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APPROXIMATE IDENTITIES AND THE STRICT
TOPOLOGY

H. S. COLLINS AND R. A. FONTENOT

This paper studies relationships between approximate
identities on a B* algebra A and other properties of the
algebra. If A is commutative, conditions on the approxi-
mate identity for A are related to topological properties of
the spectrum of A. The principal result of this paper is that
for a locally compact Hausdorff space S, C0(S) has an approxi-
mate identity that is totally bounded in the strict topology
(or compact open topology) if and only if S is paracompact.

1Φ Introduction* The problem of extending theorems about

commutative J5* algebras to the non-commutative case has received
a great deal of attention in recent years. Because many proofs made
in the commutative case make use of the spectrum (= maximal ideal
space), an obvious question is: what is to replace this device in the
case of a non-commutative I?* algebra? Various possible replace-
ments have been sought; e.g.; see Akemann [1] and Pedersen [15,
16]. Much progress has been made for certain types of problems
by means of restrictions on approximate identities for the algebra in
question by Taylor [20, 21], Akemann [2], and others. The class of
problems solved or seemingly susceptible to this technique is rather
large. This fact and the paucity of results for this class of problems
obtained by studying Prim A and the space of equivalence classes of
irreducible representations suggest that the approximate identity is
a useful tool for extending many commutative theorems to a non-
abelian setting. A question that arises immediately in the case of a
commutative B* algebra is: what do restrictions on the approximate
identity imply about the spectrum of A and vice versa? Along this
line, Collins-Dorroh [6] characterize σ-compactness of the spectrum
and ask for necesary and sufficient conditions on S that C0(S) (in
this paper, S always denotes a locally compact Hausdorff space) have
an approximate identity that is totally bounded in the strict topology
(called β by Buck). This paper answers this question and several
related ones, including some in the non-commutative context.

2* Preliminaries*

DEFINITION 2.1. Let A be a Banach algebra. An approximate
identity for A is a net {eλ\XeΛ} (we generally write simply {ê }) with

1 eλx — x | | = lim; 11 xeλ — x |1 = 0 for xe A and \\eλ\\ ^ 1 for all λ.
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It is well known that all i?*algebras have approximate identities.

DEFINITION 2.2. The double centralizer algebra M(A) of a
1?* algebra A was studied by R. C. Busby [5] who defined the strict
topology as that topology on M(A) generated by the seminorms x —>
max{\\xy\\, \\yx\\} for xeM(A) and ye A. Two motivating examples
for the double centralizer algebra concept are the algebra C0(S) of
continuous complex functions on S which vanish at infinity (this class
is identical with the class of all commutative C* algebras by the
theorem of Gelfand), whose double centralizer algebra was identified
by Wang [22] as Cb(S), the algebra of all bounded continuous complex
functions on S; and the algebra of compact operators on a Hubert
space H, whose double centralizer algebra was shown to be the
bounded linear operators on H by Busby. For a definition of M(A)
and some of its properties, the reader is referred to Busby [5]. By
M{A)β we shall mean M(A) endowed with the strict topology β.

DEFINITION 2.3. If / e Cb(S), the support of /, spt/, is the closure
in S of N(f) = {x:f(x) Φ 0}.

DEFINITION 2.4. S is sham compact if each ^-compact subset is
relatively compact.

DEFINITION 2.5. Let A be a B* algebra and {eλ} be an approxi-
mate identity for A. We shall be interested in the following condi-
tions:
(a) {eλ} is countable, i.e., the range of {eλ} is a countable set;
(b) {eλ} is sequential, i.e., A is the set of positive integers with the
usual order;
(c) {eλ} is canonical, i.e., eλ ^ 0 and if λj. < λ2 then eλleλz — e;>i;
(d) {eλ} is well-behaved (after Taylor [21]), i.e., {eλ} is canonical and
if λ e A and {Xn} is a strictly increasing sequence in A, there is a
positive integer N so that eλeλn = eλeλm for n, m > N;
(e) {eλ} is β totally bunded; i.e., totally bounded in the strict topology;
(f) {eλ} is abelian;
(g) {eλ} is chain totally bounded, i.e., if {Xn} is an increasing sequence
in A, then {eλj is β totally bounded;
(h) {eλ} is σ(M(A), M(A)f) relatively compact, where σ denotes the
weak topology on M(A) in the pairing with its β dual;
(i) {ex} is sham compact, i.e., {eλ} is canonical and if {λ̂ } is a
sequence in A, then there is a λ in A so that λ > Xn for all integers
n.

REMARK 2.6. A sequence {en} in a i?* algebra A which satisfies
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\imn\\enx — x\\ = limw||a?eΛ — x\\ = 0 is norm bounded by the uniform
boundedness principle and the i?*norm property. Thus it is not
necessary to require norm boundedness in 2.1 for this case.

