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TWO PRIMARY FACTOR INEQUALITIES

J. H. E. COHN

In the theory of integral functions, the expressions

(1) ΣKz, p) = (1 - z ) e x p { Σ ^ | , p = 1, 2,

called primary factors, are of some importance, and it is of
interest to find upper bounds for | E(z, p) |. Clearly E(z, p) — 0
only for 2 = 1, and so for other values, define f(z, p) —
log I E(z, p)\. It is known that for suitable constants ap, bp

the inequalities

(2) Λz,p)£ap\z\*,\z\^l,zΦl

( 3 ) Λz9p)£bp\z\*+\\z\£l,zΦl

are satisfied; for instance Hille has shown that one may take

ap = 1 + ^ f !/ r ^ 2 + l o g P a n d &*> = !•
In this paper, the smallest values of both αp and bp are

determined, the latter in closed form.

Throughout, we shall write z — peiθ, where without loss of gen-
erality p Ξ> 0, 0 ^ θ ^ π. Then

(4) f(z,p) = i - i o g ( l - 2^>cos^ + p2) + Σ ^
2 i r

Also, using the Taylor series for log (1 — z) gives from (1)

(5) f(z,p) = - pp+1± ^ -cos(p + r + l)θ,
o p + r + 1

provided p <1. A further expression is obtained by writing log E(z, p)

as an integral of its derivative and taking real parts, to give

o 1 — 2t cos θ + f

provided θ Φ 0 or p < 1.
The problem considered in this paper is the determination of the

maxima of the functions

( 6 ) g ( z , p ) = p - p f ( z , p ) f o r p ^ l

a n d

h(z, v) = ρ-*-ιf{z, p) for p ^ 1 ,
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and to show where these occur.

1* Summary of results* Henceforth we use ap and bp to denote
the smallest constants for which (2) and (3) hold. We shall show
that both ap and bp are monotone decreasing functions of p. The
value of aL is given by at = log (p — 1) where p is the solution of
the transcendental equation (p — 1) log (p — 1) = p, p > 1 and the
maximum occurs at z ~ p. Also α2 = 1, the maximum occuring at
z = 2, and αM is given by the common value of or1 and

for the unique value of x which makes these expressions equal, 7
denoting Euler's constant. For each p ^ 2, the maximum occurs at
a point z on the real axis which satisfies 1 < z ^ 2.

The z maximizing bp occur on \z\ = 1, with Θ = π/(2p + 1), p = 1,
2, 3, . For p > 1 the maximum is unique, but for p = 1 it is
attained at every point of the arc \z — 1| = 1, \z\ ^ 1. We derive
the explicit bounds

— ^ ft, > log ττ/2 + 7 -
2

and both bounds are sharp. We also have an explicit formula

bp = log (2 sin— θ) + Σ — cos r# ,
v 2 / 1 r

where ^ = π/(2p + 1). In particular these results give

1.2785 ^ ap > 0.7423, — ^ bp > 0.4719 .

Since α2 = 1 we have therefore

log\E(z,p)\ £ mm(\z\\ \z\*+1), p = 2,3, . . . ,

and this is sharp.

The numerical values of ap and bp are as follows.
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2* Preliminaries* It is clear that for (2) and (3) to hold, both ap

and bp must be positive, since for example z — 2 and z — ε exp ίπ/(p + 1)
with ε sufficiently small give positive values of f{z, p). We see
therefore that not only the point z = 1, but also a neighbourhood of
this point can be excluded from the discussion. We find by elementary
means that

(8)

(9)

(10)

dg _
dθ

d2g

dθ2

dp

dh

dθ2

dh

dp

^{sin (p + 1)0 — p sin pθ}

1 - 2/0 cos 0 + ρ2

d{(p + 1) cos {p + 1)0 — pp cos pθ}

1 - 2ρ cos 0 + ρ2

PQ , p cos pθ — cos {p + 1)0

p 1 — 2ρ cos 0 + (O2

sin (p + 1)0 — <0 sin pθ

1 - 2,0 cos 0 + iθ2

(p + 1) cos (p + 1)0 — pp cos 0

1 - 2ρ cos 0 + ρ2 1 -

(#> + 1)/*, , (O COS 390 — COS (p + l)ι

/? ρ(l — 2ρ cos 0 + ρ2)

2^sin

1 — 2/) cos

2p sin 0

- 2,0 cos 0 +

0

0

0 + />2

3Λ

30
(12)

(13)

3* The case p = l We consider first the unit circle on which
of course / , g and /*, coincide, with 0 <£ 0 ^ τr Then by (8) we find
that 9//30 = 1/2 cos (p + (l/2))0cosec (1/2)0, and so local maxima occur
at 0 - β, 5/9, 9/3, where β = π/(2p + 1). We shall show that f(β) >
/(5/S) > f(9β) > and hence that f(β) is the largest value taken
by f(z, p) on\z\ = 1. For, let n ^ 0 with {An + 5)/S ^ 7Γ. Then

