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ON A QUESTION OF TARSKI AND A MAXIMAL
THEOREM OF KUREPA

J. D. HALPERN

Let PI be the statement, ‘“Every Boolean algebra has a
prime ideal.”’; let SPI be the statement, ‘“‘Every infinite set
algebra has a nonprincipal prime ideal.”’; let K be the state-
ment, ‘“Every family of sets includes a maximal subfamily of
pairwise incomparable (by the inclusion relation) sets.”. A
model is exhibited of set theory without regularity in which
SPI and K hold, PI fails. Furthermore all finitary versions
of the axiom of choice fail in this model and the model con-
tains a set which is infinite Dedekind finite in the sense of
the model. A proof is given that the local version of SPI
implies the axiom of choice for families of finite sets in ZF.

1. Introduction and statement of results. Before 1963, the
only method available for constructing interesting models of Zermelo-
Fraenkel set theory, (ZF'), was the Fraenkel-Mostowski-Specker method
which produced models in which the axiom of regularity failed. In
1963, Cohen presented his method for producing models in which
regularity holds. Questions concerning the axiom of choice, (AC), can
be considered in both types of models, unlike questions such as the
continuum hypothesis which are only interesting in Cohen models.
Although an independence result established by the Cohen method is
stronger than the same result established by the FMS method, this
latter method remains of interest for a number of reasons as Lévy
points out in [2]. Two such reasons are as follows: (1) There are
independence results which hold in set theory without regularity
but do not hold in set theory with regularity. (2) The proof of a
given independence may be more easily established by means of an
FMS model. Such a proof may in turn give a clue to the stronger
result. In this connection David Pincus has recently indicated a
method of converting FMS models to Cohen models which gives the
stronger result in many cases. In this paper we will give an example
of each eventuality mentioned above. Consider the following maximal
principles:

PI. Every Boolean algebra has a prime ideal.

SPI. Every infinite set algebra has a nonprincipal prime ideal.

K. (Kurepa’s principle). Every family of sets includes a maximal
subfamily of pairwise incomparable sets. (Two sets are comparable
if one is a subset of the other.)

We shall exhibit an FMS model in which K holds but C, (the
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axiom of choice restricted to families whose elements are pairs) does
not. On the other hand, Ulrich Felgner, [1], has shown that K,
(actually, an equivalent of K called Anti K) together with regularity
implies AC. Hence we have an example of (1) above. In pre-Cohen
days, some logicians felt that AC might be indeed a consequence of
regularity. As we see now, this feeling was incorrect as stated, but
not so far off as one might think, since K is a very weak maximal
principal by one scale (in the absence of regularity it doesn’t imply
C, or for that matter C, for any natural number n). Also it does not
exclude the existence of infinite Dedekind finite sets.

SPI also holds in the above model. Since PI — C, we obtain the
independence result SPI - PI in the absence of regularity, thus ans-
wering a question of Tarski, [7]. However using a method of David
Pincus we are able to obtain a Cohen model in which SPI - PI, thus
answering Tarski’s question in full. This stronger result will appear
in a subsequent paper. Although the original FMS proof of this
result did give a clue to the proof of the stronger result, natural
ways of converting it to a Cohen model proof did not work. New
insight was required which gives rise to anew and conceptually more
simple FMS proof. We shall also sketch this new FMS proof.

In §3 we prove, using the axiom of regularity, that what Felgner
[1] would call the local version of SPI (actually we state an apparently
weaker principle) implies the axiom of choice for families of finite
sets. SPI-local and our version are as follows:

DEFINITION. A set X is surveyable if there is a choice function
on P, (X). (P.,(X) is the set of finite subsets of X and a choice
function for any set Y is a function which assigns to every nonempty
ye Y, a member of y.)

Surveyable is a condition analogous to orderable and wellorderable.
Clearly well-orderable — orderable — surveyable. Well known results
of Mostowski and Lauchli establish that the converses are each false.

SPI-local: For any family of infinite sets there is a function
which maps each member, Y, of the family to a nonprincipal pri-
me ideal in P(Y). (P(Y) is the power set of Y.)

