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ON HAUSDORFF COMPACTIFICATIONS

MARLON C. RAYBURN

Given a pair of spaces X and Y, a necessary and sufficient
condition is found for Y to be homeomorphic to cl.x(aX—X)
for some compactification aX of X. From this follows a neces-
sary and sufficient condition for Y to be homeomorphic to
aX — X for some aX. As an application, a sufficient condition
is found to insure the isomorphism of the upper semi-lattices
of compactifications K(X) and K(Y ) for arbitrary X and Y,
and in consequence it appears that for every space X, there
is a pseudocompact space Y with K(X) isomorphic to K(Y).
A necessary condition for K(X) to be isomorphic to K(Y) is
observed for arbitrary X and Y, and this leads to the consi-
deration of spaces compactly generated at infinity. Examples
are constructed.

All spaces considered are completely regular and Hausdorff. We
consider the family of Hausdorff compactifications of X, each obtained
by a quotient map on BX fixing X pointwise. It is known [3: 10.13]
that this map, hereafter called the «Cech map” of the compactification,
must be unique. Identify any two such compactifications if there is
a homeomorphism between them which fixes X pointwise and let K(X)
be the family of equivalence classes partially ordered in the standard
way: a,.X < a,X if there is a continuous map from a,X onto a, X
which fixes X pointwise. From [2], K(X) is an upper semi-lattice
which is a complete lattice if and only if X is locally compact. In
[5] K.D. Magill, Jr. obtained the result which shall be referred to
as Magill’s theorem: For any two locally compact spaces X and
Y, K(X) is lattice-isomorphic to K(Y) if and only if gX — X is
homeomorphic to BY — Y.

In this paper, generalizations are obtained to each direction of
Magill’s theorem by dropping the requirement that X and Y be
locally compact.

1. Compactifications.

LEMMA 1.0. Let X be a compact Hausdorff space, Y be a compact
T, space and f: X — Y be continuous and onto. The following are.
equivalent:

(a) Y is Hausdorff

(b) f is closed

(c) For every peY and for all open sets USX such that
f(p) S U, there is an open set VS Y with peV and f[V]& U.
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For any space X, let R(X) be the set of all points at which X
is not locally compact. It follows that for any compactification aX
of X, R(X) = XN eclyy(@aX — X).

THEOREM 1.1. Given any two spaces X and Y, there is a com-
pactification aX of X such that Y is homeomorphic to cl.yx(@X — X)
if and only if there is a continuous map h from clyx(8BX — X) onto
Y such that h is ome-to-one on R(X).

Proof. From the existence of the Cech map, the “only if” is trivial.
Conversely with no loss of generality assume Y and X — R(X) to be
disjoint and define aX to be the set YU X — R(X). Let f:83X—aY
be given by f(x) =2 for x in X — R(X) and f(x) = A(x) for x in
cl;x(BX — X). Place the quotient topology of f on aX, which is thus
a compact T, space containing [X — R(X)] U k[R(X)] densely. We
need to show aX to be Hausdorff, and shall use part (c) of the Lemma
to do this.

First suppose pe X — R(X) and U is an open set in B8X such
that f~(p) = {p}S U. Let V=[X~— RX)INU. Then V is a BX-
open set and f~o f[V] = V. So V= f[V] is open in aX, pe V and
fvlie .

Now let peaX — [X — R(X)]. Then pe Y and f~(p) = h~(p) in
cl;x(8BX — X). Let U be any gX-open neighborhood of 27(p). Then
UnNelx(8X — X) is an open set in cl;x(8X — X) and contains A~ (p).
Since h is a closed map, there exists a Y-open set A such that
h(p) S h[AlS UNnclix(BX — X). But considering A as a set in
aX — [X — R(X)], f[A] = h[4] is open in clzz(BX — X). So there
exists a BX-open set B such that Bneclgx(BX — X) = f[4]. Let
G = BN U, this is an open set in X. Then GN[X — RX)|SUN
[X — R(X)] and GNclx(BX — X) = f[A]l. Whence if we set V =
AU[GN X — R(X)], we have pe V and

fIVI= fTAU(GN X - RX))] = fTAlU flG N X — R(X)]
=[GNelx(BX - X)JUIGN X — RX)] = G.

Thus V is open in aX and f[V] = G< U.