(4Λ+D/5

1 Γ(4w + 3)/3 7Γ/9 1 1 f ( 4 w

= A cos — cosec Λ0d0 + —I cos — cosec —
2 J un+Dβ 2/9 2 2 J (4^ 2 2

7Γ/9 1
cosec Λ0d0 + I cos — cosec —

2/9 2 2 J (4̂ +3)̂  2/9 2

sin (4» + 3 - 4 ) £ 2 . ]o s . n Λ + 3 + ^
V π J 2 V 7Γ/2

where we have substituted φ = (4w + 3)π — πθ/β in the first integral,
and φ = — (4w + 3)ττ + τr0//9 in the second.

Thus we obtain in view of (4), that for \z\ — 1,

(14) f(z, P)^σp = log (2 sin _ * _ ) + Σ -
V 4io 4- 2 / i r

•cos
+ 2 / i r 2p + 1
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We now consider σp9 and prove first that σp > σp+ι. Define δ by
π = 2(2p + l)(2p + 3)S. Then

σp - σp+1 = log g j ^ ^ g + Σ ^{cos 2(2p + Z)rδ - cos 2(2p + l)rδ}

cos 2(2p H
p + 1

- λ(δ), say.

Thus if λ(0) is defined for 0 < φ ^ δ by the same formula with δ
replaced by φ, we find that as φ—>0,

^ 4
p + 1 p

Also

+ 3) cosec (2p + 3)^ - (2p + 1) cosec (2p + ΐ)φ} cos

since x cosec a? is strictly increasing in (0, π/2).
Thus λ(δ) > 0, and so

(15) σp > σp+1 .

Also as p —• oo we find that

ί

= log πβ + \± 1 - log j)} - ί"" ^ " " ' f e + o(l)
I l r J Jo #

-> log l π + 7 - Γ / 2 1 - c o s a ; c f o = 0.4719 .
2 Jo a?

Thus we find, since σx — 1/2, that for all p

(16) —^σp> 0,4719 .
2

4. The case |O <: L For /> ̂  1, we consider first p = 1, where
the situation is slightly different from the remaining values of p.
Using (11) we see that if p Φ 1, then for fixed p, h has turning values,
regarded as a function of θ, only for θ = 0, 0 = TΓ and 2 cos θ — p.
Using (12) we find that both θ = 0 and # = TΓ give minima, and so
for each p e (0,1) we find that
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1 log 1 + 1^) = 1 ,

with equality if and only if 2 cos θ = <o. Thus we have &! — 1/2 with
equality attained at every point of the arc \z — 1| = 1, \z\ ^ 1.

For p ^2, the situation is quite different. Clearly whatever bp

with turn out to be, there will be equality in (3) for z = 0. But for
0 < p < 2/7, we find using (5) and (7) that

h(z, p) = - Σ — — r c o s (P + r + 1)*
o p + r + 1

< ! ? ( ! ) ' = έ <"« b y (16)

Thus the maximum of h(z, p) occurs in the closed annulus 2/7 ^
P ^ 1

Again consider a fixed value of p < 1. By (11) the greatest
value of h9 regarded as a function of 0, occurs at a solution of sin (p +
1)0 = £> sin j>0. θ — 0 is impossible since then d2h/dθ2 > 0 by (12) and
θ — π can be neglected since then by (5) and (7) we get

H- ft p) = Σ f\Λ- Vp+r ^ —^T ^ -f < ̂
o p + r + 1 p + 1 3

A glance at the sketch of y = sin(p + l)a?/sin px for XG(0, π),
shown in Figure 1, reveals that there are precisely p other values of
0 to consider, since it is readily shown that each branch of the curve
is monotone strictly decreasing. Again we consider the sign of d2h/dθ2.
Since p < 1 we find that for given p, the intersection of y = p with
the rth. branch of the curve satisfies

2p + 1 p + 1

whence pθe((r — l)π,rπ) and (p + 1)0 e ((r — (l/2))τr, rπ). Thus at
such a point we find from (12) and substituting for p ,

sm

and so the second factor is negative. Thus d2h/dθ2 < 0 only if sin pθ >
0, i.e. if r is odd. Moreover at a local maximum we have using (13)

7 _ sin pθ

(p + 1) sin θ

Thus if θ ^ τr/2 we we find that except on the first branch θ > 2π/p
and so
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sin pa;

3/S

h<

FIGURE 1

1
(p + 1) sin i

π
2(p + 1)0

~ 4(p + 1)

