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DERIVED ALGEBRAS IN L, OF A COMPACT GROUP

DAvID S. BROWDER

Let G be a compact topological group. In this paper, it
is shown that the derived algebra D, of L,(G)(for1l=<p <)
is contained in the ideal S, of functions in L,(G) with
unconditicnally convergent Fourier series. It is also noted
that this inclusion can be strict if G is nonabelian. Finally,
it is shown that the derived algebra of the center of L,(G)
is always equal to the center of S,, generalizing a known
result that D, =S, when G is compact and abelian.

In general, let (4, |[l.) be a Banach algebra which is an es-
sential left Banach L,(G)-module in L,(G) under convolution. For
convenience and with no loss of generality it is assumed that

=i for every feA .

This paper investigates the relationship between the derived
algebra of A and the ideal in A4 of functions with unconditionally
convergent Fourier series. Bachelis has shown in [1] that in case G
is abelian and A is equal to L,(G), for 1 < p < <o, the two algebras
coincide.

Bachelis’ result is generalized to the derived algebra of the center
of L,(G) and it is shown that for the compact group .54~ and A =
L,(4~) with p = 2, the derived algebra is strictly contained in the
ideal of functions in L,(.54>) whose Fourier series converge un-
conditionally.

Notation throughout will be as in [4]. X will denote the dual
object of G, the set of equivalence classes of continuous irreducible
unitary representations of G. For each oe¢2, H, will denote the
representation space of o (of finite dimension d,) and & () will denote
the product space [[,.:B(H,). Important subspaces of & (Y) referred
to in the text include:

(i) &) ={E={E} || E,|l,, is small off finite sets}

(i) &) ={E={E} || E|,= S d, || B lls, < o}

(1) &3 ={E={E} | B} =,z d, || B, |}, < e}

For feL,(G), f has Fourier series f~ X,.:d,tr(4,U") where
A,e B(H,), U eg. The Fourier transform f of f has the property
that f (0) = A! and hence:

171l = sup | 4, I, -
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many helpful conversations on these matters, Professor Gregory
Bachelis for suggesting a shorter proof of (3.8), and the referee.

This paper is based on results in the author’s doctoral disserta-
tion at the University of Oregon, June, 1971.

1. The derived algebra. We begin by defining the derived
algebra D, for an essential left Banach L, (G)-module 4, and noting
a few of its properties.

DEFINITION 1.1. If fe A, we define
£ 11, = sup L2 91l
sed [ G ]
and let
D,={fedA:||fllb, < =}.

The following facts are easy to check.

ProprosITION 1.2. (i) (Dus |l llo,) % @ Banach algebra and a
left Banach L,(G)-module in L,(G) under convolution.

(it) [flla = [ Sllp, for every fe A.

(iii) If we denote the set of trigonometric polynomials by T(G)
then we have

[| fllp, = sup 1r=glls for every fe A .

geT(G) H g Hm

We next give a characterization of D, which is due essentially
to Helgason ([3], Theorem 2).

THEOREM 1.3. (Helgason)

D, = {feA: fEc A, for every Ee £,(3)} .

Proof. Suppose fe A and that for Ec go(Z),fE' = g, for some
gr€A. Then the linear map EF— g, of &,(Y) into A has closed
graph and is therefore continuous. In particular, there exists a
constant £ > 0 such that

Nfxh|l, <k|lh|. for every he A .

Consequently, f belongs to D,.

Conversely, if fe D, then the continuous map §— f* g of A into
A extends to a continuous map E — h; of &,(2) into A. Then the
element fE = h, belongs to A for every Ec Zo(2).
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This characterization of D, gives two more properties of D,.

COROLI:ARY 1.4. (i) D, is an ideal in L,(G) and
(ii) D, is a right ideal in ().

We denote by C(G) the algebra of continuous complex valued
functions on G, and by K(G) the algebra of functions on G with
absolutely convergent Fourier series (see [4], Sect. 34).

For 1 < p < o, the derived algebra of L,G) is denoted by D,.

ExAMPLES 1.5. (i) Dgyg = K(G),
(ii) Dg(g) = K(G), (M’Ld
(ili) D, = L,(G) for 1 <p < 2.