REMARK 2.7. Taylor [21] introduced the notion of a well-behaved
approximate identity and used it to prove many interesting improve-
ments of results of Phillips [9, p. 32], Akemann [2], Bade [3], Collins-
Dorroh [6], and Conway [7 and 8].

3* A characterization of paracompact spaces* Our main result
in this section, 3.10, answers two questions posed in [6, Remark 4.3].
Our interest centers exclusively on .B* algebras without identity; for
these, we need information about increasing sequences in the directed
set of an appropriate identity and about supports. Lemmas 3.1 and
3.2 provide what we need.

LEMMA 3.1. If A is a Banach algebra without identity, {eλ} an
approximate identity for A, and XoeΛ, then 3λe A 9 λ > λ0.

Proof. If the conclusion does not hold, then Vλ e Λ, λ ^ λ0, from
which it follows that eλQ is an identity for A.

LEMMA 3.2. Let {eλ} be an approximate identity for C0(S).
(a) If {eλ} is canonical, then Xλ < λ2 implies spt eλι c ej^l} c

N(eλ2) and λ e A implies that the spt eλ is compact)
(b) If K is a compact subset of S, then 3 λ e A so that \eλ\ > 3/4

on K.

Proof. This is straightforward.

We are mainly interested (in §3) in two types of approximate
identities, viz., well-behaved ones, shown to be important by Taylor
[21], and β totally bounded ones, the study of which motivated this
paper.

LEMMA 3.3. Let {eλ} be an approximate identity for CQ(S) which is
either β totally bounded or well-behaved. Then there exists a cover of
S by clopen σ-compact sets.

REMARK 3.4. All topologies between the compact open and the
strict agree on norm bounded sets. Thus "β totally bounded" may
be replaced in 3.3 by "compact open totally bounded."

Proof of 3.3. We assume that S is not compact in either case to
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avoid trivialities. Assume first that {eλ} is β totally bounded. Re-
placing {eλ} by {|β̂  |2}, performing a straight forward computation and
using 3.4, we may assume that {eλ} is compact open totally bounded
and βj i> 0 for each λ. Let x e X and choose by 3.2 (b) λx e A so that
eh{x) >3/4. Let Kλ = {xe S: eh(x) ^ 1/4}. Suppose that {Kj} j = l, . . . , n
and {λ̂  } j = 1, , n have been chosen so that

(1) eλ.: > - | on K5^ , j = 1, ...,n

( 2 ) ί Q = -ία; e S: eλ.(x) ^ — f o r s o m e ί.l^i^jϊ .
{ ' 4j )

By 3.2 (b) again, choose Xn+1 e Λ so that eλn+1 > 3/4 on Kn and let

Kn^.ι — \x e S: eλ.(x) ^ for some ί. 1 ^ ί ^ n + 1> .

By induction we obtain sequences {Xn} and {Kn} satisfying (1) and (2)
above. Let X = \JnKn. Xis clearly cr-compact and contains x. It is
open since Kn c interior of Kn+1. To show that X is closed, take a
compact set K. It suffices to show K f] X is closed [13, p. 231]. The
total boundedness condition of {eλ} gives the existence of an integer i0

so that for all positive integers j,

(3) m i n \\ez. - e2.\\κ < 1-
l^i^iQ

 3 4

| |* = supxe*|/(α?)| for feCb(S)). Let y e Km n K where m > i0.
By construction eλm+1(y) > 3/4 so by (3) there is an integer 1 ^ i ^ i0

so that e (̂i/) ^ 1/2 which shows that y e K{. Thus X f] K = Kp[ Ulo=i-K*
so X Π K is closed.

For the other part of the lemma, let xe X, assume that {eλ} is
well-behaved, and choose by 3.1 and 3.2 an increasing sequence {Xn}
so that eh(x) > 0. Let Kn = spt eλ% and note, by 3.2, that Kn c
interior of Kn+1. Let X — U Kn and note that X is open, σ-compact
and xe X. From 3.2 (a) and the definition of well-behaved approximate
identity, it follows that {eλ.} is totally bounded in the compact open
topology and that y e X implies eλ .(y) = 1 for j large enough. With
these observations, the proof that X is closed is the same as in the
first part of the lemma.

REMARK 3.5. Note that in 3.3, \J^==ιspteλnc:X.

COROLLARY 3.6. If S is connected and has an approximate
identity that is either well-behaved or β totally bounded, then S is σ-
compact.
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PROPOSITION 3.7. Let F be a closed subset of S. If C0(S) has
either a well-behaved or a β totally bounded approximate identity, then
F contains a σ-compact set that is relatively clopen in F.

