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LACUNARITY FOR COMPACT GROUPS. 1L
RoOBERT E. EDWARDS, EDWIN HEWITT AND KENNETH A. ROSs

Let G be a compact Abelian group with character group
X. A standard characterization of Sidonicity of a subset P of
X is given by the statement: if f<C(G) and the Fourier
transform f vanishes on X\P, then >\ycx If(x)i < oo, In this
paper, we show that the characterization remains intact if
C(G) is replaced by any one of a large class of smaller func-
tion spaces on G. Extensions to compact non-Abelian groups
are also given.

1. Introduction and notation. Throughout §§1-3, let G denote
a compact Abelian group with character group X [we take all topo-
logical groups to be Hausdorff]. For any subset P of X and any sub-
set E of LYG), we will write E, for the set of all f in E such that
Fo) = 0 for y € X\P. The space of functions in L'(G) with absolutely
convergent Fourier series will be denoted by A(G).

A subset P of X is said to be a Sidon set if C»(G) < A(G). The
purpose of this paper is to describe a class of proper subsets E of
C(G) having the property that the inclusion

(1) Er C A(G)
implies [and is therefore equivalent to] the assertion
(2) P is Sidon .

It is well known ([4], (87.2)) that (2) implies [and is therefore equiva-
lent to] the inclusion
L3(G) < AG) .

However, for E & C(G), the equivalence of (1) and (2) does not appear
to have been previously studied.
We now list some examples of sets E < C(G) for which we can

prove that (1) implies (2).
(a) For pell, =], we will write

AYG) = {feC(G): fel*(X)},

so that 4Y(G) = A(G) and A”(G) = C(G) for p=2. If 1< p <2 and
E = A*(G), then (1) implies (2).
(b) For any w in ¢,(X), we define

A(G; w) = {fe C(Q): fwe I(X)} .
Then (1) implies (2) for E = A(G; w).
99
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(¢) The set E can be taken to be any countable intersection of
spaces listed in (a) and (b). For example, E can be

A*(G) = {fe C(G): felr(X) for all p>1}.

(d) Let G be the circle group T and let E = U(T), the space of
all f in LY(T) for which the sequence of symmetric partial sums of
its Fourier series converges uniformly; see [5], p. 5. Then (1) implies
(2). In this connection, it is interesting to note that Figa-Talamanca
[3] has shown that the inclusion C,(T) < U(T) does mot imply that P
is a Sidon set.

In §4 we indicate how all of our results can be established for
arbitrary compact groups.

We rely on the notation and terminology in [4] throughout this
paper. We also write PM(G) and PF(G) for the spaces of pseudo-
measures and pseudofunctions on G (see [5], pp. 27 and 44).

2. A general theorem. Our first theorem is a quite general
result giving certain sufficient conditions under which (1) implies (2),
as in §1. The fourth hypothesis may look somewhat artificial, but
in practice it is easy to apply and altogether works out to be natural.

THEOREM 2.1. Let G be a compact Abelian group with character
group X and let P be a subset of X. Suppose that E is a linear sub-
space of C(G). The inclusion E, C A(G) tmplies that P is a Sidon
set provided E satisfies the following four conditions:

(i) T»(G)C E;

(ii) there is a topology t on E, making (K, t) into a barrelled
locally comvex topological vector space [see [1], p. 427];

(iii) if xe P, then f— f(x) is a continuous function on (En, t);

(iv) if L is a continuous linear functional on (Ep, t), then there
exist @ number o such that 0 < a <1, and also pre M(G), € 1°(X),
and a finite subset @ of P such that

(1) v | <a for all yeP\®
and
(2) L(f) = pxf(e) + 3, (D7)

for all fe TH(G).

