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A CLASS OF OPERATORS ON EXCESSIVE FUNCTIONS

MICHAEL J. SHARPE

Let X=(Q, %, %, X, 0, P°) be a special standard
Markov process with state space (E, %) and transition semi-
group (P;). We emphasize here that the .#; are the usual
completions of the natural o-fields for the process. In this
paper, we associate with certain multiplicative functionals of
X operators on the class of excessive functions which are
related to the operators P, but which are a bit unusual in
probabilistic potential theory in that they are not generally
determined by kernels on E X & . An application is given to
a problem treated by P.-A. Meyer concerning natural potentials
dominated by an excessive function.

2. The operator associated with a natural multiplicative func-
tional.' By a multiplicative funectional of X, we mean a progressively
measurable process M which satisfies, in addition to the standard
conditions ([1], III, (1.1)) the following condition:

(2.1) almost surely, M, =0, t— M, is decreasing on [0, ~) and
if S =inf{¢t > 0: M, = 0}, then ¢t — M, is right continuous on [0, S),
and M,Mso0, = M,,s.,, a.s. for all ¢t = 0.

A simple example which illustrates some possibilities is obtained

f by considering X to be uniform motion to the right on the real line
Land M, = f(X,)/f(X,) on {f(X,) > 0}, M, = 0 for all ¢ on {f(X,) = 0},
. Where f is a decreasing positive function on the line, f(0+) = 0, f is
| right continuous on (— o, 0) and f(0) < f(0—).

If M is a multiplicative functional, then S is a terminal time and
80 M1y, (¢) is a multiplicative functional which is right continuous.
For a given M, the modified functional will be denoted M. Let us
denote by E, the set {xe E: P*{S >0} =1} = E3 and call M exact
if M is exact. Note that M and M generate the same resolvent, but
not necessarily the same semigroup.

It should be emphasized that one will not have the freedom to
replace M by an equivalent multiplicative functional, for the operator
to be associated with M will not respect equivalence.

Let M be a given MF; for almost all w, let (—dM,(w)) denote
the measure on (0, {(w)) generated by the increasing function ¢ —1 —
M,,s(w). Care should be taken when computing with (—dM,), since
(—dM,) is generally not the restriction of (—dI,) to (0, S].

Lt The reader is referred to the books of Blumenthal and Getoor [1] and Meyer [2]
for unexplained terminology.
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DEFINITION 2.2. A multiplicative functional M is called natural
if, almost surely, the trajectories ¢t — M, and ¢ — X, have no common
discontinuity on [0, S), and Xz = X;_ on {M, < M,_, S < C}.

We now associate with a natural MF M an operator PZ on the
class .7 of wa-excessive functions for X.

DEFINITION 2.3. If M is a natural MF and feS° let

Pif@) = B{| e f(X) (M) + e XIM}, we By
= f(x) , wEH,.

By f(X,)_ is meant the left limit of the trajectory s— f(X,) at ¢ if
t >0, and f(X,) if ¢t = 0. Recall that if M is a right continuous MF,
a =0 and &%, one defines P;f by

Pif@ = E*| of(X)(—dM), wek,
= f(®) , vgEy.

One obtains PgU*f + V*f = U*f, where (V% is the resolvent for
the subprocess (X, M) and it follows that if M is exact, Pige .9
for all ge .o#*. If fe &”*is regular, in particular if f = U%g for some
ge &*, then for M natural, Pgf = PZf. In general though, the
trajectory ¢t — f(X,) can jump at the same time as doss the trajectory
t— M, and Pgf will differ from P5f. Because of the assumption
that X is special standard, it follows from [1], IV, (4.21) that f(T,)_ =
f(X,;) for any accessible stopping time 7T, and therefore

(2.5) Pif(x) = Pif(x) for all ¢ if fe.or*.

(2.4)

We shall show that Pgf < f and Pgf e.#if fe &% The fact that
the action of Pg on a-potentials is the same as that of PZ, but that
P may differ from Pif shows that generally, Pj is not determined
by a kernel on E x &.