Proof. Let {eλ} be an approximate identity with either of the
properties above. For xe Λ, let dx be the restriction of eλ to F. Since
F is closed, {dx} c C0(F). We claim that {dx} has the same property
as {ex} does; i.e., that {dx} is a well-behaved (resp. β totally bounded)
approximate identity for C0(F). To show this, it suffices to show
that if / e C0(F), then there is an extension g in C0(S) of /. Let S*
denote the one-point compactification of S and <̂o denote the point at
infinity. Let / ' be an extension of / to F U {^J obtained by defining
/'(oo) = 0. Since f eC0(F), f is continuous and extends to a con-
tinuous function p on all of £* by Tietze's Theorem since F \J {°°} is
closed in S*. The restriction g of p to S is clearly an extension of
/ in Co(S). This concludes the proof of 3.7.

COROLLARY 3.8. // S is locally connected and C0(S) has an ap-
proximate identity that is either well-behaved or β totally bounded,
then S is paracompact.

Proof. By [11, Theorem 7.3], it suffices to show that S is a dis-
joint union of clopen cr-compact subspaces. In a locally connected
space, the components are clopen and connected and so σ-compact by
3.7.

LEMMA 3.9. Suppose that C0(S) has a β totally bounded approxi-
mate identity and let W be the family of all clopen σ-compact sub-
sets of S constructed by the method of the first part of 3.3. If ^ c W,
then \Jwe& W is clopen.

Proof. We may assume ex ^ 0 as in 3.3. Let X = \JWe^ W and
K be an arbitrary compact subset of S. Since S is locally compact,
it suffices to show that XίΊ K is closed. With each W in <2S is asso-
ciated a sequence {eZ} from the approximate identity such that

Q spt eΛl c W

(see 3.4) and if 7 e W, eλl(i) > 3/4 for n large enough. From β total
boundedness of {eζ: We <2Sy n = 1, 2, •}, we get a set {TΓ*}̂ ,...,*
from ί7/ and associated integers {n^ i ~ 1, •••, n so that for any V
in ^/ and positive integer p

(4) m i n | ] < - β £ ! U < 1 .
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If yeXΠK, then jeKΠ W for some We^fy so choosing p large
enough so that ev

p{i) > 3/4 we see that e%*(i) > 0 for some 1 ^ i ^ n
so that 7e Wt. We have established that Xf]K= Kf] (J?=i W< so
X Π if is closed. This concludes the proof of 3.9.

In [6] Collins and Dorroh show that if S is paracompact then C0(S)
has a β totally bounded approximate identity and ask two questions:
(1) Does the existence of a β totally bounded approximate identity
imply the existence of a canonical one that is β totally bounded? and
(2) Does the existence of a β totally bounded approximate identity
in CQ(S) imply that S is paracompact? We add to these a third ques-
tion: Does the existence of a β totally bounded approximate identity
in C0(S) imply the existence of a well-behaved one? The answer to
all these questions is given in 3.10.

THEOREM 3.10. These are equivalent: (1) S is paracompact;
(2) CQ(S) has a canonical approximate identity that is β totally
bounded] (3) C0(S) has a approximate identity that is β totally bounded.

Proof. For the first implication see [6]. Since the second implica-
tion is trivial, we prove only that if {eλ} is a β totally bounded approxi-
mate identity for C0(S) then S is paracompact. Take W to be the
set in 3.9 and well order it. Let Wo be the first element in Ύ/^ and
W{ = Wo. If We W, and WΦ WQ, let W = W\{\JV<WV).

V e W

Each set W is clopen and σ-compact by 3.3 and 3.9.

If xeS and W is the least element in {W: We Ύ/^ and xe W}f

then x clearly belongs to W. The collection {W: We W~} then con-
sists of disjoint sets and so forms a partition of S by clopen σ-compact
subsets. We apply [11, Theorem 7.3] to conclude the proof.

4* Non-commutative results and examples* Taylor [21] gives
the following examples of B* algebras with well-behaved approximate
identities: algebras with countable approximate identities, algebras with
series approximate identities (for a definition, see Akemann [23]) such
as the compact operators on a Hubert space, and subdirect sums of
algebras having well-behaved approximate identities, such as dual
J5* algebras which are subdirect sums of algebras of compact operators.

In this section, we give examples of algebras with β totally
bounded approximate identities using some techniques borrowed from
Taylor and some of our own. We also give some partial results, e.g.,
4.1, relating the existence of approximate identities of one type to
existence of another type.
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PROPOSITION 4.1. Let A be a Banach algebra with a sequential
canonical approximate identity {en}. Then {en} is β totally bounded
and well behaved.

The proof requires the following observation whose proof is
straightforward:

REMARK 4.2. If {fλ} is an approximate identity for A, then the
locally convex topology on M(A) (see 2.2) generated by the seminorms
x —>max{||/^||, Hαj/JI} agrees with the strict topology on norm bounded
sets in M(A).

