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ENTROPY AND APPROXIMATION
OF

MEASURE PRESERVING TRANSFORMATIONS

T. SCHWARTZBAUER

The relationship between the entropy and rate of approxi-
mation of an automorphism was first discovered by A. B.
Eatok. He defined for each automorphism T an invariant
c(T) which depends only on the rate of approximation of T
and then proved that h(T) Sc(T)^ 2h(T) for any ergodic
automorphism T9 where h(T) denotes the entropy of T. The
proof which he gave that c(T) ^ 2h(T) can be generalized to
the case where T is not ergodic, and it was asserted further
that c(T) = 2h(T) if T were ergodic, but the proof given
was incomplete.

In this paper these results are generalized to the case of
an arbitrary automorphism T.

We will extend the result c(Γ) = 2fe(Γ) to an arbitrary
automorphism T by showing that 2h(T) ^ c(T) for any auto-
morphism.

In doing so we will apply the methods of approximation develop-
ed in [1], [5], and [6] The general type of approximation introduced
in [6], in particular, will allow us to reduce the case of a non-ergodic
automorphism to the consideration of ergodic automorphisms.

2. Preliminary Definitions* We let (X, J^~l μ) denote a normal-
ized non-atomic Lebesgue space, that is, a measure space isomorphic
to the unit interval, the Lebesgue measurable sets, and Lebesgue
measure. An automorphism T will be an invertible transformation
of X onto X such that A e J^ if and only if TAe^~, and for any
A e ̂ 7 we have

μ(A) = μ(TA) = μ(T~*A) .

If the equation TA = A implies that μ(A) — 0 or μ(A) — 1,
whenever A e ̂  then the automorphism T is said to be ergodic. A
set A e ^ is said to be invariant under T, or simply invariant if
TA = A.

Henceforth all sets to which we refer will be assumed to be in

A collection ξ of pairwise disjoint measurable sets whose union
is X will be called a partition. If rj and ξ are partitions and if
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every set in η is a union of sets in ξ we will write η ^ ξ and say
that ξ is a finer partition than η, and that η is a coarser partition
than ξ. If {f%} is a sequence of partitions, then the partition ξ = V£U£»
is the coarsest partition which is finer than each £Λ.

A partition f will be called a measurable partition if there exists
a sequence {ξn} of finite partitions such that ξn ^ fn+1 for each positive
integer n, and £ = V J=i f».

If £ is a partition then the factor space of X with respect to ξ
is the measure space (X/ξ, *β^, μξ) where the points of X/ζ are the
sets in £, where ^ 7 consists of all measurable sets which are unions
of sets in £, and where μζ(A) = μ(A) for any A e _^>

If £ is a finite or countable partition and if A 6 ^~ then among*
the sets in ^ ζ there is at least one whose symmetric difference with
A has minimal measure. We denote any one of these sets by A(ζ).
One may choose A(ξ) = \J B where B e £ and μ(A Π B) ^ μ(B)/2.

If {f%} is a sequence of finite or countable partitions and if

lim {AAA{ξn)) - 0
n—>co

for each A e ^ ^ then we write ζn —• ε, as ^ —> oo. (AΔB denotes the
symmetric difference of the sets A and B.)

DEFINITION 2.1. Let {/(w)} be a monotonic sequence of positive
numbers such that lim^oo f(ri) = 0. We say that the automorphism
T admits an approximation with speed f(n) if for each positive
integer n there exists a partition ξu = {C<(w), i = 1, 2, •••, g(^)} and
an invertible mapping Tn from X/ζn onto X/fΛ such that if we let
Gt(n) = TjC<(n) then

l ξn—>ε as n—> oo, and
2. j:?s> ^(rc^^) n C/(Λ)) < /(ff(Λ))

where C/(^) denotes the complement of the set C<(w) with respect to
the whole space.

If Tn is a cyclic mapping then, by reordering the elements of ξn

if necessary, we may assume that C<(w) = Cί+i(n) for i = 1, 2, , ̂ (^)
where Cff(ft)+1(n) = CΊOi). In this case the second condition above
takes the form Σfi? μ(TCi(n) Π (Ci+1(n)) < f(q(n))9 and we say that
Γ admits a cyclic approximation with speed f(n).

If Tw is measure preserving for each positive integer n then we
say that T admits a measure preserving approximation with speed
f(n).