Proof. First we show (i). Let f belong to K(G) and g to T(G).

Then || f+gllx =1 FG 1 < | FllI1§lle = | fllxlldll.. Hence, by (1.2),
f belongs to Dy .
To see (ii), observe that since || ||, = || |lzx@ on K(G), it follows

that K(G) = Dy CDe. Conversely, let fe Dy with Fourier series
given by

f~>dtr(A,U7).
oeZ

For each o€, let V, be the unitary matrix such that V,4, = | 4,].
For FFC Y, a finite set, define:

g=73, dr(V.U?).

Then g€ T(G), ||§ll. =1 and we have:
S d Al = S ditr A = 9@ | S 129l S 11l -

Hence || fllx@ = | /]l po and fe K(G).
To prove (iii), we use the facts (see [4], 36.10, 36.12) that D, =
Ly(G) and

27 flle = 1 fllo, = | fll.:  for every fe Ly(G) .
It 1 < p =<2 and fe Ly(G), then for ge T(G) we see that
Nrxglb <l fxglle= 1 gl < I Flll§lle=1F1118l-

Hence, we conclude that || f||,, <[/ f|l. and

W fllo, 2 1f 1o, Z 277 ([ F1la

2. The ideal in A of functions with unconditionally con-
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vergent Fourier series. Let & denote the family of all nonvoid
finite subsets of . For Fe. &, let D(F) = >,.rd)e. For f in
L(G), f= D(F) is the finite partial sum of the Fourier series of f
consisting only of terms involving elements of F.. We say that f in
A has unconditionally convergent Fourier series in A whenever

lim [If = f+DF)[la=0.

We denote by S, the family of all functions in A with this property.
If we also define

1£lls, = sup [|£ = D) Il

then the following facts are easily verified.

PROPOSITION 2.1. (i) If feS, then || flls, < c.
(ii) (Su |l lls,) %8 @ Banach algebra.

(i) [[flla = [ flls, for every feA.

(iv) If feS,, then limg.-||f— f=D(F)|s, = 0.

(v) S, is an essential left Banach L,(G)-module in L., (G) under
convolution.

Since S, satisfies the conditions we have postulated for A4, we
may compute its derived algebra.

THEOREM 2.2. (i) Ds,=D,N8,and || f|lps,=fllo, forfeDs,.
(ii) S, = S, (isometry).

Proof. Suppose f belongs to Dg,. Then for feS, and ge T(G)
we have

1Fx gl < NS 0llsa <0y
1gll. =~ dll- ~ “

Hence we have || f|l,, = [/ fllps, < o, and thus f belongs to D,NS,.
Conversely, if feD, NS, then for ge T(G) and F e %, we have

1f 0« DWE) s - 11f+9« DEY |l _yj £yp,
gl = gsD@E) T

Thus it follows that || fllps, = [[fllp, < o=, and f belongs to D,.
Part (ii) follows immediately from (2.1, iv).

3. Central derived algebras. Let A® denote the center of A.
Then A* = L:(G) N A and (4% || ||,) is an essential Banach L;-module
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in L?(G) under convolution. Before we investigate the derived algebra
of A7, we prove a useful proposition.

ProposiTION 3.1. For Ee Z.(2), define a function ¢, on X by:
@(0) = 1/d, tr(E,) for every ce€ 3. The map E— @, is an isometric
isomorphism of

(1) &2(2) onto 1.(2),

(ii) &F(2) onto c(2), and

(iil) &H(2) onto cy(2).

For feL:(G), let f(0) = 1/d, tr(f () = ®3(0), so that f has Fourier
series Zuesdoja(a)xu. Then the map f— f is the Gel’fand transform
A, X is the maximal tdeal space of A?, and

(v) |l =lIFll. for every fe Li(G).

Proof. Let E belong to #:(Y). By Schur’s lemma we have
(1) E, = ¢x0)1,, for o2 .
It follows that
(2) HE . =1l Pglle -

Clearly the map E— @, is linear and carries &:(3) isometrically
onto [.(¥). By (1), E— @, is multiplicative. By (2), the image of
Z(2) is ¢,(2), and the image of £i(2) is cn(2). The rest of the
proof is analogous to ([4], 28.71).