Proof of 4.1. Let m and nγ < n2 < be positive integers.
Choose a positive integer i0 so that nt > m for i ^ i0. Then

em(eni - en.) = 0

for ί, j > i0 by the canonical property so {en} is well-behaved. Total
boundedness in the strict topology follows from 4.2 and the fact that {en}
is well-behaved. Part (a) of the next result was used by Taylor [21]
in his study of well-behaved identities. We shall use it in 4.5 to
show that algebras with countable approximate identities have ones
with other nice properties.

LEMMA 4.3. Let Abe a Banach algebra, (a) If {eλ} is an approxi-
mate identity for A and {fv} is an approximate identity for the normed
algebra generated by {eλ}, then {fP} is an approximate identity for A;
(b) If {eλ} is a norm bounded net in A and D a dense subset in the
Hermitian part of the unit ball of A so that eλx —» x and xeλ —* x for
each x in D, then {eλ} is an approximate identity for A (here we
assume A is B*).

Proof. This is a straightforward computation.

Separable B* algebras have many types of approximate identities
as 4.4 shows.

LEMMA 4.4. Let A be a separable J5* algebra. Then A contains
an approximate identity that is canonical, sequential, and abelian (and
by 4.1, well-behaved and β totally bounded).

Proof. Let {xn} be a countable dense set in the Hermitian part
of the unit sphere of A, and let x = Σ (l/2%)αf;. Since x is a positive
element of A, the B* algebra C generated by x is isometrically *-iso-
morphic to the algebra C0(S), where S is the maximal ideal space of
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C. Since CQ(S) is generated by a single function, S is σ-compact.
We may select from C( = C0(S)) an approximate identity {ek} for C
possessing all the properties mentioned in the statement of 4.4. It
remains only to show that {ek} is an approximate identity for A.
Adjoin a unit / to A in the customary manner so that the adjoined
algebra is B*, hence we have that \\(I — ek)x(I — ek) || ~γ 0. From
[10, p. 14] we have that

| | ( Z - e k ) x n x i ( I - ek)\\ ^ 2 * | | ( J - ek)x(I - ek)\\

so that iI (I - ek)xn 11 = 11xn(I -ek)\\-+k0. Thus applying 4.3 (b) to D =
{xn} and {ek} we see that {ek} is an approximate identity for A.

DEFINITION 4.5. Let {Ar} be a family of normed algebras. The
subdirect sum, ( Σ Ar)QJ of the family {Ar} is that subset of PreΓAr

consisting of all a = (ar) e PAr so that {ye Γ: \\ar || ^ ε} is finite for
each ε > 0. The algebraic operations are pointwise and | | α | | =
sup {11 αr 11: τ e Γ }

PROPOSITION 4.6. If A = CΣ Ar)Q and each A1 has a β totally
bounded approximate identity, then so does A.

Proof. The proof is the same as Proposition 3.2 in [21] where
the same result is proved for well-behaved approximate identities.

REMARK 4.7. Proposition 4.6 is true when "totally bounded" is
replaced by any of the types of approximate identities listed in §2,
except countable and sequential. Dual JB* algebras have β totally
bounded approximate identities by 4.6, and 4.5 and 4.6 give a proof,
different from that in [6], that C0(S), for S paracompact, has a β
totally bounded approximate identity.

CONJECTURE 4.8. We conjecture that C0(S) has a well-behaved
approximate identity if and only if S is paracompact. As we indicated
earlier, our results on this question are incomplete, but we give an
example in §6 that is perhaps illuminating.

5* Sham compact spaces and approximate identities* The
definition of sham compact space and sham compact approximate
identity, given in 2.5, is motivated by the space X of ordinals less
than the first uncountable ordinal with the order topology, and the
algebra C0(X). For example, let A = X with the usual order and if
λe/ί, let fλ be the characteristic function of the interval [0, λ]. It
is clear that {/;.} is a sham compact approximate identity for CQ(X).
We note that C0(X) cannot have a β totally bounded approximate
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identity since X is not paracompact. Furthermore, it cannot have a
well-behaved approximate identity either since it is pseudocompact.

PROPOSITION 5.1. Let S be pseudocompact. If C0(S) has a well-
behaved approximate identity, then S is compact.

Proof. Let {eλ} be a well-behaved approximate identity for C0(S),
suppose that S is not compact, and choose, by 3.1, an increasing
sequence {Xn} so that eλ. Φ eλ.+1 for any integer ΐ. Note that eh <
β;2 < •••, i.e., {eλ.} is an increasing sequence. Since the sequence {e?.}
is Cauchy in the compact open topology and Cb(S) is complete in this
topology, there is a function / in Cb(S) so that eλ. —>/ uniformly on
compact subsets of S. By [12, Theorem 2], eλ.-+f in norm so / is
in Co(S). By 3.2, / = 1 on (JΓ=I spt eλ. which then is contained in the
compact set K — f~ι\X\* Choosing λ e A so that eλ = 1 on K, we obtain
a contradiction to the fact that eλi Φ eλi+1 for all i.