Proof. We lose no generality in supposing that E = E,. Thus
we suppose that E = E, © A(G) and that conditions (i)—(iv) hold.
By (37.2) in [4], to prove P a Sidon set, it suffices to consider any
6 in I=(P) and to show that there is a measure ve M(G) satisfying
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(3) l6(0) — D()| £ a for all yxeP,

where «a is some number such that 0 < @ < 1. Condition (iii) and the
inclusion £ < A(G) show that

[ = uerl6QF00 | = sup (S,er 07 ) |: ¥ < P, ¥ finite}

is a lower semicontinuous seminorm on E; by (ii) and [1], 7.1.1(a),
this seminorm is therefore continuous on E. A fortiori, the linear
functional L given by

L(f) = Sy 8C0F00)

is continuous on E. For this L, select @, g, + and @ as in (iv).
From (i) and (2) it follows that

(1) = L) + v() for all yeP.

Define g as the trigonometric polynomial in T,(G) such that §(y) =
é(r) — () for ye€®, and then set v = ¢ + g\, where \ denotes
[normalized] Haar measure on G. Then v belongs to M(G) and (3)
follows easily from (1).

REMARKS 2.2. (a) In (2.1.iv) we may also write » = ¢ for some
pseudomeasure ¢ € PM(G), the sum in (2.1.2) then being just oxf(1).

(b) In all applications of (2.1) in the present paper, (2.1.ii) is
satisfied by virtue of the fact that (E,, t) is either a Banach space
or a Fréchet space. It would be interesting to have some examples
not of either of these types.

(¢) Suppose that for ke{l,2, ---}, E, is a subspace of C(G)
satisfying the conditions in Theorem (2.1), where ((E,)5, t.) is a Fréchet
space. Then

E = n?:=1 Ek

satisfies these same conditions and so E, C A(G) implies that P is a
Sidon set. [To see this, note that E, = N7, (E), and give E, the
topology ¢ having a base at zero formed of intersections U N U,N -+ N
U.N E; where k. =1,2,---, and each U, is a neighborhood of zero
in (E))», t;)). Equivalently, if {p,..n =1,2, ---} is a defining family
of seminorms for the topology ¢, a defining family for ¢ is obtained
by taking finite sums of the restrictions to E, of the p., with % and
n varying.

A lengthy but routine argument shows that (K., t) is a Fréchet
space and that (2.1.iii) holds. To verify (2.1.iv), use the Hahn-Banach
theorem to prove that every continuous linear functional on (E;, t) is
a finite sum of restrictions to E, of countinuous linear functionals on
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the various ((E,)z, t); [cf. [1], p. 147, Exercise 2.18].

3. Some applications of the general theorem.

(8.1) We list here some spaces to which Theorem (2.1) applies.
The notation has been established in §1.

(a) For a fixed p in (1,2), let E = A?(G). The topology t for
E, is defined by the norm

1A= 1LF e + 11PNl -

It is easy to check that all the conditions of Theorem (2.1) are ful-
filled. For example, condition (2.1.iv) is established by showing that
if L is a continuous linear functional on (Zj, t), then there exist pe
M(G) and € l”(X) satisfying (2.1.2), p’ being the exponent conjugate
to p.

(b) For a fixed w in c(X), let E = A(G; w).
Note that for P X, we have

E, = {f € Co(®): fw|PeIM(P)} .
The topology t on E, is defined by the norm
1A= 1F e + [wFl], -

It is evident that (2.1.))—(2.1.iii) are satisfied. Moreover, given a
continuous linear functional L on (&;,?), there exist p#e M(G) and
B€1=(X) such that (2.1.2) holds with 4 = wg. Since + is in ¢,(X),
(2.1.iv) is also satisfied (for any a > 0).

(¢) Remark (2.2.c) applied to (a) and (b) yields the following.
Let w be in ¢(X). In order that a subset P of X be Sidon, it is
sufficient [and trivially necessary] that Fel(X) for every fin Cp(G)N
A @) NAG; w).

(d) The space E = U(T) is a special case of a general class of
spaces E to which (2.1) applies. To describe these spaces, we next
establish some general notation and prove some general results.

