no property L(S) essentially different from L

(for a linear subfamily) exists.

6. L(S) for infinitely many S. No s0 as in (5) need exist for
any slf •••,«,. (see (16). On the other hand:

( 7 ) If D — σ^ is free of λ then an s0 exists for almost all

This follows from:

(8) If D — σX is free of σ0 then, for arbitrarily prescribed
λ l f , λ4 in F, (Alf , A*) is L(S) where S is the set of all points
s for which D(\σ1 + + λ^σ ,̂ s) = 0.

Indeed, for s in S, we have Z) = (λ — ε^a^ + + akμk))
(λ - εja^ + + akμk)), with Xn - 1 = (λ - ελ) (λ - εn).
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The linear families with σo-free D — σ% are those contained in
the locus: \σj— A\ — σ% free of σQ. The number of ensuing condi-
tions leaves n2 — n + 1 degrees of freedom for Ax (for / = 0, A1 is,
but for a scalar factor, similar to a diagonal matrix with the

roots of unity in the diagonal), at least ( o ) for A29 2 — 1 for AZ9

\ Δ J
so that such families, with linearly independent A19 , Ak9 exist for
every n Ξ> 2 and k — 2 or 3. For A4 the number of degrees of freedom
is, for n — 5, β, , at least 3,1, , which leaves the existence of
an A4 independent of A19 A2, A3 in doubt; but for n = 3 and n = 4,
their number is 4, so that such families exist also for k = 4 and n = 3
or 4. For A5 and w = 4 the number is 1, so that an independent A5

may not exist; for Ah and w = 3 it is 3, and since the conditions for
n = 3 are all but one linear and easily seen to be independent, n — 3
and k = 5 is impossible. For n = 2 the matrices A such that
(\σj — A\ — (7?) is free of σ0 are those of trace 0 and form a linear
family with k — 3.

Note that (A19 ,Ak) is not L for cτo-free D — σt except if
D — OQ is an πth power. In this case the number of degrees of
freedom becomes at least 1 + (n/2) for A2 and 1 for A3 For n = 2
these are the same as before, in harmony with (6). But e.g., for
n =• 3, k = 2, / = 0, a pair not L but in infinitely many ways L(S)

is given by A1 = 0
0
ε
0

0
0
ε2

, A 2 —

0
0
1

0
0

- 1

1
1
0

where 1 + ε + ε2 = 0.

The characteristic curves of such pairs are also mentioned in the
proof of (15).

7* L(S)-pairs. Evidently:
(9) For ft = 2 and infinite S, L(S) = L.
This follows also from (6) or (10),
For k — 2 and finite sets S we consider also sets S with finite

multiplicities attached to their points. We write A, B, \, , λΛ,
μ19 , μn for A19 A29 λn, , Xln9 λ2l, , λ2%.

DEFINITION 5. The pair (A, B) is said to be L(S) if there exist
\i i λw, /Λ, , μn in JP such that, identically in σ09 D = (σ0 ~
Xiσί — μ1σ2) (σ0 — \nσι — μnσ

2) for all (σ19 σ2) in S, wi th corres-

ponding identities derived by differentiation up to p — 1 times along
the branches of D = 0 for each p-fold point of S.

That is, the w straight lines are required not only to pass
(severally when needed) through the points (σ0, σl9 σ2) of D = 0 with
(<7lf σ2) in S9 but for /> > 1 to have (p — l)-order contact with the
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branches at these points. Then:

(10) If the sum r of multiplicities of points of S surpasses
n, L(S) = L.

Indeed, each of the n straight lines has (taking account of
multiplicities) more than n points in common with D = 0 and thus
is part of D = 0.

8* ^pairs* DEFINITION 6. Property I is defined as L(S), S =
((1,0), (1,0), (0,1)).

From (10) follows (extending the corresponding result in [2,
Theorem 3] and strengthening (6)):

(11) For n = 2,1 = L.
For n *> 3, (A, B) can be I without (B, A) being I; but even if

both are Z-pairs, (A, B) need not be L. Such double-ί-not-L pairs
exist already for n = 3; the three roots Dlt0 of A (i.e., the points
D = 0, σ2 = 0) and those Do>1 of j? are connected by six tangents at
the roots. For n ^ 4 there can be n,n + l, ,2n connecting
tangents.

The coefficients of σ^1 in Z) and in l19 ln are linear and
thus coincide identically if they coincide for two values of σ2/σlf or
for one value and the derivative there. Hence we obtain:

(12) If n — 1 branch tangents to the characteristic curve D = 0
of the pencil σλA + σ2B at the roots of A pass through the roots of
B (but for one root, as often as the multiplicity of the roots of B
indicates) then (A, B) is I.

