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THE INFLATION—RESTRICTION THEOREM FOR
AMITSUR COHOMOLOGY

ROBERT A. MORRIS

In this paper we develop a generalization of the classical
exactness of the inflation—restriction sequence in group
cohomology. Our main theorems relate the Amitsur coho-
mology of algebras to that of subalgebras.

1* Introduction* Throughout, R is a commutative ring, un-
adorned (g) means tensor product over R, all algebras are commutative,
and if S is an JS-algebra, Sj denotes the tensor product S (g) (g) S,
j times. R-Alg and Ab denote the categories of commutative R-
algebras and abelian groups, respectively.

For any JS-algebra S there are i?-algebra maps ε*: Sn—• Sn+1

given by ε?(s0 (g) (g) sn_x) = sQ (x) (x) s^ (x) 1 ® s* (x) (g) s ^ , i =
0, 1, , % + 1. These are called the (^-dimensional) co-face maps
for S/R. Generally the superscript will be suppressed. The co-face
maps are easily seen to satisfy the co-face relations:

ε ^ = Sj+fr f o r ί ^ j .

If F: R-A\g —> Ab is any functor, the Amitsur cochain complex,
C(S/R, F), is defined by Cn(S/R, F) = F(Sn+ι), n = 0, 1, 2, . . . [1, 2, 6].
The coboundary operator dn: F(Sn+1) — F(Sn+2) is given by dn =
Σ?io( — iyF(6i). It is a consequence of the co-face relations that a
complex results, i.e., that dn+1dn = 0. The homology Ker ci11/!1^ ^ - 1

of this complex is the Amitsur cohomology of S/R with coefficients
in F, denoted Hn(S/R, F). As usual, H°(S/R, F) = Kerd0.

Let Fx: iϋ-Alg —> Ab be another functor and let η:F-+Fι be a
natural transformation. Then C(l, ??) = %*+i: F(Sn+1) -> F^S^1) is a
map of complexes and so induces a map £P(1,)?): Hn(S/R, F) —>

We say a sequence 0 -> FMF1χF2 -> 0 is exact if O-

^ ( A ) ^> -P2(A) —* 0 is an exact sequence of abelian groups for each

iϋ-algebra A. Indeed the usual long sequence results from a short

exact sequence of coefficients.

THEOREM 1.1. [6, p. 47]. Let 0 - > F ^ F X ^ F 2 - » 0 be an exact
sequence of functors. Then there are maps dn(S) making

ΰn-HS) ffnlUω)

> Hn-ι(S/R, F2) ±-U Hn(S/R, F) > Hn(S/R, FJ

— > H*(S/R, F2) -^i H"+1(S/R, F) » . .
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exact and this sequence is natural in S.

This is a standard result, a consequence of the fact that 0 •

of complexes.
F(Sn+ί) —ϋi l L ^ F^S**1) _ίί!ίl_+ F2(S%+1) -> 0 is a short exact sequence

REMARK. The entire discussion thus far in no way depends
upon F being defined on all of R-A\g. If A is a full subcategory
of iϋ-Alg containing Sn and Tn and F, Fx are abelian group valued
functors on A, then all the preceding material is still valid.

2* Inflation-restriction* By an (R-based) Grothendieck Topology
T (cf. [7]) we mean a category, Cat T, of commutative jR-algebras
and a collection, Cov T, of families called covers {U—> Z7<} of morphisms
satisfying axioms dual to those of [3, pp. 1-2]. (In particular, fiber
products are replaced by tensor products.) With this convention a
presheaf, F (of abelian groups) is simply a functor Cat T—*Ab and
a presheaf F is a sheaf if for every cover {U—* ί/J, the induced
diagram

F{U) — > Π TO) z=? Π TO<8>* C/y)

is an equalizer diagram (equivalently, the natural map F( U) —*
H${{U-+ Ui}, F) [3, I, Sec. 3] is an isomorphism).

REMARK 3.1. If A —> B is a map in Cat Γ and F a presheaf, the
complex yielding H?({A —> B}, F) coincides with the Amitsur complex.
The definition of sheaf may be phrased as follows: the natural maps
F(S)-+H°(T/S,F) and F(S2) — H\T2JS\ F) are isomorphisms and
F(S*) —• H°(T3/Sd) is a monomorphism. Among others which we
examine in the next section, the functor which assigns to each R-
algebra its multiplicative group of units satisfies this hypothesis if
SIR and T/S are faithfully flat. (This follows, for example, from
[6, Lemma 3.8].)