This particular type of approximation was introduced in [6], and
a discussion of the properties of an automorphism which admits this
kind of approximation can be found in that reference.
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3* Approximation and in variance*

THEOREM. If (X, ^ 7 μ) is a Lebesgue space and if β is a measur-
able partition of X then

(1) the factor space (X/β, ^ 7 , μβ) is a Lebesgue space,
(2) for almost all B e X/β there exists a sigma field a?~B of sub-

sets of B and a measure μB such that (B, j ^ B y μB) is a Lebesgue space,
and

(3) for any set A e J?" we have A Π B e J ^ for almost all
B e X/β. The function μB(A ΓϊB) is a measurable function on X/β
and

μ(A) = \ μB(AnB)dμβ(B) .
JXjβ

This theorem, as well as any properties of measurable partitions or
entropy of which we may make use, can be found in [4].

THEOREM 3.1. [6] // the automorphism T admits an approxi-
mation with speed f(n) and if β is a measurable partition such that
every set Be β is invariant under T, then T restricted to B, denoted
by TB, admits an approximation with speed fB{n) for almost all
B e X/β where

\ fB(n)dμB{n) < f{n) .

4* Entropy and approximation of ergodic automorphisms* We
now discuss the relationship between the entropy of an ergodic auto-
morphism and its speed of approximation. In doing so, we will rely
heavily on the proofs of the analogous results obtained by Katok in
[2] in the case of a measure preserving approximation.

DEFINITION 4.1. If T is an automorphism, then c(T) will denote
the greatest lower bound of the set of numbers 2c such that T
admits a measure preserving approximation with speed c/(ln ri). If
T admits no such approximation for any number c, then c(T) = <χ>.

(The type of approximation defined in [2] uses μ{TCi{n)ACi{n))
where we have used μ(Td(n) Π Q(ri)). The effect of this is to
multiply all speeds by a factor of two as is discussed in reference
[5]. This accounts for the factor of two in the above definition.)

DEFINITION 4.2. If T is an automorphism, then b{T) will denote
the greatest lower bound of the set of numbers 26 such that T admits
an approximation with speed δ/(ln n). If T admits no such approxi-
mation for any number b, then we set b(T) = oo.
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The definitions and properties of entropy and factor automorphisms
of which we will make use can be found in [4].

THEOREM 4.1. If T is an ergodic automorphism then

h(T) :S b(T) ^ c(T) .

It is obvious from the definitions of the invariants b(T) and c(T)
that b(T) ^ c(T) for any automorphism T, so that we have only to
prove the first inequality. The proof we will give will be a modification
of the proof given in [2] to show that h(T) ^ c(T) for any ergodic
automorphism T. We prefix two lemmas to the proof of the theorem
in which we will require the use of Sinai's weak isomorphism
theorem:

THEOREM (Sinai [7]). If T is an ergodic automorphism and if
S is a Bernoulli automorphism such that h(S) ^ h(T), then there
exists a factor automorphism of the automorphism T which is iso-
morphic to the automorphism S.

Since the result of Theorem 4.1 is trivially true if h(T) = 0, we
assume in the following that 0 < h{T) < oo. The case h(T) = °o
will be considered subsequently.

LEMMA 4.1. If an ergodic automorphism T admits an approxi-
mation with speed 6/(ln n), then

b ^ max 2a(h(T) + a In a + (1 - a) In (1 - a) - a In p{T)) ,
0<αr<(pCΓ))/(ί>(7Ή 1)

where p(T) denotes the greatest integer which is strictly less than

REMARKS. By an application of the weak isomorphism theorem
we see that if S is a Bernoulli automorphism with a state space of
p(T) + 1 elements and probability distribution πu π2, •• ,τrp(ΓJ+1 such
that h(S) — h(T) then there exists a partition rj of X,

V ~ {βu βzi * *> βp(T)+i} >

such that

μ(βiQ ΓΊ T-"βh n . . . ίΊ T~kβik) = πiQπh . . . πik

for any integer k and any choice of indices iθ9 ily , ik. Since £Λ—»-ε
we may assume that if δ > 0 then for n sufficiently large there exists
a partition ψ] = {TΓ, T£Λ), , 7^)+1} such that η{n) ^ ξn and such
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that if Dn = [Jt^iΎiin^βi) then μ(Dn) < δ.
We consider also the partition ηk = Vf=o T~ιη and we let Bg

denote the union of those elements of ηk whose measures exceed
e~k{h{T)~θ). Since T is ergodic we may apply the Shannon-McMillan-
Breiman theorem to obtain lim*^ μ(Bg) = 0 for any θ > 0. We fix
θ > 0 and given δ > 0 we choose k and n sufficiently large in what
follows so that μ(B}) < δ and μ(Dn) < δ.