REMARK 5.2. Proposition 5.1 admits the following non-abelian
generalization, stated here, without proof, for completeness: Suppose
a B* algebra A has a well-behaved approximate identity and M(A)
satisfies the following condition: whenever {an} is an increasing sequence
in A and {an} converges in the strict topology to x in M(A), then
\\an — sc|| —> 0. Then A has an identity and A = M(A). (See [12,
Proposition 2] to see that this result includes 5.1.)

The next proposition relates sham compactness of S, existence of
sham compact approximate identities in C0(S) and the property (DF)
of Grothendieck.

DEFINITION 5.3. Let E be a locally convex topological vector
space with dual £/*• The space E is (DF) if there is a countable
base for bounded sets in E and if every countable intersection of
closed convex circled zero neighborhoods which absorbs bounded sets
is a zero neighborhood.

REMARK 5.4. The vector space Cb(S)β is complete and the β
bounded sets coincide with the norm bounded sets so Cb(S)β is (DF)
if each countable intersection of closed convex circled zero neigh-
borhoods which absorbs points of Cb(S) is a zero neighborhood [17,
p. 67].

We shall use the following remark in the proof of Theorem 5.6.

REMARK 5.5. W. H. Summers [19] has recently shown that Cb(S)β
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is (DF) if Cb(N; C0(S)) is essential, where Cb(N; C0(S)) is the Banach
algebra of all norm bounded sequence from C0(S) with the sup norm
topology (|| IU and "essential" means that \\eλ{fn} — {/w}||co—^0 where
{eλ} is any approximate identity for C0(S) and {fn} any element of
Cb(N; C0(S)).

THEOREM 5.6. These are equivalent: (a) Cb(S)β is (DF); (b) S is
a sham compact space (c) CQ(S) has a sham compact approximate
identity.

Proof. Assume that Cb(S)β is (DF) and X is the union of compact
sets Kn, i.e., X = U~=i Kn F ° r each integer n, let φ% be a function
in C0(S) so that 0 ̂  ^>n ̂  1 and 9>n Ξ 1 on Kn. Let

F absorbs points of Cb(S); therefore it is a zero neighborhood in the
strict topology by (a). It is obvious that the sets {/ e Cb(S): \\fφ\\^l}
(for φ ̂  0 in C0(S)) is a base at zero for the strict topology. Thus
1<P ^ 0 in C0(S) so that {f e Cb(S): \\fφ\\ ^ l } c V. This shows that
φ(x) ^ 1 for £ in X. For if not, there is an integer n and a point
x0 in Kn so that φ(x0) < 1. By a standard Urysohn's lemma argument
3/e Co(S) so that /(α0) > 1 and | | ^ / | | < 1. This contradiction estab-
lishes our claim, i.e., I c ^ f l ) , so X is compact.

Suppose that (b) holds. Let Λ be the set of all pairs (K, 0) where
KczDczS, K is compact and 0 is open with compact closure. If
λ = (K, 0) and λx = (Ku 00, we define λ ̂  λt if λ = \ or if 0,. c iΓ.
If λ - (Jί, 0) let fλ be a function in CQ(S) which satisfies: (1) 0 ̂  Λ ̂
1; (2) Λ = 1 on iΓ; and (3) spt/^cO. The net {fλ} is by (b) a sham
compact approximate identity for C0(S).

Assume (c), with {eλ} a sham compact approximate identity, and
let {fn} be a sequence contained in the unit ball of C0(S), and ε > 0.
Choose a sequence {λj from Λ so that | | e ^ / w — Λ | | < ε for each
integer n. Let λ0 e Λ be such that λ0 > Xn for all integers n. Remark
5.5 and the following computation finish the proof;

λ > λ0 implies \\eλfn - f%\\ = | |(1 - eλ)fn\\

βJ(l-^Λ||

eaJΛ||<e for all n.

6. Metacompact spaces—an example* We have been unable to
prove our conjecture that £ is paracompact if CQ(S) has a well-behaved
approximate identity except in special cases (see §3), but we are able
to give an example that shows that metacompactness is not sufficient
for existence of a well-behaved approximate identity.



APPROXIMATE IDENTITIES AND THE STRICT TOPOLOGY 73

EXAMPLE 6.1. Let I be the unit interval with the discrete topol-
ogy and I*, the one-point compactiίication of J, with oo denoting the
point at infinity. Similarly, let N denote the positive integers
with discrete topology, N* the one-point compactification of N, and
w the point at infinity. Let S = I* x iV*\{(oo, w)}. Being an open
set in a compact Hausdorff space, S is locally compact Hausdorff.