Another cohomology theory is defined as follows: the category
S? of sheaves on T is abelian with enough injectives [3, Ch. II,
Thm. 1.6 (i) and 1.8 (i)]. For any object U in Cat T, the evaluation
functor Ev: SS-> Ab given by EV(F) •=• F(V) is left exact [3, Ch. II,
Thm. 1.8 (Hi)]. The ntYi right derived functor of Ev is denoted
Hΐ{V, —) and the group H£(V, F) is called the nth Grothendieck
cohomology group of V with coefficients in F.

Let R-^ S-^ T and 4 be a full subcategory of iϋ-Alg which is
closed under tensor products. Regard S and T as .K-algebras and T
as S-algebra via i, ij, and j respectively.

The map Hn{j, 1): Hn(S/R, F) - Hn(T/R, F) induced by j is called
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inflation and denoted inf.
Now i induces an ϋ?-algebra map Tn —* T®s (g)5 T given by

tγ (x) (x) ίw —> £L (x)̂  (g)5 ίn. This is easily seen to commute with
the face maps and so induces a map of complexes and in turn a map
of cohomology Hn(T/R, F)-+Hn(T/S, F), called restriction and denoted
res.

Note that if A —> B is a map in A, then so is the multiplication
map B ®A B—>B given by x®y —>xy, being simply the composition
B ®A B -> B (g)B B ~> B.

Our main theorem is

THEOREM 3.2. (Exactness of the inflation—restriction sequence)
Let X be a Grothendieck topology whose category A is such that {i}
and {j} are covers. If F is a sheaf on X, then the inflation—
restriction sequence

0 > Hn(S/R, F) — Hn(T/R, F) — H*(T/S, F)

is exact if n = 1. Suppose n Ξ> 1 and let Σ be the set of algebras
S% T\ or T®s---(S)sT (i times), i ^ n + 1. If Hi(A, F) = 0 for
all j < n and for all A in Σ, then the inflation—restriction sequence
is exact for n.

Proof. We induce on n.
The case n — 1 can be deduced from the spectral sequence of

Cech cohomology [3, Ch. II, (3.1)] but a tedious direct argument can
be given mimicing the corresponding proof for group cohomology
[4, Ch. IV, Sec. 5, Prop. 5]. We illustrate the proof that inf. is a
monomorphism:

Consider the diagram whose rows are exact since F is a sheaf:

0 >F(S®KS)

F{MS) F(Mτ) \F(p)

0 > F(S) —™—+ F(T) ^ ^ m >(T(X)5 Γ)

with df0 = Fε'o — Fε[, d° = Fε0 — Fe19 with ε and s* the face maps
for S/R and T/R respectively and where p(x (x)R y) = x (x)5 y, Ms and
Mτ are the multiplication maps from S (x) S to S and T (x) T to T
respectively.

The solid arrows of the diagram clearly commute, the com-
mutativity of the square being an example of an i?-algebra map
inducing a map of complexes.
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If x in F(S (x) S) is a one cocycle whose cohomology class gets
mapped to zero by inf, then F(j ® j) (x) = (F(e0) — F(εJ) (y) for
some y in F{T). We must show that the cohomology class of x
was already zero, i.e., that there is an element z in F(S) such that
(F(ε'o) — F(ε[)) (z) = x. By commutativity of solid arrows and exact-
ness of the rows in (1), it clearly suffices to show that (F(ε0) —
F(&d) (v) = 0. But by the definition of y and the commutativity of
(1), this is the same as establishing

(2) F(ρ)F(j (x) j)(x) = 0 .

Now in (1) the square with the dotted arrows clearly commutes
as does

T -^-> T(x) T

(3) β l | \Mτ

MT

T(g)RT—-> T

so that

F(j)F(Ms)(x) = F{Mτ)F{j ® j){x) = F(Mτ)(F(ε0) - F
(by hypothesis on x)

and this is zero by the commutativity of (3). But since F is a
sheaf, the map F(j) is monic so we have

(4) F(Ms)(x) = 0.

Finally if λ: S— T®s T is given by λ(s) = s(8)l = 1 0 s we
clearly have ρ(j(g)j) = ^Ms as maps from S®R S—> T(x)s T and
multiplying (4) by F(X) shows

0 = F(X)F(Ms)(x) -

Thus (2) is established, completing the proof that inf is monic.

The remainder of the case n = 1 is proved by similar arguments.
For the induction we will make a "dimension shifting" argument.

Let n > 1. Choose an injective sheaf JF* and a sheaf F' so that

0 > F > ί7* > Fr > 0

is exact in St Now in general this is not exact at each A in A so
we can not immediately derive a long exact sequence of Amitsur
cohomology.