Before proving Lemma 4.1, we state and prove another auxiliary
lemma.

LEMMA 4.2. // an ergodic automorphism T admits an approxi-
mation with speed δ/(ln n), then for n sufficienty large there exists an
element C*(ri)eζn such that μ(C*(ri)) > l/(q(n)\nq(n)) and

k fc-l

Bf) + Σμ(TlC*(n) Π D.)

+ Σ>μ(TιC*(n) n (TίC*(n))f)
10

^ (2ifci/T(l + δ) + Hl + mk + l) μ{C*{n)) .
21n q(n)

Proof. Consider the space X x Y where Y — {yu , yk) is the
discrete space of k elements, each element having measure one. Let
μ indicate the product measure on X x Y We define the function
G(x, y) on X x Y so that

G(x ^ ^ V T M ^ Λ ) n B$) + μ(TίCi(n) n DΛ) + μ(TιC<(n) Π &

if and only if x e d(ri). It is easily seen that

( G(x, y)dμ = k^ψ + Σ CΣμίTlCάn) Π Dj)

Since

and

we have

+ Σ,C'Σμ(τιc{(n) n (TI

Σ J«(ΉC«(Λ) Π Dn) = μ(Dn) < δ
i=ί

iCM)') £ I Σ μ{TC<{n) Π
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G(χ, y)dμ < kVΎ + kδ + bk^k + V < 2kVΎ
2 In q{n)

< 2kVΎ + .
2 In q{n) 2 In q(n)

If we let Fn denote the union of those elements of ξn whose
measures are not greater than l/(q(n)\nq(n)) then μ(Fn) <̂  l/(ln q(ri)).
We define En = X - Fn. If we let εn = μ(Fn x Y) then l i m ^ εn =
lim^^^ μ{Fn) = 0. Now there must exist an element C*(n) a En such
that

G(x, V) dμ <, (2k VΎ + Mi±Ά) μ(C*(n))
(n)χγ \ 2 In q(n) y 1 — εn

for otherwise we would have

G(x, y)dμ^\ G(x, y) dμ > (2k VΎ + )

2 In q(n)

which we know to be false.
The lemma follows by noting that C*(n)czEn implies that

μ(C*(n))> * ,
q(n) In q{n)

that n sufficiently large will insure that 1/(1 — en) < 1 + δ, and that

ί G(x, y)dμ = J* μ(C*(n) Π Bo

k) + Σ MΉC*(n) Γ) Dn)
JC*(n)xY V 0 1=0

+ ΣM2"c*(») n (Tie•(»)').
1=0

Proof of Lemma 4.1. We let yff denote the element of the
partition η{n) which contains TlC*(n) for I = 0, 1, •••, k — 1 and we
let βdι denote the corresponding element of the partition η.

Clearly

μ(TιC*(n) ΓΊ TίC*(n)) = μ(C*(ri)) - μ(TιC*(n) Π (ΓiC*(%))')

so that

μ{TιC*{n) Π /9yι) ^ μ(TιC*(n) Π Tι

nC*{n)) - μ(TiC*(ri) Π β'3ι)

^ MC*W) - μ(TιC*(n) n (ΏC*(%))')

-^(TiC*WnDJ.

Thus using the results of Lemma 4.2 we get

k-l

M ' f a ) n /sy,) Ξ> ft//(c(%) (i+2i/T(i + δ) +
ι=o \ Δ in
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Let Mm indicate the set of points xeC*(ri) such that Tιx$βι for at
least m values of I, where I — 0,1,, , k — 1. It is easily seen that

mμ{Mm) + ΣμiΓC+in) Π βj) ^ kμ(C*(n)) .
1=0

Combining this with the preceding inequality give us that

μ{Mm) ^ 1 μ(C*(n)) (2VT<1 + ί)

We can write C*(n) as the disjoint union of three sets:

C*(n)Π(Bt), I,n(5ί) ' ,

and iVm, where Nm is the complement with respect to C*(n) of the
union of the two preceding sets. If follows from Lemma 4.2 that