The first lemma shows that although it may not be determined
by a kernel, P; does respect certain increasing limits. Obviously
Pif < Pig if f,ge.o”" and f <y.

LEMMA 2.6. If fe.&#% Pi(f A n) increases to PLf as m— oo.

Proof. It suffices to prove that (f A n)(X,)_ increases to f(X,)_
for all ¢e(0, ), almost surely. If the trajectory s — f(X,) is right
continuous and has left limits on (0, {), then for each t<¢, if f(X,)_>z,
then there exists ¢ > 0 such that f(X,) > 8 on [t — ¢, t). Therefore,
ifn>p (fAX,)>pon [t—e¢t) and hence (f A »)(X,)_ = B.



A CLASS OF OPERATORS ON EXCESSIVE FUNCTIONS 363

We remark at this point that a — Pgf(x) is right continuous for
every fixed choice of M, f and z.

THEOREM 2.7. If M 1is an exact natural MF,0 < a < « and
feoe then Pif < f and Pif e o=

Proof. Because of (2.6) it may be assumed that f is bounded.
We may also assume a > 0, since the case a =0 will follow by a
trivial limit argument. Let

Nt:Mt)t<S
=M, t=8 on {S<{}
=M. _,t=Con {S=_}.

One then has —~dN, = —dM, almost surely, and for x ¢ E,, Pif(x) =
E’{g e £(X,)_(—dN,) + e f(Xs)MS}. Define a family {T,; 0< s < 1}
0
of (#;) stopping times by
T,=inf{u >0:1— N, > s}.
It is clear that s — T, is almost surely increasing and right continuous,

T, = < a.s.on {T, > S}, {T, = 0 for some s} = {M,, = 0} and {T, < S} =
{T, < {} almost surely. By the change of variable formula,

[, e @)(—ab) = | e f(Xr) Liryeds -
Let Z, = A9 £(X,,,). Since a > 0,
S;sz_ds - S:ZTrl{Tsés,ds + S:ZTS_LTs:m;ds
= [l () Liryssds + | € F (XD Lir,muds
= | e X)(—dM) + e F XM
Upon checking separately the case z ¢ E,, one finds
2.8) Paf(w) = E”S:ZTs_ds, veE.

We now need a fact which will be of use at a subsequent point
in the proof.

(2.9) For any initial measure g, the set of se(0,1) for which
T, is a.s. P* equal to an accessible stopping time has full Lebesgue
measure.

To demonstrate (2.9), we let
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I(w) = {} U [0, {(®)) — {t€ (0, {(®)): Nis.(®) < Ny(w)
for all ¢ > 0 and N,_.(w) = N,(®w) for some ¢ > 0} .

Obviously [0,{) — I is countable and S (—dM,) = 0 a.s., and con-

[0,0)—

sequently |1 ds = 0 a.s., by the ch%tcr)lgle of variable formula. If
0 {Tge¢I}

we prove that T, is accessible on {T, € I}, we shall have proven (2.9),

for by Fubini,

0= E#}H

0 {Tgel}

ds = SLP#{TS ¢ I}ds .
0

On {T, = 0} U{T, = oo}, T, is trivially accessible. It is easy to check
that {T,e L 0< T. < ={0< T, =T._<C,andon {T.e[,0< T, <
O n{X;, = X;, .}, T, is accessible by the famous theorem of Meyer,
whilst on {T,eI,0< T, < N{X;, # X;,-}, N;, = Ny since M is
natural, and it follows that a.s., T,._. < T, for all e€(0, s). The ac-
cessibility of T, on {T,c I} is now evident.

To obtain Pgf <f, we invoke (2.8) to see that Pif(x) = SIE”ZTs_ds,

and conclude by observing that (Z,, #;, P*) is a bounded nor:-negative
right-continuous supermartingale and that for almost all se (0, 1), T,
is a.s. P* accessible to find E°Z, _ < E°Z, = f(») for almost all s.

We prove next that Pgf is a-super-mean-valued. It is enough
to give a proof in case a > 0. From (2.8) we see that

PePsf(n) = E’”e‘“tE“’tSLZTs_ds - SIE””e"“‘ZTS_oths )
0 0
Our first step is to show
2.10) PePif(x) < SlEZ(steg,)_ds , weE.