However, since Hχ(A, ) is the derived functor of "evaluation at
A" we have an exact sequence
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0 > F(A) > F*(A) > F'{A) > HX(A, F) .

By hypothesis the last term is 0 for all A in Σ.
Consequently we get an exact (up to dimension n) sequence of

Amitsur cochain groups

0 > C\SIR, F) > C*(S/R9 F*) > C\S/R9 F') > 0 i ^ n

and similar sequences upon replacing S/R by T/R and T/S respectively.
In the usual fashion (cf. Thm. 1.1), these induce exact columns

in the following diagram

lT"l"f T P 5 ?

Hn(S/R,F*) > Hn(T/R,F*) > Hn(T/S,F*)

I
0 > H'(S/R,F) — H*(T/R,F) - ^ Hn{TjS,F)

, F') — Hn~\TIR, F') — Hn~ι{TIS, Fr)

Hn-\S/R, F*) — Hn~\TIR, ί7*) - ^ Hn~ι(T/S, F*) .

That this diagram commutes is an immediate consequence of
definitions of inf and res.

Now F* is injective and so Cech cohomology of any cover with
coefficients in F* vanishes [3, Prop. 4.3 (iv), p. 40]. But again using
Remark 3.1, we conclude that in the above diagram all the Amitsur
cohomology with coefficients in JF* also vanishes.

Hence the maps d are isomorphisms and the desired exactness
will follow by induction if we can show that Hi (A, F') = 0 for all
A in Σ and for all 1 ̂  j ^ n — 1. But this is immediate: F* being
injective, the short exact sequence 0 —• F —* F* —•> F' —• 0 of sheaves
yields H'j(A, Ff) = H3

X

+\A, F) = 0 for all 1 ^ j < n - 1 and for all
A in Σ.

This completes the proof of the theorem.

The full strength of the definition of sheaf is in fact not needed
in case n — 1 in the above theorem. All that is required is that
the sheaf property hold on {Sn —> Tn), n = 1,2, 3, however in practice
the functors of interest which are not sheaves do not even satisfy
this.

4* Etale sheaves and group cohomology* In this section we
briefly sketch how the classical inflation—restriction theorem for
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group cohomology can be recovered from our results by use of the
etale topology.

Let G be a finite group, H a normal subgroup and choose fields
k^L with G = Gal (L/k). Let N = LH be the fixed field of H and
let A be any G module. By a straight-forward modification of the
results of I, Sec. 4 and 5 of [7] (cf. "Supplements" in [7]) one can
show that there is a topology T — TL/k, analogous to the usual etale
topology, which has the following properties: (1) Every sheaf on T
is additive [9, p. 9]. (2) The category S? of sheaves on T is naturally
equivalent to the category of G-modules. This equivalence associates
to any sheaf F the module F{L) with g in G acting as F(g). If A
is a module and M a subfield of L normal over k (all such subfields
are among the objects of Cat T) then the sheaf FA associated to A
has FA(M) = AM' where M' is the subgroup of G which fixes M.

With these observations one can prove the classical group co-
homology theorem:

THEOREM 4.1. [4, Ch. IV, Sec. 5, Prop. 5] Let G be a finite
group, H a normal subgroup and A a G-module. Then

0 > Hn(G/H, AH) — H*(G, A) - ^ H*(H, A)

is exact for n = 1. If H^H, A) — 0 for 1 ^ i < n, then the sequence
is exact for n.

Proof. Letting F be the sheaf associated to A one deduces
from [5, Thm. 5.4] a commutative diagram

0 > Hn(N/k, F) > H'(L/k, F) -^* H*(L/N, F)

I
0 > Hn{GIH, F{L)H) > Hn(G, F{L)) • Hn(H, F{L))

with each vertical map an isomorphism. It thus suffices to show
the exactness of the upper sequence.

Since N/k, L/k and L/N are Galois, the set Σ of Theorem 3.2
consists of algebras which are the products of copies of N or copies
of L.

The arguments of the Supplements, of [7] show that Hτ{X, F) ~
ίP(Gal (L/X), F{L)) for X = N or L. Since sheaves on T are addi-
tive, dimension shifting shows H?{A x B, F) ~ H?(A, F) 0 H?{B, F)
for any algebras A and B in Cat T. It then follows that the
hypotheses of Theorem 3.2 reduce to requiring H3(H, A) = 0 and
ϋPXGal (L/L), A) = 0 for j < n. The latter is trivial and the former
is assumed, completing the proof.
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