To show that X is metacompact, take an open cover <%s of X.
For each point (<*>, w), there is a finite set Fn of I so that a member
of ^/ contains the open set Un = {(x, n):xίFn}. Similarly, for each
point (x, w) there is a finite set Gx of N with a member of ^ con-
taining the open set Wx — {(x, n): n g Gx). If (cc, y) £ X and # ^ oo
and y Φ w, {x, y) is discrete. Let Wx>y — {(x, y)}. It is easily checked
that the sets {Wx}, {Un), and {Wx>y} from a point-finite open refinement
of f/. Recalling that a space is metacompact if each open cover has
a point-finite open refinement, we see that X is metacompact.

Before we show that C0(X) has no well-behaved approximate
identity, we point out that X is not pseudocompact; thus we cannot
simply apply 5.1. In our demonstration that C0(X) does not have a
well-behaved approximate identity, we first exhibit a σ(M(X)), Cb(X))
convergent sequence {μn} which is not tight, where a subset H of
M{X) is tight and if it is bounded and for each ε > 0 there is a
compact set Kε in X so that \μ\(X\Kε) < ε for all μeH (\μ\ denotes
the total variation of μ). We may then apply corollary 3.4 in [21]
to conclude that CQ(X) does not have a well-behaved approximate
identity.

For each positive integer n, let μn be the member of M(X)
defined by the equation μn(f) =f((°°,n)) —/((°°, n + 1)) for / in
Cb(X). Note that the total variation of μn satisfies the equation
\μΛf) = / ( ( - , n)) + /((oo, n + 1)) for / in Cb(X) and so \\μn\\ £ 2
for each integer n. We now show that μn —* 0 in the weak-* topology
of M(X). Let f e Cb(X) and neN. Since / is continuous at (oo, n),
for each ε > 0, there is a finite subset Iε>n of / so that if
x £ Ie>Λ, |/(α;, n) — / ( c o , %) | < ε. Thus there is a countable subset In of
J so that if x$In,f(x, n) =/(oo, %). If 1/ is the union of the sets
{In}, we see that it is countable and if x £ If then f(x, n) = f(°o, ri) for
all integers n. Choose a point xf 0 If. Then the sequence {(xf, n)} con-
verges to the point (xf9 w) so that f((xf, n)) —>f((xf, w)). Thus

so that

lim/((-, n)) - /((oo, w + 1)) = 0 , i.e., μn(f)-+0.
n

Since / is arbitrary, we have shown that μn-+0 weak-*.
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We next see that {μn} cannot be tight: let ε = 1/2 and note that
a compact set in X can contain only finitely many of the points (oo, n).
If K is a compact subset of X and (°o,p)gK, we can choose fe
Cb(X) so that spt/ is compact, /((oo, p)) = 1, / = 0 on K, and 0 ^
/ =g 1, i.e., so that \μP\(X\K) ^ \μp(f)\ ^ |/((oo, p))[ = 1. Applying
[21, Cor. 3.4.], we see that C0(X) does not have a well-behaved ap-
proximate identity (note that X is not paracompact by [20, 3.1 and
3.2]).

REMARK 6.2. The space Cb(X)β where X is as in 6.1 is interesting
for several other reasons. First Cb(X)β is not a strong Mackey space
(see [7] for a definition). Conway in [7] has shown that Cb(X) is
strong Mackey if X is paracompact. The problem of finding topologi-
cal conditions on X necessary and sufficient for Cb(X)β to be a strong
Mackey (or Mackey) space is an intriguing problem. If we let μn be
the element of M(X) whose value at / in Cb(X) is /((oo, n))9 arguments
similar to the above show that {μn} is weak* Cauchy but has no weak-*
limit in M(X), i.e., M(X) is not weak-* sequentially complete (see [6,
5.1]). Cb(X)β is also not sequentially barrelled (see [23]).

7* Miscellaneous remarks*

REMARK 7.1. It is easy to show that if {eλ} is a sham compact
approximate identity for a (possibly non-abelian) Banach algebra A,
then {eλ} cannot be well-behaved unless A has an identity. The ques-
tion one really wants to answer is whether A can have another ap-
proximate identity that is well-behaved unless A has an identity
element. If A is commutative, the question is answered in the nega-
tive by 5.1 and 5.6 of this paper. We have the following generaliza-
tion of Theorem 4.1 in [19]:

THEOREM 7.2. These are equivalent: (1) M(A)β is (DF) (2) M{A)β

is (WDF) (3) l°°(A) is both a right and a left essential module (l°°(A)
is the set of all bounded sequences in A; l°°(A) is a right essential
module means that if {fλ} is any approximate identity for A and x =
{xn} e l~(A) then Km, (sup. \\xjλ - xn\\) = 0).

PROPOSITION 7.3. Let A have a well-behaved approximate identity
and suppose that {eλ} is a sham compact approximate identity for A.
Then A has an identity.