SPI-ls: (I is for “local” and s is for “surveyable”.) The same
as SPI-local except that “infinite” is replaced by “infinite and sur-
veyable”.

One reason for the interest in SPI is the result of Dana Scott
(see [7]) that SPI* — PI where SPI* is “Any proper ideal in a set
algebra is included in a prime ideal.” Note that SPI is equivalent
to: “The ideal of all finite sets in any infinite set algebra is included
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in a prime ideal.” It is known that PI-local and hence SPI*-local is
equivalent to PI. Our results show that SPI-local is not equivalent
to SPI and leave open the question: “Does SPI-local imply PI?™

An earlier version of this paper contained the claim that SPI-
local is true in the model M of §2. We are indebted to Paul Howard
for pointing out this error and for other comments which led to the
investigations concerning SPI-Is.

2. The Fraenkel-Mostowski model, M. Let & denote the set
theory whose axioms are those of ZF' with regularity and AC excluded.?
A transitive model of % or any subtheory of & is a model whose
universe is a transitive set and whose membership relation is the
usual membership relation restricted to its universe. We will identify
a transitive model with its universe. An element in the universe of
the model will be called a set of the model. A supercomplete transi-
tive model is a transitive model satisfying the property that any subset
of an element of the model is also an element of the model i.e. z¢
M — Px) & M. Existence of a supercomplete model of & + AC is
implied by the existence of a strongly inaccessible cardinal. We start
with a supercomplete transitive model M, of &% -+ AC which has an
element S such that:

(1) Every element of S is reflexive (v is reflexive if © = {x}).

(2) Any nonempty set x of M, contains an element y such that
yNae=0or yNaxesS.

(3) S is denumerably infinite.?

Let R be the inductively defined function on the ordinals in M,, such
that

R(0) =S

R(B) = Ui<s P(R(\)) (P denotes the power set).

From the assumptions on M,, one easily shows that any set of M, is a
member of R(B) for some ordinal g in M,. Let G be the group of all
automorphisms of M,, i.e. G consists of all permutations ¢ of M, such
that x ¢y — é(x) ¢ ¢(y) for any =, ¥ in M,. Using the above characteri-
zation of M, one easily verifies that any permutation ¢ of S induces a

! We are indebted to the referee for suggesting that these remarks, and some
others, be included in the paper.

2 We assume that our underlying (intuitive) universe of sets satisfies the axioms
of F'+ AC and, furthermore, that there exists an infinite set of reflexive sets (x is
reflexive if x = {#}.) These assumptions make for a neater presentation but they are
not necessary to achieve our independence results. The ideas presented here can be
converted, easily, to the usual finitary proofs of relative consistency or to model theo-
retic proofs in the framework of the more familiar intuitive set theory where all sets
are regular. Such conversion would use the results of [6].

3 (Given our intuitive assumptions the existence of M; is also a consequence of the
existence of a strongly inaccessible cardinal.
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unique automorphism of M, coinciding with ¢ on S.

Let the variable e with or without subscripts range over finite
subsets of S. Let Gle] = {¢ € G: ¢ leaves e pointwise fixed}. If ¢(x) =
x for all ¢ e Gle], we say that x is e-symmetric and e is a support of x.
x is finitely symmetric if it is e-symmetric for some e. Let M = {x ¢
M,: x and every member of the transitive closure of x is finitely sym-
metric}. M is obviously a transitive set. Furthermore one can use
the arguments in [4] to show that M is a model of & ; hence M is

a transitive model of F. It is easy to verify that S is a Dedekind
finite set in M.

The following facts about M will prove useful:

1. If z is finitely symmetric and » & M then ze M.

2. If x is finite and «* & M then xze M.

3. M is closed under G. G is a group of automorphisms of M.
If f is an m-ary operation on M definable in the theory .&# then

¢(f(xu MR xn)) = f(¢xu MY ¢xn) all ¢EG7 Ly ooy mneM'

4. If xe M, and the transitive closure of x has empty intersection
with S then ze M. In particular all constructible sets in M, are in M.