On {S=t+ T,00,)}, either S>¢t or S=1¢t and T,06, =0. It is a
matter of checking cases to see that
62y, 00, = (Zyyr,0,)- o0 {S > ¢},
and a.s. on {S=t¢, T,o0, = 0},
€2y, 00, = e f(X) = e f(X;) S e f(X)- = (Zisr,,)- -

s Hence ¢7*Z; o0, < (Zy1r,0)- a.8. on {S=t+ T,00,}. On {S<t+
T.o0.}, (Z,1r,.0,)- = €5 f(X,), while

e~atZTs—°03 = e_a(HT"ﬂgt)f(XwTsoot)— on {S<t+ T,00, T,00, = So6,},
= e—“(t+s°0t)f(Xt+seot) on {S<t+ T,o0, Tyol, > S0} .
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One sees readily from (2.9) that for fixed «x, t + T,-6, is a.s. P* equal
to an accessible stopping time for almost all s and so for almost all
choices of s, there exists an increasing sequence {R,} of stopping times
with limit ¢ + T,o6, such that P*{R, <t + T,°6,} =1 for every =u.
Then L, = R, N\ (t + S-6,) increases to t + T,o0, strictly from below
(@a.s. PYon {S<t+ T,00, T,o0, < S-6,} and R, is eventually equal
to £+ Sof, on {S<t+ T,00, T,o0, > So06,}. One then has

E”e—“tZTs__Oﬁt = Ex{(fatZT,—"5t[1(sgt+rgeat} + 1{S<t+Tso(it)]}
= EZ{(Z2+TSo6’t)—1(S§t+Tsw9t) + Hme_aL"f(XL,,)l(sqwsoot:} .

But ¢t + S-8,= S a.s. and so L, = S eventually, a.s., on {S<t + T,06,}
and it follows from the fact that {e~*f(X)), &, P°} is a bounded
nonnegative right-continuous supermartingale that E®e™Z, -0, <
E*(Z,1r.,)- for almost all se(0,1). This proves (2.10).

Now observe that a.s., T, <t + T,o6,on {T. <S}and ¢t + T,08,> S
on {T, > S}. For, on {T, < S}n{M, > 0},

t+ T,00, =inf{u + t:u >0, N,00, <1 — s}
inf{u +¢tu>0 M, 0,<1—s}
inf{lo>t: M, <@ — s)M,}
inflo >0:0M,<1-8=T,,

v

v

and on {T.=S}N{M,=0},,t=8S so T.<S<t£t+ T,00,. On
{T, > S} n {M, > 0}, the same calculation as above gives ¢ + T,00, =
inf{ifv>0:M,<1—s}as,andsot+ T,o0, <8 would imply T, < S.
On {T.,>SIN{M, =0}, Mg >0 so t>8 and ¢+ T,o6, > S almost
surely.

For almost all se(0,1), T, and ¢t + T,-0d, are (a.s. P®) accessible
stopping times and it follows simply from the order relation observed
above and the fact that (Z,, .&;, P®) is bounded nonnegative super-
martingale that E*(Z,.r.,)- < E°Z, _ for almost all se (0, 1), whence
PyPjif(x) < Pif(w).

It remains to show PgPif(x) — Pif(v) as t—0. If xe K, then
X, e E, as. on {t < S}, and so

#Pif @) = BrePif(X)
2 B Lo B {| e f(X) (—db) + FX) M)

(0,8)

= Exl(t<s»{§(o ot )e—a(t+s)f(Xt+s)—("dMs° g,) + f(Xz+soot)MSo 0,3““3"4%}
hEely

= ElucyMi{| e r(X) (~ah) + F(X) M} .

(s
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By Fatou’s lemma, if xc £,
lim inf,.o P Pif @)
2 B lim ol M| | e F(X) (—dM) + F(X) Mo}

= 5| X (—dM) + e MF (XD} = Pif @)

Consequently PfPgif(x) — Pif(x) if xe¢ E,. On the other hand, if
vxeE— E,, PePif(x) = PeP;f(x) WhNich converges as t— 0 to Py f(x) =
f(@) = P3f(x), using exactness of M. Our proof is now complete.