DEFINITION 3.2. For f in A%, let
£ gll,

[ fllz, = sup ——
19 /s

geA?

The derived algebra <, of A7 is defined as
Gy ={fe A |[fll-, < =}.

The following properties of <7, are easily proved.

ProrosiTION 8.3. (i) (=, |l |l-) s a Banach algebra and an
Li (G)-module under convolution.
(it) [ flla = fllo, for every fe A%

(i) || flle, = suPgerzo || f * g lu/ll g |l for every fe A%

(iv) Dy c =2,.

Helgason’s characterization (1.3) has an analogue in the central
case. We omit the proof since it is exactly like that of (1.3).
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THEOREM 3.4. (Helgason)
g, ={fec A% fpe(A®)° for every ®cc,()}.

We next prove that the center S; of S, is always contained in
,. To do so, we use the following well known fact which follows
from a theorem of Seever ([6]).

FAcTt 3.5. Let X be a discrete topological space and M a Banach
space. If T: M—1.(X) is a bounded linear map whose image con-
tains the characteristic function of every subset of X, then T s onto.

We also use the following lemma which states that every element
of 1.(Y) is a multiplier for S:.

LEMMA 3.6. If feS: and ®€l.(2), then there exists g€ Sz such
that g = @f.

Proof. Let f belong to SZ, and denote by M the collection of all

®el.(Y) such that @ ]% €(S:)° Then M is a Banach space under the
norm

@l =ll®l.+llglls, where g=of.

To show M = [.(2), it suffices by (38.5) to show that for 4 X, the
characteristic function @ of 4 is an element of M. To establish
this, we note that the net {f+ D(E): E"* c 4} is Cauchy in SZ, so
there is a function ¢ in SZ such that

lim [lg —f*D(E) s, = 0.

Efinite—y

We conclude that 5 = QDJC‘)‘ and hence, ® belongs to M.
THEOREM 3.7. S:cC o,.

Proof. Suppose f belongs to si. Then for ®ec¢,(2) < l.(2), <P]O”
belongs to (S:)° and hence to (4%)° by (3.6). Therefore fe &, by
(3.4).

We now restrict our attention to the case of A = L,(G) for 1 =<
p < . As before we write D, = D,; we also write S, =S, and
g, = <,. To compare D, and S, we use the following.
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LEMMA 3.8. Let 1=p<oco. If feL,(G) and [|f|ls, < o, then
fes,.

Proof. Let f belong to L,(G) with || f|[s, < co. Suppose f has
Fourier series

f~ gld‘,jtr(A,j Uy .
For ¢ € L,(G)* and any nonvoid finite FFC Z*, we have
3, Pdustr(A, U ) | S 11 £1ls, 119 1Lo -
Hence, we see

sup { %@(d,jtr(A,,jU(”f’)) | < oo,

rfinite—z+ | je

which implies
S| Py tr(A, U | < oo .

Thus the Fourier series of f is weakly subseries Cauchy and, since
L,(G) is weakly complete, the series is weakly subseries convergent.
Therefore, by the Orlicz-Pettis theorem ([2], p. 60, or [6], p.19) it is
norm convergent and unconditionally convergent to some ge L,(G).
Comparing transforms, we see that f = ¢ and consequently, f belongs
to S,.

Finally, we state the main result of this section, generalizing
the abelian result of Bachelis.

THEOREM 3.9. Let 1 < p < . Then we have
(i) D,c8S,, and
(i) == S;.

Proof. Observe that [[f[s, = || fllp, for every feD,, and that
1 flls, =l flls, for every fe <. The theorem now follows from
(3.8).

4. %4~ as a source of examples. Throughout this section G
will denote S5~ = [Iy, &%, where .&; is the symmetric group on three
symbols. Using this group we demonstrate that Bachelis’ result
does not extend to the non-abelian case.

THEOREM 4.1. Let G = 4 and 1 < p < . Then
(i) D,=S8, if and only if p = 2, and
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(ii) D, = L, if and only p = 2.

Proof. By (1.5,iii) and (3.9), we have
L,{G) = D,C S,C L,(G) .
Suppose p = 2. Observe that (ii) follows from (i) because
D,cS,cL,.