We will call the definition of a predicate or operation absolute if
given any transitive model and sequence of elements in the model,
the definition is satisfied by the sequence in the model if and only if
it is satisfied by the sequence in the universe. A predicate or func-
tion will be called absolute if its usual definition is absolute. This
notion of absolute is intended to be the semantic analogue of the notion
given in [5] Pg.265. The notions probably differ but the difference will
not appear in this paper or in any of the existing work on models of
set theory. In particular most of the definitions in the development
of general set theory are absolute (in both senses). The power set
operation is a notable exception. For a list more than sufficient for
this paper, see [5] Pgs. 267-269. In addition we note that P,x =

Prx N M for xe M. (Where P, denotes the power set operation in the
model M.)

Using these remarks it is not difficult to show that the truth of
SPI in M is equivalent to:

SPI,: If Xe M is an infinite set, there is a subset I of PX with
the following properties

(0) IeM.

(i) I contains as members all finite subsets of X.

(ii) I is closed under finite union.

(iii) For every ye PyX,yel —- X —yeI.
The truth of K in M is equivalent to:

K,: If Fe M, there is a maximal set among those sets y & F
with the properties
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(0) M(y)

(i) Members of y are pairwise incomparable.
The falsity of C, in M is equivalent to (—C,),: There exists ye M,
whose elements are disjoint n-sets and there is no Ze M whose in-
tersection with each element of Y is a singleten. We proceed to prove

SPI]IH KM) (“Cn).u-

LEMMA 1. Gle, N e)] is the smallest subgroup of G including Gle,] U
Gle.].

Proof. Clearly Gle], Gle] are both included in Gle,Ne)]. It
remains to prove that Gle, N e,] is included in any subgroup which
includes Gle,] U Gle.]. Let ¢ Gle, Ne,]. Lete — e = {a, ---, a,} and
let ¢, ---, ¢, be distinct elements not in e, Ug¢"(e) Ue,. Let ¢, G
such that ¢, permutes a; with ¢; for © < k£ and is constant elsewhere
on S. Then ¢, € Gle,]. Lete, —e, = {b, -+, b,}. Since 3,67(b;) € ¢, and
b;¢e for i < p, there is ¢,€ G such that ¢,(b;) = ¢,67'(b;) for i < p
and ¢, € Gle]. Let ¢; = ¢47'd.. Then ¢,(b;) = 967'6:(b;) = 667 '6,67"(b;) =
b;.. Also ¢,€ Gle,Ne]. Thus ¢;€ Gle,]. But ¢ = ¢;:9,'¢,, thus ¢ is any
subgroup including Gle,] U Gle,].

COROLLARY 2. The intersection over the set of supports of a set x
18 a support of x.

Proof. Since supports are finite, the given intersection is also the
intersection over some finite nonempty subset of the set of supports.
It follows from Lemma 1 that the intersection of two supports of
is again a support of x since any element in the subgroup generated
by Gle.] U G[e,] can be represented as the composition of a finite number
of automorphisms each of which pointwise fixes e, or e, and hence
fixes . With a trivial induction one obtains the same result for any

finite number of supports.

DEFINITION. We call the smallest support of x, the support of
2 and denote it by F(x).

LEMMA 3. If ¢, v € G and ¢|F(x) = | F(x) then ¢(x) = r(x).

Proof. By hypothesis ¢!+ fixes F(x) and hence ¢~ 'yr(x) = x, i.e.
p(@) = é(x).

LEMMA 4. If ¢€ G and ¢(x) = x, then ¢(F(x)) = F(x).

Proof. Let «r be any automorphism pointwise fixing ¢(F'(x)). Then
vé(x) = ¢(v) = « by Lemma 3 and the second assumption. Thus ¢(F(x))
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is a support of x and hence F(x) & ¢(F(x)). Since F(x) is finite this
can only happen if ¢(F(x)) = F(x).

Note. ¢ need not pointwise fix F(x).
LEMMA 5. If ¢€ @G, then ¢(F(x)) = F(p{(x)).