μ(C*(n) Π BJS) £ (23(1 + δ)
2 In

so that we have only to estimate μ(Nm).
If we let Nm denote the set of points x e C*(ri) such that Tιx £ βSι

for no more than m values of I, then Nm c Nm Π (Be)'. Now this last
set consists of elements of the partition rjk whose measures are not
greater than e~kihiT)~β). Determining the number of elements in
Nm Π (Be)' is accomplished as follows. Let E be such an element,
than E can be identified by telling in which element of

the set TιE is found for every value of I — 0,1, , k — 1. Thus
each set E determines a sequence of length k whose ί-th entry is
the index of the element of the partition rj in which TιE is found.
Conversely every such sequence determines a possible element of ηk.
In order for such an element to be in Nm Π (Bo)' it is necessary that
the given index j t occurs as the l-th entry in the sequence for at
least k — m entries. The number of sequences in which the given

/ k \indices occur in exactly k — m places is ( h ) (p(T))m. Assume

that m < (p(T))/(p(T) + ΐ)k then if 0 < s ^ m we have

k \ Ik \

k — m + s ] \k — mj

Thus the number of sequences in which we are interested does not

exceed m(*j _ m)(p(Γ)) = m(^)(p(Γ))-. Therefore
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m

If we let a be determined by the relation m — ak and if v ̂  0,
then if we apply Stirling's formula we obtain for sufficiently large k
and m that μ(Nak) < e-kihiτ)+*ina+a-a)in(i-a)-«inpm-v-θ)9

If a is chosen so that

h(T) + a In a + (1 - a) In (1 - α) - α In p(T) - j ; - 0 > 0

and k is then chosen so that

α ) Λ > (1 + 8) In
~ h(T) + a In a + (1 - a) In (1 - a) - a In p(T) - v -

it will follow that

μ(Nat) ^ - ± — .

Since for n sufficiently large

q{n)ι+δ q{n) In

we have

μ(C*(n)) = MC*(») Π β,fc) + ^(Mm n (Bθ

kY) + μ(Nm)

^ (2d(l + δ)

2a In q(ri)

+

2 In q(ri) a

Now if the term inside the parenthesis on the right of this in-
equality is less than one, we will have the contradiction

μ(C*(n)) < μ(C*{n)) .

It is easily seen that this term will be less than one if

, 2a\ng(n) Λ § ^ 2τ/T(l + δ)
* < b{aVT + 1)(1 + 8) \l 3δ - 2δ a

Therefore this inequality and inequality (1) above cannot be simul-
taneously satisfied for any values of δ, v, θ, and a. This implies
that
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(1 + δ) In q(n)
h(T) + a In a + (1 - α)ln(l - a) - a In p(T) - v - θ

2a\nq{n) Λ _ 3 5 _ 2 δ 2 _ 2VT(1
b(Vδ +1)(1 + δ)\ 3 5 2 δ

b(aVδ +1)(1 + δ)\ a

Since δ, v, and 0 may be taken arbitrarily small and n may be chosen
arbitrarily large this implies that

b ^ 2a(h(T) + a In a + (1 - a) In (1 - α) - a In p(ίΓ))

for all α such that 0 < a < (p(T))/(p(T) + 1).

REMARK. If h(T)= oo then we may choose S to be any Bernoulli
automorphism with finite entropy and, by adapting the above proof
to this case, we would arrive at

b ^ max 2a(h(S) + a In a + (1 - a) In (1 - a) - a In p(T)
Q<cc<p(T)l(p(T)+l)

where p(T) is the greatest integer which is strictly less than eh{s).

Proof of Theorem 4.1. The following argument is exactly the
same as that found in [2]; however, we state it for the sake of com-
pleteness.

There are two cases to consider.
(1) If h(T) = oo then for any integer p there is a factor auto-

morphism of T which is isomorphic to the Bernoulli automorphism S
with a state space of p elements and with propability distribution
π1 = 1/p, π2 = 1/p, , πp — 1/p. Since h(S) — In p, by the remark
following the proof of Lemma 4.1, we have

b ^ max 2a(ln p + a In a + (1 — a) In (1 — a) — a \n(p — 1)) .
0<α<(p-l)/2>

If we set a — 1/2 this implies that 26 ^ In p — 2 In 2 for all
positive integers p. Therefore b{T) — oo.