NoTATION 3.2. Let I be a nonvoid set and S a topological linear
space. If s:7-—s; is a function from I into S and s€ S, we write

limg, s =lim, s; = s

if and only if to every neighborhood V of zero in S there corresponds
a finite set J < I such that

iel\J implies s—s,eV.

[If I is the set of positive integers, this concept of limit is the usual
one. However, if I is a directed set, this concept of limit is not in
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general the same as that usually associated with the convergence of
the net 72— s,;, i.e., is not generally the same as asserting that to
every V there corresponds an 4,€ I such that s — s;e V for all 71T
greater than 4, in the given partial ordering of I.]

We write ¢,(I, S) for the linear space of all functions s from I
into S such that limg s; = 0. Note that the range of every such
function is a bounded subset of S. If S is a normed linear space
[respectively, a Banach space], then ¢,(I, S) is a normed linear space
[respectively, a Banach space] relative to the norm

[l[slll = sup;es I8l «

The same observations apply to the linear space I'(I, S) of all func-
tions s from I into S such that

sl = 2ierllsill < oo .

LEMMA 3.3. Let I be a nonvoid set, let S be a mormed linear
space, and let S’ denote the conjugate space of S. If L is a continuous
limear functional on c,(I, S), there exists ne (I, ') such that

(1) L(s) = Xiserni(sy)
Jor every sccy(l, S).
Proof. By hypothesis, there exists m € (0, =) such that
|L(s)| = m]||s]l]

for every sec,(I,S). For i€ and s€ S, let s(¢, s) denote the element
of ¢,(I, S) defined by s(%,s); =s and s(z,8); =0 for jeI and j + 1.
Plainly we have |||s(3, s}||| = ||s||. It follows that

Ni(s) = L(s(q, s))

defines an element of S'.
Now let J be any finite subset of I and suppose that s;€ S and
that ||s;]] £ 1 for each 7€.J. We then have

Sies Milss) = lies Lis(i, 89)) = L(Xie, 83, 53)
and also
Il 2o s(t, s)lll = 1.
On letting the s; vary independently, we see that
Shies Nl = m

and hence that » = (\,);.; belongs to I}(I, S’). From this it follows
at once that
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L'(s) = Diier Mi(ss)

defines a continuous linear functional on ¢,(I, S). Moreover, as is easily
verified, L and L’ agree on the set of s € ¢,(Z, S) having finite supports.
Since this latter set is dense in ¢,(I, S), L and L' agree everywhere
on ¢, (I, S) and so (i) is established.

THEOREM 3.4. Let G be a compact Abelian group, let P be a sub-
set of X, and let I be a nonvoid set. For each 1€ 1, let C; be an ele-
ment of M(G)U PF(G). Suppose that

(i) m=sup;e; ||l < oo,
and

(ii) lim, &i(x) =0 for every 7y e P.

Then the set

E = {1 e Cp(@): Cixf)ies € (I, C(G))}

satisfies conditions (2.1.i))—(2.1.iv)." [Note that E depends upon both
(€)icr and P.]

Proof. We define a topology ¢ on E by the norm

(1) NAI = 1Fllu + supser [[Ex flla

The definition of E automatically implies (2.1.i). Property (2.1.iii)
obviously holds. A routine argument shows that E is complete for
the norm (1); we omit the details. We need only verify (2.1.iv).

Let L be a continuous linear functional on E and a a positive
number. We apply Lemma (3.3) with S = C(G) and S’ = M(G). Thus
there exist

(2) e M(@G) and M = (N €U, M(G))
such that
(3) L(f) = txf(e) + Xt Mxlix f(e)

for all fe To(G). In view of (2), there is a finite subset J of I such
that

1
(4) m Dieng | Nl éza .