Proof. First we note that if - pointwise fixes ¢(F'(x)) then y¢(x) =
#(x) by Lemma 3. Hence ¢(F(x)) 2 F(s(x)). Since this inclusion holds
for all # and ¢ we have ¢ 'F(4(x)) =2 F(x) i.e., F(¢(x)) 2 ¢(F(x)) which
completes the proof.

In preparation for the proof of SPI,, let us consider a fixed
infinite set X of M. For each ye X, let

fly) = Fly) — F(X)
T(y) = {z: 3g[p € GIF(X)] A ¢(y) = 21} -

T(y) is the transitivity class of y under G[F(X)]. Using Lemma 5
one easily shows

(1) ¢ € GIF(X)| —¢(f(v) = f($) .

The following fact is the basic idea for the proof of SPI,.

(2) Let ye X and |T(y)| > 1.
Let Q(w) — 34, finite vz[ze T(y) N w— AN f(2) #= 0].
If we P,(X), then exactly one of Q(w), QX — w) hold.

Proof. Suppose neither hold. Then we obtain ze€ T(y) N w, t€
T(y) N (X — w) such that f(&) N F(w) = fE)NF(w) =0. Since z,te
T(y), there exists ¢ € G[F(X)] such that ¢(z) = ¢. Since f(2), f(t) are
disjoint from F(X), there exists € G[F(X)] N G[F(w)] such that
¥| f(2) = ¢|f(z). By Lemma 3 we have (z) = #(2) = t. Since + point-
wise fixes F(w), we conclude ¢€ w which is a contradiction.

Suppose both @(w) and Q(X — w) hold. Let A, A, be the finite
sets whose existence is asserted by Q(w) and Q(X — w) respectively.
Let ¢ € G[F(X)] map f(y) onto S — (4, U 4,). Since ¢(f () = f(4(¥)) by
(1), we have f(4(y) N (A,UA,) =0. Butg(y)e T(y)NX = (T(y) N w) U
(T(y) N (X — w)) is a contradiction. This completes the proof of (2).

Proof of SPI,,. We consider two cases:

Case 1. There exists y,€ X such that T(y,) is infinite.
Case 2. T(y) is finite for every ye X.
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For Case 1 we use (2) to obtain the desired result. No maximal
principle is used here. For Case 2 the result follows directly from
the fact that SPI is true in M,.

Proof of Case 1. Let I consist of all we P,(X) such that Q(w).
We first show that I is closed under G[F(X)]. If ¢ G[F(X)] and we
I, then é(w) S X since ¢ is an automorphism neutral on X and é(w) €
M since M is closed under G. Furthermore ¢(T(y,) Nw) = T(y,) N $(w)
since T(y,) is closed under G[F(X)] and ¢ is an automorphism. Since
Q(w) holds we have an A such that

zeTy)Nw— AN f() 0.

Thus ¢(z) € T(y,) N ¢(w) — #(A) N f($(2)) = 0, using the automorphism
property of ¢ and (1). But any element of T(y) N é(w) is é(z) for
some z€ T(y) Nw. Thus ¢(w) € I and I is closed under G[F(X)|. Hence
I is finitely symmetric and since I & M we have

(0) IeM.

If w is finite and w & X, then we M. Also Q(w) because U{f(2): z€
w} is the required finite A. Thus

(i) I contains as members all finite subsets of X.
If w,zel, then wUze Py(X) and the required A to establish Q(w U z)
is just the union of the two sets which establish Q(w), Q(z) respec-
tively. Thus,

(ii) I is closed under finite union. We obtain directly from (2)
that

(i) for every ye PyX, yeI— X — y¢I. This completes the
proof of case 1.

Case 2. Suppose T(y) is finite for every y€ X. Then F(y) < F(X).
For suppose on the contrary that there exists a € F(y) — F(X). Then
for each be S — F(X) there exists ¢ € G [F(X)] such that ¢(a) = b. From
this fact and Lemma 4 one easily concludes the contradiction that
T(y) is infinite, Thus F(y) & F(X). From the definition of T{y) we
see that actually T(y) contains only the element y. However the
important point is that there is a support which supports every element
of X. This is a very strong condition on X. In particular it implies
that any subset of P(X) belongs to M. With the aid of SPI, we
obtain a nonprincipal prime ideal I, in the algebra of sets PX. By
the previous remarks I< M.