3. Application to a problem treated by Meyer. Meyer [3]
proved that if » is a natural potential of X, f€ & and u < f, and
if in addition w(X,)_ < f(X;) for all ¢ such that X, = X,_, then u =
P.f for some exact terminal time R on a possibly larger sample space.
We give here a similar representation using an operator of the type
discussed in the preceding section, one advantage being that one may
remain on the original sample space, using only the fields (%;), and
another being that the last, somewhat unnatural, condition may be
dropped.

THEOREM 3.1. Let fe.&” be finite off a polar set and let u be
a natural potential such that w < f. Then there exists a natural
exact MF M of X such that w = P,f.

Proof. Let u = uz, B a natural additive functional. Since u is
finite, B is a.s. finite on [0, ), and by [1], IV, (4.29), if T is a stop-
ping time which is accessible on 4, then B, — B, = u(X;)_ — w(X,)
a.s. on AN{T <. For every ¢ >0, let

Ar = S:( F(X)_ + & — w(X,)"dB, .

Clearly A: is a finite natural AF of X, and if T is an accessible stop-
ping time, A7 — A7 = (f(Xy)- + & — w(Xy) 7 (w(Xy)- — u(Xy) a.s. on
{T<{ and so A: — A:_ <1 for any accessible T. There exists
therefore a right continuous natural MF, M¢, such that S ={ and

(M; )™ (—dM;) = dA;, t< .
Let C, = B?, the continuous part of B. Then for ¢ < {
t
;= exp{~ [ 1/(X)_ + ¢ — wX))dC,}
X I — (f(X)- + & — u(X,))"4B)]

and it is clear that a.s., M; decreases as ¢ decreases for all ¢ = 0.



A CLASS OF OPERATORS ON EXCESSIVE FUNCTIONS 367

Let M, =lim,_,M;, S =inf{t > 0: M, = 0}. We propose to show that
M is a MF of the type considered in the second section. Obviously
M is adapted, multiplicative, a.s. decreasing, M, =0, M, M08, =M, 5.4,
but it may well happen that My > 0. Upon taking the monotonic
limit as ¢ — 0 in the above representation, one sees that

M, = exp{- [ 1£(X)_—u(x)1mac.)
X T — (f(X)-—u(X,)"4B,]
for all ¢ < {, and from (8.2) one finds

3.2)

3.3) S = inf {t > 0 g[ F(X)_ —u(X)]"dB, = oo}-.

REMARK. In the product term of (3.2), we take
[F(X)_—u(X)]'4B, =0 if 4B, =0.

It is almost surely true that if M, > 0, MM, < M;/M, for all
s <t whence M;— M, uniformly on [0, {] if M, > 0. The right con-
tinuity of M on [0, S) follows immediately.

To see that M is natural, use (3.2) to observe that on [0, S), the
only jumps of M must occur at jump times of B, and that on
{My; < My_, S< {}, 4Bs> 0, implying that S is accessible on {M_ > M}.

The exactness of M is a consequence of [1], III, (5.9) once it is
established that if P*{S = 0} =1, then E*M, ,09,—0 as t—0, for
all » > 0. However, I < M and it is easy to see that t— M, .00,
is an increasing function. Because of the monotonic convergence of
M; to M,, it is legal to interchange limits to obtain

lim M, .06, = limlim M;_,-6,
(t—0) (t—0) (e—0)

= limlim M; ,-6, = lim M; = 0 a.s. P*,

(e—0) (1—0) (e—0)

using the exactness of M-.
We remark at this point that f(X;) = u(X;) a.s. on {S <}, for
by (8.3), on {S <}, either 4Bs > 0 and f(Xy)_ = u(Xs) or 4B; = 0.
In the first case, S is accessible on {4Bg > 0} and so f(X,) = f(Xs)- =
w(Xg) < f(Xs) whence u(Xg) =f(Xs). In case 4By =0,t— A, =
o tl[f(X,L—u(X,)]“st is left continuous at S. If A5 = -« and