Write I, for the set of ¢ in I for which ;e M(G), and I, = I\I,, so

1 Consider f in Cp(G). If {;€ M(G) for all 7, then we automatically have Z;xf€
C(G) for all 4, and so f belongs to E provided only that limy) || xf ||l = 0. If some
¢: are not in M(G), then {;*f denotes the pseudofunction for which (Ci*f)"(x)=fi(x)f(x)
for all y€ X and does not automatically belong to C(G). Thus in general, for f to be in
E we must have {ixf€C(R) for all ¢ and lim(p)|| Lixf|]x = 0.
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that &,ec,(X) for ie I,. Write also
Mo =t 4+ Diesnr, Ml
¥ = Siesnr, i s
Yo = Dieny Ml -

Then (2) ensures that u,e M(G). Also, since J is finite, the definition
of I, ensures that +, €¢,(X). By (i) and (4), we have

(5) lwznwg%a.

From (3) we have for every f e Tp(G):

(6) L(f) = tax (@) + SyepviCOFO) + Sye pta(0F Q)
Now choose a finite subset @, of X such that

(7) lm(xﬂg%a for yeX\0,,

put @ = @&, N P, and define
f= s+ Do viOOAN

and
v = Yxe + Vs .

[¢é. denotes the characteristic function of A.] Then e M(G) and (6)
gives for every f e Tp(G):

i8) L(f) = t+f(e) + Sper v(0FQ) -

Since P\@ c X\@,, (7) shows that [, (x)| < (1/2)a for y € P\®; and (5)
then goes to show that

SuDepvo YN = @ .

This, coupled with (8), confirms (2.1.iv).

THEOREM 3.5. Let G be a compact Abelian group, let P be a sub-
set of X, and let I, be a nmonvoid set for ke{l,2, ---}. Suppose that
(1) & e M(G) U PF(@) for iel,,ke{l,2, «--};
(ii) SupieIkA||Ci,kl’°° < oo for kefl, 2, .-}
(i) limg,, () =0 for xe P, kefl,2, «--}.
Then

E = {feCu@: Cwficr €0y, C@) for k=1,2 ---}



106 R. E. EDWARDS, E. HEWITT AND K. A. ROSS

has the property that the inclusion E < A(GR) is sufficient [and trivially
necessary] to ensure that P is Sidon.

Proof. By (3.4), Theorem (2.1) applies to each
E, ={f e Cp(@): &, xxf)ier, € ey, C(G))} «
Since K = N, K, (2.2.c) shows that (2.1) also applies to E.

(8.6) Some interesting special cases of (3.5) arise in the following
manner. Suppose that P is countable and P = (P;)3, is a sequence of
finite subsets of P satisfying

P=U§'°=1 =i P

We take I to be the set of positive integers, select o, in M(G) U PF(G)
for ke{l,2, ---}, and define

Cie = 04 — Zze?ﬁk(%)%
for i€l and ke{l,2, -++}. Then (3.5.))—(3.5.iii) are satisfied and
(1) Cipxf = opxf — sp (04 f) »

where
S$p,0 = Dier; aox

is the P;-partial sum of the Fourier series of g.

If we denote by U(G, P) the set of ge C(G) such that lim; ... sp.g
exists uniformly on G, the associated space E in (3.5) is now none
other than

E={feCu@):oxfecUG,P) for k=1,2,:::}.

In particular, if every o, is taken to be the unit mass at the identity
element of G, E becomes

Us(G, P) = Co(@) N U(G, P) »

which is the set of f in C»(G) whose Fourier series, grouped in the
fashion specified by P, converge uniformly on G.

COROLLARY 3.7. A subset P of the group Z of integers is a Sidon
set of and only if Ux(T) C A(T).

Proof. We have Up(T) = U(T, P) where P = (P), and P, =
{neP:|n|l <.

The next corollary illustrates how our results can be combined to
obtain what appear to be very weak conditions sufficient to ensure
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that a set is a Sidon set.

COROLLARY 3.8. Suppose that G is a compact Abelian group.
Suppose that w is in c(X), and that P, P, and the g, are as in (3.6).
In order that P be Sidon, it is sufficient [and trivially necessary] that
Fel(X) for every f in Co(G)NA*(G) N A(G; w) such that

(i) oxfe UG, P) for k=1,2, .-,

Proof. Apply (2.2.c) and (2.1), taking into account (3.1.a), (3.1.b),
and (3.6).