Proof of Ky. Let Xe M. Then the set Z={Y: YES XA Ye
M A members of Y are pairwise incomparable A F(Y) & F(X)} has a
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maximal element: Using the fact that every element of Z is supported
by F(X) we establish that the union over a chain in Z is a member
of Z. Z is nonempty since 0€ Z. With the aid of Zorn’s form of
AC, we conclude that Z has a maximal element Y..

We proceed to show that Y, is the desired maximal set. Suppose
not. Then there exists ye X — Y, such that Y,U {y} consists of
incomparable sets. Let Y, = Y, U {¢(»): ¢ € G[F(X)]}. Then since Y, &
Y€ X and Y,e M and F(Y,) € F(X) and Y, is maximal in Z, we
conclude that Y, includes two comparable elements. We have two
cases.

Case 1. There is z€ Y, and ¢€ G[F(X)] such that z & ¢(y) or
$(y) S 2.

Case 2. There are ¢, ¢,€ G[F(X)] such that ¢,(y) # ¢.(y) and
$.(y) S $:(y).

If Case 1 holds we have ¢7'(2) S y or ¥y & ¢7}(2). Since ¢7'(z) € Yy,
this contradicts Y, U {y} consists of incomparable sets.

If Case 2 holds, we have y & ¢(y) and y # ¢é(y) for ¢ = ¢;'¢,. Let

A ={we Fy): In[n > 0 A ¢™(w) = w]}
A, = {zeS: Iwan|we A,, A ¢"(w) = 2]} .

A, is finite since A, is finite and every element of A4, has only finitely
many images under successive iteration of ¢. Also A4, is closed under
¢. Thus ¢|A, generates a cyclic group which is a group of permuta-
tions of a finite set, and thus has finite order say =,.

If ze F(y) — A,, there is a natural number n,, such that if m > n,,
¢™(z) € F(y). This assertion follows from the finiteness of F(y) and
the fact that for each n > 0, ¢"(z) = 2.

Let m = the first multiple of n, greater than max{n,: z€ F(y) —
A}, Then ¢™(w) = w if we A, and, hence, if we A,. Also, ¢™(2) ¢
F(y) if ze F(y) — A,. Thus if z€ F(y) N {$™(w): we F(y)} then ¢™(z) =
2. Hence there is a permutation  of S such that

(@) V(@) = ¢™(z) for z¢ F(y)

() v (¢™(2)) =z for z€ F(y).

From (a) we obtain

() Y(y) = ¢™(y) since g™ is the identity on F(y). From (b)
we obtain

@) vo"(y) = y.

By hypothesis ¥ < ¢(y) and since ¢ is an automorphism we have
€ ySo - S ™).

Thus by (¢), y = v(y). But (e) also yields () S v¢"(y). Applying
(d), we have y(y) S y. Thus y = v(y). From (c) we deduce y = ¢™(y).
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But this together with (e) yields the contradiction y = ¢(y).

Proof of (—C,)y for n > 0:

Let Y = {{(X, »): 2e X}: XS SA | X| =n}. YeMsince M is a model
of & and the relations and operations used in its definition are absolute
and the fact that x finite and * S ye M= xc M. Also Y consists
of disjoint sets of cardinality #. Suppose Z is a choice set for Y and
Ze M. Since S is infinite and F/(Z) is finite we can find X & S, | X| =
n, and XN Z = 0. Let ¢c G[F(Z)] such that ¢(X) = X and ¢(x) = »
all xe X. Then if (X, x)e Z, (X, ¢(x)) € Z and x = ¢(x), contradicting
Z is a choice set for Y.