Proof, x = (xn)el°°(A); we can choose, by induction, a sequence
{λj from Λ so that
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l i m \ \ e h x n - xn\\ = l i m \\xneλ]c - xn\\ = 0

for all positive integers n. By the sham compact property, choose eλ

so that λ > Xk for all integers k. Thus eλeλμ = eλ]c so that eλxn = xn for
all n. Thus lim ; (sup \\xneλ — xn\\) = 0 and lim ; (supw | | e ^ Λ — »Λ) = 0,
i.e., l°°(A) is both left and right essential. Suppose {fr} is a well-
behaved approximate identity for A and 71 < 72 < β is a sequence
in Γ so that 0 Φ fr. Φ / r . for all integers ί. Since l°°(A) is essential,

there is an element τ0 is Z1 so that

for all positive integers i. Since {fr} is well-behaved, there is a posi-
tive integer N so that n, m ^ N implies that

which further implies that ||/-% — / ? m ] | < 1/2 for n,m^ N. Let C be
the commutative 5* algebra generated by {fr%: n >̂ iV}. We claim that
spt/ r i V £ N(fΪN+2). If this is not true, then s p t / r v = spt/ r Λ Γ + 1 = spt/ r j 7 + 2

and so / Γ γ _ i = / r = the characteristic function of spt/ r i V by 3β2,
contradicting the choice of {fΐn}n~ι Thus 3α? e N(flN+2)\sj)tfrN which
implies that \\flN+z(x) ~ / ? Λ ( ^ ) | | = 1. This contradiction concludes the
proof that a (nonabelian) B* algebra A cannot have both a well-
behaved and a sham compact approximate identity.

It is is easy to give an example of a β totally bounded approxi-
mate identity in C0(S) that is not canonical (and a fortiori, not well-
behaved). Our next result points out the rather interesting fact that
in an abelian JB* algebra a canonical chain totally bounded approximate
identity is well-behaved.

PROPOSITION 7.4. Let {eλ} be a canonical chain totally bounded
approximate identity for C0(S). Then {e?} is ivell-behaved.

Proof. Let {Xn} be an increasing sequence in A and F = U " n

Then F is clopen as in the proof of 3.3 and, for any compact subset
K of F, Ka N{eλN) for some integer N, so that eλn = 1 on K for n > N.
If λ G Λ, let K = spt eλ Π F: then eλ(e)n — eλm) = 0 for n and m large
enough by the preceding remarks. Therefore {eλ} is well-behaved.

Taylor [21] prove several interesting theorems about M(A) as-
suming that the B* algebra A has a well-behaved approximate identity.
From 4.3 and 7.4 we see that (looking at the algebra generated by
the approximate identity) an abelian, canonical, and chain totally
bounded approximate identity for A is a well-behaved approximate
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identity so Taylor's theorems hold in this case. We conjecture even
more, viz., that if A has a canonical chain totally bounded approxi-
mate identity, then the theorems in [21] hold. Our reason for be-
lieving this is the next proposition, which shows that a canonical
chain totally bounded approximate identity is "almost" well-behaved.

PROPOSITION 7.5. If {eλ} is a canonical chain totally bounded
approximate identity in a Banach algebra A, then {eλ} satisfies the
following condition: if ε > 0, {\n} is an increasing sequence in A, and
X e A there exists a positive integer N so that n, m > N implies

\\eλ{eλn - eλj\\ < ε .

Proof. By chain total boundedness of {e?}, there is an integer
P so that for all positive integers n

min \\eλ(e? — e7 ) 11 < — .

Choose N ^ P so t h a t if N < n < p, Iq > p so t h a t || eλ{eλ% — eλ) \\ < ε.

If n, m > N and n < m, choose q > m so t h a t \\eλ(eλn — β;.g)|| < ε.

T h e n | | e ^ - e ; j | | = \ \ e λ ( e λ n - β ^ ) e ^ J | ^ \\eλ(eλn - eλq)\\ < ε .

EXAMPLE 7.6. We now give an example of an approximate identi-
ty that is well-behaved and not β totally bounded. Let R denote the
real line and A be the set of pairs (i, j) where i is any positive integer
and j = 0 or j — 1. Order A as follows:

(1) (i, i) - (£', i') if i = ϊ and i = f;
(2) 0', 0) > (i, 1) for all integers £ and i;
(3) (i,O)>0',O) iΐi>j.

If λ = (£, 0) let /, be in C0(R) so that 0 ^ /, ^ 1 and fλ = 1 on [-i, i]
and /, = 0 off [-(ΐ + 1), (i + 1)]. If λ = (i, 1), let /, again be in C0(J?)
so that O^fx^ l,fχ(Xi) = 1 where ^ = l/2(l/(i + 1) + 1/i) and ^ = 0
off [l/(i + 1), 1/i]. The net {fλ} is easily seen to be well-behaved but
the infinite sequence {f{i, 1)} is clealy not β totally bounded.