Note also that [ flls, = [ fllp, for every feD,. Hence to prove that
D, # S, it is enough to find sequences {f™} in D, and {g™} in T(G)
such that

(1) IS g% M o g oo
1™ 1o 1L s,

We select these sequences as follows. Let ¢ be the representation
class on .&4 of dimension 2 (see [4], 27.61). For f and g in T,(.5%5)
which will be specified later, form

FO@) = 11 £ (@)
and

g™ (x) = kfllg(xk) ,

where we G is given by z = (v,2, +++). Then f™ and g™ are
elements of T, (G) where ¢ is the element of ¥, given by
Ug’“”’ =U"® - U2 for every zeG .

It is easily verified that

W™ s, = 1" 1L = 1515,

[ f@ g™, =1[f=gl},
and

N .
g™ =13l .

Hence, to show (1) it suffices to find f and ¢ in T,(.¢4) such that

ool -
TGN

Let g = 2u? + 2iu,y and note that ||g|l. = 1. The rest of the
argument divides into two cases.
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Case 1. 1 =p < 2. In this case we let f= 2y, so that fxg =
g, and we compute

£l = [2—(}2-]’ (see [4], 27.61) .

Also, we have

1—p o P/p
loll, = 2[ L+ EEVETTY,

and therefore we conclude

Hf*ng 9ip=1/2
e = >1.
IR

Case 2. 2< <o, In this case we let /=22 + 2u!’. Then
feg= —2u7 + 2u” and so we have
ip

11l = 1/@(%)“ and  [[fegll, = 21/*3“(%)

Therefore, we conclude

L fxgll, — Quin 5 1,
I -

The question naturally arises as to whether D is equal to &,.
The next example shows that in some cases the answer is no.

THEOREM 4.2. If G = 4% and 1 = p < 4, then D, = =, if and
only if »p = 2.

Proof. By (1.5,iii) and (3.3, iv) we have
D; = 2, = Li(G) .

Suppose p = 2. Since D;C .z, and || |[-, = [, on D;, to show

that D; + 22, it suffices to find sequences {f"™} in D; and {¢g™} in
T(G) such that

U\f('ﬂ) " g(n) HP
g™ AL F -

o as N -—— co .,

As in the proof of (4.1) we construct the sequences by choosing f
and g on &4 as follows. First, let f = 2y,. Then fxg =g for any
ge T, and || fll,=2[(2?+2)/6]'>. Also we have j™ = 2"y, and
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N e, = 1 ™ {l, = [[fllz. As before, it suffices to find ge T,(55)
with the property that

Lol <4
R

Again we consider two cases.

Case 1. 1<p<2. Letg=2u{+ 2iuyy. Then as in (4.1), Case 1,
we have

gl — QUp—if
— L2 = >1.
G eIl 1l
Case 2. 2< p< 4. Let g =2u? + 2u’. Then ||§ll.. =1 and
QP T
Lol = 2[2YE]".
6
Therefore we see
A||g“p :[2_317/2]1/P>1
G e 1S s 2r+2

Finally, we observe that for G = .4~ we have the following.
THEOREM 4.3. K(G) & S;-

Proof. Since || fll. = || fllzw for f is K(G), it follows that

K(G) = Sk CSoi) -

Also, since || fllsy) = || fllx@ for f in K(G), to show that K(G) =
Sc)» we need only find fe T,(.%5) such that

1l o g

I f Ml

If we let f=u{ + u, then we have || f|.. =13 and || f|x,= 2.
Hence, the proof is complete.

The techniques used to prove (4.1) — (4.3) can also be applied to
show the following.

THEOREM 4.4. If G= 5~ and 1 < p < =, then
Z,(G) = Li(G) if and only of p=2.
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5. Open questions.

(65.1) Is T(G) dense in D,? If so, then it can easily be shown
that D,, is isometrically isomorphic to D,. One easily shows that
the density of T(G) is equivalent to the condition that S, = D,.

(5.2) Another question of interest is whether or not D, is self-
adjoint (that is, closed under f— f, where f(z) = f(#™9)) whenever
A is. Equivalently, is D, a left ideal in ,(¥) when A is self-
adjoint?

(5.3) Are there any conditions on a compact non-abelian group
G sufficient to imply that D, = S, for p = 27
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