The new proof of SPI -+ PI to which allusion was made in the
introduction comes about as follows:

(1) It is easy to verify that if for every countably infinite Y,
P(Y) has a nonprinciple prime ideal then for every Dedekind infinite
X, P(X) has a nonprincipal prime ideal. (If X is Dedekind infinite
and Y S X is countably infinite and I is a nonprincipal prime ideal
in P(Y) then {Z: Z= X & ZN YeI} is a nonprincipal prime ideal in
P(X).)

(2) If M is any FMS model and Y€ M and Y is well-orderable
within M (i.e. in the M-sense) then P,(Y) = P(Y) and P,P,(Y) =
P(P(Y)).

Since we assume AC holds in the universe it follows from (1) &
(2) that if M is an FMS model in which every nonfinite set of the
model is Dedekind infinite in the M-sense then SPI holds in the model.
In [3] Azriel Levy considers a whole class of such models. It is easy
to verify that C, fails in these models. Hence any one of these models
establishes our independence SPI - PI.*

Actually this argument establishes the independence (SPI &
[Dedekind infinite = infinite] - C,). In light of this argument the
following stronger version of the original result is interesting: (SPI -~
[infinite = Dedekind infinite] or C,).*

3. SPI-ls—C_,.

Let P(X) denote the power set of X. Let P,(X) denote the set
of all n element subsets of X, for any natural number =, and let
P_.(X) denote the set of all finite subsets of X. We prove the follow-
ing theorem which is apparently stronger than the title of this section
since it omits the “nonprinciple”.

4 The referee has informed us that this proof was discovered independently by
Norman Noble.
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THEOREM. If for every set X there is a fumction which assigns
to every infinite surveyable set Y = X a prime ideal in P(Y), then
for every set X there is a choice function for P, (X).

A function such as the one hypothesized for X in the theorem
will be called a PI function for X. A disjointed set is one whose
elements are pairwise disjoint.

LEMMA 1. Given f a choice function on P..(X) and g, a PI
function for X, one can define a choice function h on the set of finite
disjointed subsets of P(X).

Proof. Let Y be a finite disjointed subset of P(X).

Case 1. U Y is finite. Then U Ye P_,(X). Since Y is disjointed
we can define 2(Y) = unique y€ Y such that f(U Y)ey.

Case 2. UY is infinite. Then there is exactly one ye Y such
that y¢ g(UY). Define A(Y) to be this unique y.

LEMMA 2. Given h a choice function on the set of finite disjointed
subsets of P(X) one can define a choice function k on P_,(P(X)).

Proof. We shall define k¥ on P,(P(X)) by recursion on n. For
w € P,(P(x)) we define k(w) = h(u). Suppose n >1 and ue€ P, (P(X)).
Let w = {z: 2z is an atom in the subalgebra of P(X) generated by
UNZ#= NUA2#0A2%= N{X—2: cxcu}}. w is a finite disjointed sub-
set of P(X) and since |#| > 1, w is nonempty. Let u, = {xeu: f(w) S
x}, u, = 0 since f(w)€ w and thus is included in some element of u.
|u,| < n since f(w)ew and thus is included in the complement of
some element in « and thus (since f(w) %= 0) f(w) is not included in
this element of u. So we can define k(u) = k(u,).

Proof of the theorem. Let T be the 1-place term of Zermelo Fraenkel
set theory defined by ordinal recursion as follows:

(@) = P(Us< 7(B) -

It follows from the axiom of regularity that v « 3 a[z S t(@)]. We
shall prove the theorem by showing that for each ordinal « there is
a function g such that for all < a, g(B) is a choice function on P.,(z(3)).
We define g by ordinal recursion up to a. Let f be a PI function for
7(a). Suppose, for each v < g, g(7v) is a choice function on P_,(z(7))
such that g(v)) E 9(7.) if 7. < 7.. Then U,<:9(7) is a choice function on
P, (U,<st(7). Since g < a, U,«7(7) & t(a). Hence fis a PI function
for U,<s7(v). Applications of Lemmas 1 and 2 allow us to define a
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choice function on P_,(z(B8)). Call this function ¢’. In order to satisfy
the recursion condition we define

9(8) = @1P<(e(8) — U PeucON) UU 007 .
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