We conclude that aX is a compact Hausdorff space containing a
dense homeomorphic image of X, and f: 8X — aX is its Cech map.

Finally, let 7: Y —ecl,z(aX — X) be given by z(y) = f[h~(y)] for
each ye Y. Since A (y) Scl;x(8X — X), for each point q € h~(y) we
have f(q) = h(@) = y. So 7 is well defined, and indeed it is a Dbijec-
tion. Moreover since f and h are closed maps, any set F of Y is
closed if and only if A-[F] is closed in ¢l;x(8X — X), which is true
if and only if f(h"[F']) is closed in el,y(@X — X). Thus ¢ is a home-
omorphism from Y onto cl.z(@X — X).
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COROLLARY 1.2. For any space X, the following are equivalent:

(a) X s locally compact.

(b) For every space Y: Y is homeomorphic to aX — X for some
Hoausdorff compactification aX of X if and only if Y is a continuous
image of BX — X.

Proof. For (b) implies (a), note that a map onto a single point
is trivially continuous. For the converse, take R(X) = @ in the
Theorem. The fact that (a) implies (b) was first observed in [4].

THEOREM 1.3. Let X and Y be any two spaces. There is a com-
pactification aX of X such that Y is homeomorphic to aX — X iof and
only if there is a compactification oY of Y and a continuous map h
Jrom cl,x(BX — X) onto @Y such that h carries R(X) homeomorphically
onto aY — Y.

Proof. (If). By Theorem 1.1, there is a compactification aX of
X such that cl,;(@X — X) is homeomorphic to aY. Moreover if
fielgyz;(BX — X) —cel,x(@X — X) is the restriction of the Cech map,
we may choose the homeomorphism 7: ¢l,y(@X — X) - aY by ¢(X) =
h[f(X)] as in the final paragraph of Theorem 1.1. Since 7[R(X)] =
aY — Y, we see that 7 carries X — X homeomorphically onto Y.

(Only if) Suppose that h: aX — X — Y is the given homeomorphism.
Without loss of generality assume Y and R(X) disjoint, and let aY
be the set YU R(X). Define k:cl,y(@X — X) —aY by k(p) = p if
pe R(X) and k(p) = h(p) if peaX — X. Place the quotient topology
with respect to £ on «Y, making Y into a compact 7, space.

If F is any closed subset of cl,y(@X — X), then since k is a
bijection, k- k[F] = F and Ek[F] is closed in the quotient topology
on «Y. Hence k is a homeomorphism between cl,y(@X — X) and
aY. So aY is Hausdorff and Y, being the image of a dense subset
of cl,x(@X — X) is dense in @Y. Thus aY is a Hausdorff compacti-
fication of Y.

Let f be the restriction to cl;x(8X — X) of the Cech map of aX.
Then ko f is continuous from cl;»(8X — X) onto @Y. But ko f takes
BX — X onto Y and also takes R(X) one-to-one onto aY — Y, so it
is a homeomorphism from R(X) onto aY — Y.

COROLLARY 1.4. Let X and Y be any two spaces and h be a
homeomorphism from clyy(BX — X) onto ¢l,,(BY — Y) which carries
R(X) onto R(Y). Let aX be any compactification of X and let f be
the restriction of its Cech map to cl;x(BX — X). Then there exists a
unique (up to a homveomorphism preserving Y pointwise) compactifica-
tion aY of Y, with Cech map g, such that gh(f-(x))) s a homeomor-
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phism from cly(@X — X) onto cly(@Y — Y) taking R(X) onto R(Y).

2. The upper semi-lattice of compactifications. For each com-
pactification X of X, with Cech map f, define

F (@X) = {f~(p): pecl(@X — X)} .

This is a partition of ¢l;x (83X — X) into compact subsets and coincides
with Magill’s terminology on locally compact spaces [5]. In particular,
we retain his

LemmA 2.1. aX £ o, X if and only if & (a.X) refines F (@, X).
Observe that in K(X), the correspondence between compactifications
and their decompositions is one-to-one.

Let X and Y be any spaces and K(X) and K(Y) be their upper
semi-lattices of compactifications. We say K(X) is isomorphic to K(Y)
if there is a bijection between them which preserves order in both
directions. Clearly an isomorphism preserves meets and joins wherever
they exist.