Similarly if θ ^ π/2 we find that

_ θ > π -
+ 1

and so

7Γ

+ 1

(p + 1) sin ^

cosec π

P p + 1

^ — cosec —π <
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since x cosec x increases over (0, π/2).
Thus we need only consider the first branch. Let k{ρ) be the

value taken by h(z, p) with p e (0, 1) and θ defined by p sin pθ =
sin (p + l)θ,θe (0, π/(p + 1)). Then

dk_
dp

dh
dp

(V

dh
dθ

+
P

ldp_
1 dθ

l)ft

dh
dp

, 1 sin
p sin

pθ

θ

Thus

AAn—
d/o V dp

4- ΐίk\ = d

} ) dθ

d

+ (D 4 ΐίk\ (
dp KP } ) dθ\ sintf // dθ\ sinpθ

since both (sin pθ)l(sm θ) and (sin (p + l)0)/(sin pθ) decrease over (0,
π/(p + 1)). Therefore

pψ ^ ^ ^ I + (p + l)fc| > 0 ,
dpi dp) dpi dp J

and so /o
p+2 d/b/d̂  increases. But as p —> 0, θ —> 7r/(p + 1), and so using

(17) we see that ρp+2 dk/dp -> 0. Thus for p > 0, dfc/^ > 0, whence
& increases over (0, 1). Thus for all such z, h(z, p) <£ k(l) = σp with
equality if and only if 2 — expίτr/(2p + 1). This concludes the dis-
cussion of this case.

5. The case p ^ 1. We find that

A i l log (1 - 2pcosθ + f) + pcosθ] = P2 sin ^(2 cos ^ - p )
3^12 r r r J 1 - 2 ^ c o s ^ +|O2

and so if p ^ 2, 1/2 log (1 - 2ρ cos 0 + <o2) + p cos 5 ^ log (p - 1) + <o,
whence for /> ̂  2,

flr(«, P) = P~P\— log (1 ~ 2p cos 0 + p2) + Σ —
12 1 r

1) + Σ

Also 0(̂ 0, 2) is decreasing for p > 2, for by (10) we find that

But we now see from the definition of g(z, p) that

g(p, p + 1) = — ί - + lflr(ft p)
V + 1 /o
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and so by induction we see that g(p, p) decreases for p ^ 2 for each
p^2. Thus

(18) for p ^ 2, p ^ 2 g(z, p) ^ g(2, p) ,

with equality only for z — 2.
Consider first the case p = 1. If p ^ 2, we find that for given

p, g is greatest when 2 cos 0 = p, or g(z, 1) ^ /0/2 ^ 1 for p ^ 2
For 2 ^ <o, we know that g(z, 1) ^ #(p, 1) = p-1 log (<o — 1) + 1, and it
is easily seen that this expression has precisely one turning value,
and that a maximum, which occurs where (p — 1) log (p — 1) — p:
This gives p = 4.5911 and then g(p, 1) = 1.2785, Thus a, = 1.2785.

Secondly, consider p — 2. For |O ̂  2 we have

pVO, 2) = — log (1 - 2ρ cos θ + |O2) + p cos 0 + — />2 cos 2^

^ JL^O2 + J L ^ 2 COS 20, as before

where equality occurs only if p = 2 cos 0 and cos 20 — 1 are satisfied
simultaneously; this does occur and at the single point z — 2. Thus
d2 = l

Finally we consider p Ξ> 3, and then in view of (18) we need only
consider the annulus 1 ^ | z | ^ 2. At a local maximum, we obtain
from (8), psinpθ = sin (p + 1)0. In view of (9) 0 = 0 arises only if
p >̂ 1 + p~\ since otherwise d2g/dθ2 is positive. 0 = π can be dismissed,
since by (10) a local maximum at such a point would give g *g> p~ι <k
1/3 < σp, by (16). Referring to the figure, we find therefore that we
need to consider three cases

(a) 0 = 0 for p ^ 1 + p~\
(b) 0 < 0 ^ π/(2p + 1) for 1 ^ p ^ 1 + jr 1 ,
(c) values of 0 between π/p and TΓ — ττ/(p + 1).
As before the final case can be dismissed, since at such a local

maximum we find from (10) that

g = sin (p + 1)0
psin θ

^ p~ι cosec
+ 1

coseccosec
+ 1 P + 1

-u 1 1 1
j c o s e c — π

4 4
cosec

p 4 4

— cosec — 7Γ = —21/2 < σp, in view of (16) .
o 4 o



TWO PRIMARY FACTOR INEQUALITIES 89

Now in the second case, let m(ρ) be the value taken by g(z, p)
when p sin pθ = sin (p + 1)0 and 0 < θ ^ 7r/(2p + 1). Then using (8)
and (10) we obtain similarly to (17),

dp p sintf

and so

= p d [sin (p + l)θ\l d Jsin (p + l)g\
dθ\ sin 0 J/ dί I sin pθ )

> 0, as before.