(2) Assume that T is an ergodic automorphism such that

0 < h(T) < oo

and T admits an approximation with speed (θh(T))/(lnri). We con-
sider the automorphism Tm where m is a positive integer. Since
μ(T~C<(n) Π {TΐCt{n))>) ̂  Σ^o 1 μ(TCM{n)^ Π (TnCM(n))') for any ele-
ment Ci(n) in the partition ξn it is easily seen that Tm admits an
approximation with speed m(θh(T))/(In n). It is, of course, well known
that h(Tm) = mh(T). We wish to apply the result of Lemma 4.1 to
Tm. This is not immediately possible, however, since Tm may not
be ergodic. Nevertheless, it is clear that Sm is isomorphic to a factor
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automorphism of Γm since S is isomorphic to a factor automorphism
of T We can thus replace the partition η by ViS1 T5η and carry
out the proof of Lemma 4.1 to obtain

θmh(T)

;> max 2a(mh(T) + aln a+(l-a)ln (l-a)-aln p(Tm)) .
0<a<p{Tm)l(p(Tm)+l)

Since limm_>ΰOp(Tm)/(p(Tm)Jrl) = 1 we can assume for m sufficiently
large that p(Tm)/(p(Tm) + l) > 1/2 so that we may set a = 1/2 and
obtain

θmh(T) ^ mh(T) - In 2 - —In p(Tm) >™h{T) - In 2 .

That is,

θh(T) >
m

for m sufficiently large. This is only possible if θ ̂  1/2, and this
implies that b(T) ̂

Added note [4-25-72]. The above proof can be strengthened to
obtain the result 2h(T) ^b(T) <£ c(T) by making the following change
originally devised by Katok.

We may assume that the integer k is even, and we replace the
partition ηk = \f]UT~ιr] by ηk = λ/V^^T^η. It follows then in the
proof of Lemma 4.2 that

G{x, y)dμ < kV 3 + kδ
k/2

Σ I

4 In.

Thus we arrive at

b ^ max 4(
0<rt<p(21)/(p(7τ)+l)

which leads to b(T) ^

5* Entropy and approximation of measure preserving trans-
formations* We now turn our attention to the case of an arbitrary
automorphism T. It is stated in [2] that c(T) ^ 2h(T) for any auto-
morphism T although the proof is given only in the ergodic case.
By applying Theorem 3.1 we will extend the result of Section 4 to an
arbitrary automorphism T and obtain 2 h(T) ^ b{T).

The following result is found in [4].
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THEOREM. If β is a measurable partition such that every set
Beβ is invariant under T, then

h(T) = \ h(Tΰ)dμβ(B)
Jxiβ

where h{TB) devotes the entropy of the automorphism TB on the measure
space (B, J^, μB).

It is known (see reference [4]) that for any automorphism T there
exists a maximal invariant measurable partition, that is, a measur-
able partition β such that every set Beβ is invariant under T and
TB is ergodic for almost all B e XIβ.

THEOREM 5.1. If T is an arbitrary automorphism then 2h(T) ^
b{T).

Proof. If T admits an approximation with speed 6/ln n and if β
is the maximal invariant measurable partition for T, then Theorem 3.1
states that TB admits an approximation with speed fB{n) such that

( Mn)dμ,(B) £ -1— .
jχ/β inn

It follows then that

\ lim inf (In n)fB{n)dμβ{B) ^ lim inf \ (In n)fB{n)μβ{B) ^ 6 .
JXlβ W->oo W->oo }χjβ

If b(TB) indicates the greatest lower bound of the numbers 2a
such that TB admits an approximation with speed α/(ln n) then certainly

b(TB) ^ 2 limn^ mf (In n)fB(ri), so that ί b(TB) ^ 26.
JXlβ

Since TB is ergodic for almost all B, we may apply Theorem 4.1

to obtain 2h(T) = ί 2h(TB)dμβ(B) ^ ί b(TB)dμβ(B) ^ 26, from
JXlβ JXjβ

which it immediately follows that 2h(T) ^b(T).
Combining this with the results from [2], we obtain the follow-

ing corollary.
COROLLARY 5.1. For any automorphism T, 2h(T) = b(T) = c(T).

COROLLARY 5.2. If an automorphism T admits an approxima-
tion with speed 6/(ln n), then T admits a measure preserving ap-
proximation with speed (6 + ε)/(ln n) for each ε > 0.

COROLLARY 5.3. An automorphism T has infinite entropy if and
only if it admits no approximation with speed 6/(ln n) for any 6.
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In view of Ornstein's Isomorphy Theorem for Bernoulli shifts [8]
we have the following corollary:

CORORARY 5.4. If S and T are Bernoulli shifts then S and T
are isomorphic if and only if c(S) = c(T).
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