T, = inf {t >0: A, =n} then T, increases to S a.s. on {S < {} and
T,< Sa.s.on {0 < S<{. Thus Sis accessible on {45 = =, 0< S<}
and a.s. on {4y = o, 0 < S< {}, liminf,_ s ,[f(X) - — u(X,)] = 0 which
implies f(X;)_ = u(X;). But u(X;)_ = u(X;) since 4By = 0 and f(X,) <
f(Xs)_ since S is accessible. This shows that u(X,) = f(Xs) a.s. on
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{0<S<E As = <}, On {S<{ Ay < =}, one sees from (3.3) that
lim inf s, [ (X))~ — w(X,)] = 0, whence f(X;) = u(Xs), proving finally
that u(X) = f(Xs) a.s. on {S < }.

From (8.2), we find that a.s. on [0, S)

(—dM)(f(X)- — w(X)) = M, dB,
and a.s. on {S <}
(M- — M) f(Xo)- = (M5 — Mou(X,) + Ms 4B .
Thus

[, Fex)(—am) = | £(x) (—am)
+ [f(X)-(Ms- — Mg) + f(Xs)Ms]Llis<rr
- §(0’S)u(Xt)(—th) + S(O,S)Mt_dBt
+ [(Ms- — My)uw(Xs) + Ms_4Bs + u(Xg) Ms]1 5<q
— S:u(Xt)(—dJVI,) + S:Mt_d& .

Since u(X)1pce; = E*{(B.. — Bp)lircwy| F7} for all stopping times T,
Meyer’s integration lemma ([2], VII, T. 15) applies to give

B w(X)(~dil) = B| (B. - B)(—dl) .
Thus, for x ¢ E,,
Puf@ = B[ (B. — B)(—diil) + | M, dB,

— E*(B.) + E“S:MtdBt — S:'Bt(—th)
= u(x)

upon integratirlg by parts.
If x¢ By, Pyf(x) = f(x) = E°f(Xs) = E*u(Xs) = u(x), and the the-
orem is completely proven.

4. REMARKS. It is natural to ask for a specification of the class
{Pif: M a natural exact MF}, for a given fe.s”. The following
example shows that although it contains f and all natural potentials,
it need not include all excessive functions dominated by f. Let X be
uniform motion to the right on the real line, let f =1 and » = 1/2.
Obviously P, f(x) = Pyl(x) for all &, and because we can write down
(up to equivalence) the form of M, it is a simple matter to check
that P31 = 1/2 has no solution for .
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A particular example of an operator P, which may be of interest
is obtained by taking, for a fixed Borel subset B of E,

M, = lto,TB/\C)(t) + 1(t=TB<C,Xt_#Xt) .

Then S =inf{t > 0: M, = 0} = Ty A {, and using the fact that S is
totally inaccessible on {X; = X, , S<{, Pt =T, <{, X,_.# X} =0
for all ¢ = 0 and xze E. It follows readily that M is a MF satisfying
(2.1). Define, for fe.&”,

pr(x) = Pyf(x) = ENf(X;)s Tp <&, Xppy = Xpp )
+ E”{f(XTB); Ty <& Xy # Xpp )™

Because of Theorem (2.7), P,fe.&” if fe.&~.

One simple use of the operator P, is afforded by the following
example. Let B be a finely closed Borel subset of E and let f be a
uniformly integrable excessive function. Assume that X is a Hunt
process. Let fZ be the lower envelope of the family of excessive
functions which dominate f on a (variable) neighborhood of B. In
[1], VI, (2.12)-(2.15), it is shown, under different hypotheses, that
fB = P,f off a certain exceptional set provided f is “admissible”.
However, under the hypotheses given above without assuming f to
be admissible, it is a simple matter, using [1], I, (11.3) together with
certain facts from [1], VI, (2.12)-(2.15), to obtain P,f < f” everywhere,
and P,f(x) = f2(x) except possibly on B — B". It does not seem to
be easy to remove the restrictions imposed above to obtain a general
representation of f%.
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