EXAMPLE 7.7. In 3.3, we showed that if CQ(S) has an approximate
identity that is well-behaved (or β totally bounded) then S contains
a clopen set X so that C0(S) = B, ® B2 where Bx = {fe C0(S); f = 0
on X] and B2 = {/eC0(S): / = 0 on S\X} are 2-sided ideals of C0(S).
Obvious non-commutative generalizations of the above fail as we now
show. Let A be the algebra of compact operators on a Hubert space
Hy {e3 : 7 e Γ) an orthonormal basis for H, and A the set of finite subsets
of Γ ordered by inclusion. If λ e A, let Pλ be the finite-dimensional
projection defined by the equation
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Pχ(h) = Σ < A, er > er f o r h e H .
γeλ

It is easy to show that {Pλ} is a well-behaved and totally bounded
approximate identity for A, but A has no non-trivial decomposition as
a direct sum of two-sided ideals [14].

REMARK 7.8. It is perhaps worth pointing out that if CQ(S) and
CO(JΓ) have approximate identities with certain properties, so does
CQ(SXT) and the converse is also true. Suppose for example that
C0(S) has a well-behaved approximate identity {eλ} and C0(T) has
a well-behaved approximate identity {/«}. If / and g e C0(S} and
C0(T) respectively let / (g) g be the function on S x Γ defined by
/ (x) g(s, t) = f(s)g(t). It is easy to see that / (g) g e C0(SXT). Because

the algebra generated by ί/(x)# ^ f £ ° / £ H is dense in CQ(SXT) by

the Stone-Weierstrass Theorem, the net [eλ (x) fa] with directed set
all pairs (λ, a) where (λ, a) > (λ', a!) if λ > λ' and a > α' is an ap-
proximate identity for CQ(SXT) which is easily seen to be well-behaved.
Conversely, if {eλ} is a well-behaved approximate identity for C0(SXT)
and tQ e T, the net of function (fλ) defined by fλ(s) = eλ(s, ί0) is a well
behaved approximate identity for C0(S).

EXAMPLE 7.9. Our investigations of σ(M(A), M(A)f) relatively
compact approximate identities is in the first stages only. We wish to
present the following example, however, as it seems interesting. Let
S = the ordinals less than first uncountable with the order topology.
C0(S) has no σ(Cb(S), M(S)) relatively compact approximate identity.
For, suppose that C0(S) has an approximate identity {eλ} which is
σ(Cb(S), M(S) relatively compact. Note that (\eλ\

2) is an approximate
identity which is also σ(Cb(S), M(S)) relatively compact, so we may
suppose eλ ^ 0. Let XιeΛ and xλ — min {x e S: y > x ==> eλl(y) = 0}.
Choose λ2 e A so that β^2>2/3 on [0, xx + l] and let x2 — min {x e S: y>x=*>
βλ2{y) — 0. Note x2 ^ xι + 1 so x2 > xλ.

Suppose Xlf " ,Xn and xl9 •••,«?„ have been chosen so t h a t :

( 1 ) eh > k/(k + 1) on [0, xk^ + 1] for 2 ^ k ^ n

( 2 ) xk = min {& e S: 2/ > x => βijfc(2/) = 0}

( 3) xn > xn_, > > x2 > xt.

By induction we select a sequence (XΛ) in A and a sequence (a?Λ)
from X satisfying (1) and (2) and (3). Let x — lub{α;w}. By assump-
tion, 3 / G φ ) so that eλn clusters σ(Cb(S), M(S)) to /. If # > x,
eλ%(y) = 0 for all π so that /(?/) — 0. If y < x> then there is an
integer N so that y < xn fov n > N so that eλjy) clusters to 1; there-
fore f(y) = 1. We now show that / cannot be continuous at x. Since
{xn} is strictly increasing, xn < x for all n so that eλ (x) = 0 for all
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n and so f{x) = 0; on the other hand, xn —>x, so, if / were continuous,
f(x) would be the limit of the constant sequence f(xn), i.e. 1. This
contradiction concludes the proof that C0(S) has no σ(Cb(S), M(S))
relatively compact approximate identity.

Our last result (7.10 below) answers only one of a number of
questions of the following form: given an algebra A with an approxi-
mate identity having property P and another approximate identity
{eλ}, can we select from A a subset Ao (cofinal, perhaps) so that {eλ: λ e Ao}
has property P. Easy examples show that the subset Λo in 7.10
need not be cofinal in A.

PROPOSITION 7.10. If a Banach algebra A has a countable approxi-
mate identity {fr} and {eλ} is another approximate identity, then there
is a countable subset Λo of A so that {eλ: λ e Ao} is an approximate
identity for A.

Proof. Choose a countable subset AQ of A so that limXeΛQeλfr =
limXeAfγe2 = f, for each jeΓ.
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