9. The t-pairs in a pencil. Every pair (ΊXA, Ύ2A) is trivially L
and a fortiori L For n — 2 a pencil σγA + σ2B, where (Af B) is not
L, cannot contain any Ppair except these trivial (linearly dependent)
pairs; for n ^ 4 it need not, though as we shall see (15) this is for
n = 3 and / = 0 still an exceptional case.

On the other hand, for (A, B) not L, the pencil cannot contain
more than n — 2 nontrivial i-pairs with given first matrix. Even so:

(13) If D — σ% is free of σ0 then the pencil contains infinitely
many nontrivial Z-pairs.

The proof is analogous to that of (7).

10* Characteristic cubics* Obviously:
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(14) For n — 3 and reducible D = 0, no or all nontrivial pairs in a
pencil are I according as its characteristic cubic splits into a conic and
a line or into three (not necessarily distinct) lines.

In the next result "almost always" means "except possibly for
values of the coefficients satisfying an additional polynomial relation,"
For such values the number of pairs could conceivably be infinity,
by indeterminacy, smaller than indicated, by coincidence of pairs,
and even 0, by coincidence of elements of a pair. (We are careful
not to use nonhomogeneous formulas.)

(15) For n = 3 and / = 0, a pencil whose characteristic cubic is
of class 3,4, or 6, contains almost always 1,2, or 4 ϊ-pairs.

"Almost always" refers equivalently to cubics or pencils; this
follows without difficulty from (1).

First consider a cubic of class 3; after a protective transforma-
tion it can be parametrically represented by (1, τ, τ3). Three distinct
points τ19 τ2, r3 on it are collinear if and only if

1 τ.

1 τ,

2 /(r2 - rO(r3 - τ1){τz - τ2) = τγ + τ2 + τ3 = 0.

The coordinates 70, 7i, 72 of the line c joining them are — τ1τ2τ3, τ1τ2 +
τττ3 + τ 2 τ 3 ,1 . The tangents at the three points meet the cubic in
— 2τ19 — 2τ2, —2τ3J points on cr = ( —8Ύ0, 4τ1? 72). If both lines c and cf

are to pass through a given point d = (δ0, 3X, 82) then c is uniquely
determined if ^ A ^ 0 ; if one of δ0, δlf 32 is 0 no c with c' Φ c
exists; if two are 0 each line through d, with two exceptions, will do
(special case of (13)). In the application to pencils of matrices d is
given by ax = 0, σ2 = 0 and can be any point outside the cubic.

For the cubic ( I , τ 2 , τ 3 + τ), of class 4, the collinear it y condition
is τ{c2 + τ{rz + r2τ3 = 1. Here 70, 7U 72 are —τ1τ2τ3y — τγ — τ2 — τ 3 , 1 .
The tangents meet the cubic in 1/2(1/^ — τx), l/2(l/τ2 —τ2), l/2(l/τ3 —τ3),
points on c' = ((70 + 7X)

2 - Ay2

2J 4(72 - ΎoΎi), 87072). This gives two c
for general d.

For a cubic (Vo(τ)iVι(T)>V2(τ)) o f c l a s s 6^ where rjQίηι,η2 are
elliptic functions of periods π1 and TΓ2, collinearity is expressed by
τλ + τ2 + τs = 0 (modπ^ τr2). The tangents meet the cubic in —2τ19

— 2r2, — 2r3. Hence every c' belongs to 16 lines

c = (τ1 + i/r,, τ2 + ψ2, r3 + π/r3) ,

where ^ 3 = —ψ1 — ψ2 and 2ψ, = 0, 2^2 Ξ 0. Since no c' belongs to
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infinitely many c the polynomials expressing & in terms of c must be
of degree 4.

Another proof uses the Chasles correspondence principle.

l l NoL-pencils* DEFINITION 6. A pencil σxA + σ2B is called
no-L if there is no 3-point S for which (A, B) is L(S).

This excludes trivial sets S (with at most two points) and trivial
pencils (generated by a trivial pair). Property L(S) for any S with
more than three (not necessarily distinct) points implies L(S') for
every 3-point subset S'.

(16) Almost all pencils are no-L for n — 2 and n ^ 5, but not
for n — 3 and n — 4.

Indeed, for given A and B, choose two values of (σ19 σ2). There
are then, for irreducible characteristic curve and n ^ 3, finitely many
candidates for a third point of s. By (12), n — 2 conditions have to
be fullfilled to ensure L(S)-ness. This is, if and only if n ^ 5, too
much for an appropriate choice of the first two points.

Pencils with a characteristic curve consisting of a conic and
% — 2 straight lines are always no-L. Whether other no-L pencils
exist for n = 3 and n = 4 remains open.

For n ^ 7 almost all pencils are no-L with respect to every point
outside the characteristic curve.
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