Thus pp+1 dm/dp increases as p increases from 1 to 1 + p~K But
using (19) we see that when p = 1,

dp 2p +

= — pσp + — cosec -
2 4p + 2

1)/7Γ

> p(2/π - σp) > 0, in view of (16).

Thus m(p) is an increasing function of p as p increases from 1 to
1 + p~~\ and in particular #(1 4- p~\ p) ^ g(z, p) for \z\ ^ 1 + p~\
Thus we need only consider case (a).

Let

Jp = /(I + p~\ p)

(20) - -logp + s l
1 γ

l o g p + Σ ( + P ^~ :

1 JO

log p + I P ^P ~
Jo t — 1

dt

Thus
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-dt
t - 1

it

t - 1
i+p-1 tp — 1

->t - 1 c

= _ log JL+A + _ J _ { l + _ 1 } ' + 1 + l o g ϋ ± I
p p + 11 p + 1J p

i+iv+D-i-t — 1

If 1 iP+i

= — Γ T 1 1 + —ΓTί ~ 7 ' s a y

To estimate / we observe that for t > 1 + (p + I)"1 ,

dλt-i) (t-iy v JTϊ) '

and so

Ji+(P+D-iί — 1 ί2

P + 1 J Ji+ίP+D-1 ί2

l p + 2

' + ι

and so

(21) z U < z/p .

Prom (10) we see that if θ = 0, 3̂ /3/> = - pg/^ + (p - I)"1, and
so it is easily verified that dg/dp > 0 at z — 1 + p"1, and that dg/dp <
0 at z = 2 Thus there exists at least one turning value of # on the
real axis between these two points. At such a point g = p/p(p — 1)
and so

y wy I ίry

p dp p* (p - lγ

i i

pip - i) (p- i)2

and so there is exactly one such turning value, and that a maximum.
Now let

(22) μ(x, p) = g(l + sup-1, p), α? ̂  1 .
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Then using (20) we find

1 + -5-
p

p - 1 t — 1

= Ap(aj) + Bp(x)y say.

Now, (1 + x/ri)n is an increasing sequence and by (21) Δn is decres-
ing. Thus Ap+1(x) < Ap(x). We shall show that Bp+1(x) g J?p(a?) too.
We find that for s < x,

p + 1 ' (p + s)p(p + 1 + x)v +1

+
p) \ p + 1

= ff + 1 + ^1 + 8 1 P2 + 2>(ίB + S + 1) + 8 + SX

p + 1 + xU p(x - s)
l p2 + p(x + s + 1) + s +

= p 2 + j9(2s + 1) + 8 + sx 1

p2 + p(2s + 1) + 8 + s2

since (1 + ε)"p > 1 — pε for every positive ε. Thus

y + ) > (i + i +
p) \ p) V p + 1/ V p

for 1 ^ s < a?, and so Bp{x) ^
We see therefore that

+ —?—, p + ί)<g(l+ -,
p + 1 / V p

and so αp + 1 < ap.
Also, since ^(a?, p) > μ(x, P + 1), we see that
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where A — l im^^ Δp. Now from (20) we find that

Δ, = - logp + ± 1 + Σ-{(l + -Y - l}
i γ l f l \ p / )
pi p f 1 1 / Q \ r-1

= -logί> + Σ - + Σ - ( 1 + - ) da,
l γ l Jo p \ p /

p

and so

Δ = y + \\e8 - l ) ^ - 1 ^ = 1.895118 .
Jo

Now

or

μ'(x) = - μ(χ) + ar1

μ"{x) = - μ'(x) - αΓ2,

and so μ(x) has precisely one maximum, and at this point μ(x) =
x~\ with

x Lex — A + \ s esds — A -\- x ex — e -\- \ s esds ,
Jl J l

[\-2esds = e- Δ = 0.823164 ,

whence x = 1.3472 and so μm a x = 0.7423.
Thus we find that since μ(x, p) > μ{x), we can always choose x

such that μ(x, p) > 0.7423, and so ap > 0.7423. Thus as p increases
from 2 to co, ap decreases from 1 to 0.7423.

REFERENCES

1. E. Hille, Analytic Function Theory, Vol. II, Boston 1962. p. 195.

2. R. Redheffer, Problem 5628, Amer. Math. Monthly, 75 (1968).

Received May 11, 1970 and in revised form December 22, 1970.

ROYAL HOLLOWAY COLLEGE, ENGLEFIELD GREEN, SURREY, ENGLAND