One of the standard inequalities known to be necessary and suffi-
cient for P to be a Sidon set is [see [4], (87.2)] expressed by the
existence of a number » = n(P) such that

HFL = 7l F

for every f € T»(G). From Corollary (3.8) we will derive an apparently
weaker inequality which is itself sufficient.

COROLLARY 3.9. Suppose that w is in c(X), and that P, P and
the o, are as in (3.6). In order that P be a Sidon set, it is sufficient
[and trivially necessary] that there exist kc{1,2, ---}, pe (1, ] and
ne (0, ) szﬁch that R R

(1) A= 2Ll + Ul + Hwfll, + 35= sups: [[sp,(0%F) [}
for every f e T:(G).

Proof. Choose and fix a net (e,) of elements of T(G) such that

(1) lenll, =1 for every m
and
(2) lim, é,(x) =1 for every yelP.

[The existence of (e,) is proved in [4], p. 88, (28.53).] Consider any
feCu(@®NA*HG) NA(G; w) satisfying (3.8.0). In view of (3.8), it will
suffice to show that fe I{(X).

To this end, write f,, = e.xf, so that f, e T-(G) for all m. From
(1) we infer that

(3) 1 fnlle S 11 F s 1Pl < [ Fllo s and  [lwfulls < [ wf ],
for every m. From (3.6.1) we have
SPi(O'j*fm) = em*SPi(O-j*f) ’

and so
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(4) ”sPi(a.i*fm)”u é ”sP;(O'.i*f)”u

for every m, j, and ¢. Note that we have
(5) sup; || sp, (0% ) [l < o0

for each j, since g;+f ¢ U(G, P). Replacing f by f,. in (i) and noting
3), (4), and (5), we find that

Sup, |l full, < oo .

This, combined with (2), shows that ||f]|, < o, as we wished to show.

4. Extensions to arbitrary compact groups. In this section, G
will denote an arbitrary compact group with dual object 2. For any
subset P of 3 and any pe {0} U[1, =], &,(P) is as defined in [4], (28.24)
and (28.34). Fourier and Fourier-Stieltjes transforms are operator-
valued functions defined on X as in [4], (28.34). The space of func-
tions f on G with absolutely convergent Fourier series, i.e. fe E,(2),
will be denoted by A(G); this space is studied in [4], §34, and denoted
there by K(G).

The space PM(G) of pseudomeasures on G is, by definition, the
space of bounded linear functionals £ on A(G). For { e PM(G), £ denotes
the element in E.(X) for which

Lf) = Sees dotr(f(0)e(0)) for feA@G).

Thus { — € is a linear isometry of PM(G) onto G.(2). The space PF(G)
of pseudofunctions on G is all { in PM(G) such that e @(2). For
further discussion about pseudomeasures on compact groups, see [4],
(34.46).

The theorems and proofs in §32 and 3 all carry over to this setting
in a straightforward manner. We content ourselves with the fol-
lowing summary.

THEOREM 4.1. Let G be a compact group with dual object 3. A
subset P of 3 is a Sidon set provided

E,={fecE:fio) =0 for all oe3\P}c AG

for any of the following spaces E:

(i) AYG) ={feC(@):feC,()},»p >1;

(ii) A(G; F) ={feC(G): fFeC,(2)}, FeG3);

(i) any countadble intersection of spaces listed in (i) and (ii).
The space E can also be taken to be

{f e Co(@): CopxS)ier, €0, C(@) for k=1,2,---},
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where
I, is a monvoid set for each ke{l,2, ---};
Cir€ M(G) U PF(G) for del, kel 2, ---};
supies, 1Cislle < oo for kefl, 2, ---};
lim,, & .(0) =0 for oeP kefl,2 ---}.

Added in proof. For a short proof of some of our results, see
Ron C. Blei, A note on some characterizations of Sidon sets, to appear
in Proc. Amer. Math. Soc.
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