THEOREM 2.2. Let X and Y be any two spaces. If there is a
homeomorphism from clzx(8X — X) onto ¢l (8Y — Y) which carries
R(X) onto R(Y), then K(X) is isomorphic to K(Y).

Proof. Let h be the given homeomorphism and I":K(X) — K(Y)
the correspondence constructed in 1.4. By the symmetry of 1.4, I”
is a bijection. That I” preserves order in both directions follows from
the fact that r[& (@X)] = & [["(@X)] and 2.1.

COROLLARY 2.3. Let X and Y be two spaces with |R(X)|=
|R(Y)| 1. If X — X is homeomorphic to Y — Y, then K(X) 1s
isomorphic to K(Y).

Proof. In view of Magill’s theorem, it suffices to consider | B(X)|=
|R(Y)| =1. Let R(X) = {p} and R(Y) = {g}. Since cl;x(8X — X) is
the one point compactification of 8X — X, open neighborhoods of p
in ¢el;x(BX — X) are the complements of compact sets in X — X. If
h is the given homomorphism, then & carries compact sets onto com-
pact sets. So it carries neighborhoods of p onto neighborhoods of ¢
and vice versa. Hence if we let k:cl;;(BX — X) —clpy(BY — Y)
extend % by k(p) = q, then k is a homeomorphism and k[R(X)] = R(Y).
The result now follows from 2.2.

The next result follows from a well known exercise [3: 9K].
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LEMMA 2.4. For any space Y and any compactification aY, there
18 a pseudo-compact space X such that Y is homeomorphic to 83X — X
and aY — Y is homeomorphic to R(X).

THEOREM 2.5. For each space Y, there is a pseudocompact space
X such that K(Y) is isomorphic to K(X).

Proof. As in the construction for 2.4, let W be the ordinals
less than the first uncountable ordinal w, and W* be its compactifi-
cation. Set X = [W* X clpp(BY — Y)] — [{w)} x (BY — Y)]. Then X
is pseudocompact, R(X) = {®,} X R(Y) and gX — X = {w,} X (8Y — Y).
The result now follows from 2.2.

3. k-absolute spaces. A space is called compactly generated,
or a k-space, if every set whose intersection with every compact set
is compact is itself closed. To each space X we may associate a
unique k-space ¢ X with the same underlying set and the same
compact sets by requiring that the closed sets be precisely those
whose intersection with every compact set is compact. It follows that
X is a k-space if and only if X = S X.

DEFINITION 3.1. X is a k-absolute space if gX — X is a k-space.
This terminology is motivated by

THEOREM 3.2. For any space X, the following are equivalent:

(@) BX — X is a k-space. :

(b) For every compactification aX, aX — X 1is a k-space.

(¢) There exists a compactification aX such that aX — X is a
k-space.

Proof. Use the fact that the restriction to 8X — X of the Cech
map of aX is perfect (i.e., closed, continuous, onto and the pre-image
of each point is compact), and the fact that if f: V— W is a perfect
map, then V is a k-space if and only if W is a k-space [1: Theorem 8J.

k-absolute space include, but are not restricted to, locally compact
spaces, realcompact spaces (N. Noble [6]) and spaces with compact
R(X). Some examples showing the independence of these classes are
considered in §4.

THEOREM 3.3. Let X and Y be any two spaces. If I': K(X) —
K(Y) is an isomorphism, then there is o homeomorphism f: 22 (8X —
X)— 2 (BY — Y) such that for each aX in K(X), # [['(@X)]N
BY - Y)={f[H: He & (aX) N (BX — X)}. There are two such
homeomorphisms if |BX — X| = |RY — Y| = 2; otherwise the home-
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omorphism is unigque.

Proof. f:V— W is a bijection which preserves compact sets in
both directions if and only if f: 2V — 2 W is a homeomorphism.
The proof now, with only minor changes, is that of K. D. Magill [5:
Theorem 1].

COROLLARY 3.4. Let X and Y be any two k-absolute spaces. If
K(X) 1s 1somorphic to K(Y), then BX — X is homeomorphic to Y — Y.

An example showing the converse of this corollary to be false is
found in the following section. An example has been obtained by
T. Thrivikraman [7] of a pair of spaces, one of which is k-absolute
and the other is not, with K(X) isomorphic to K(Y), yet X — X
not homeomorphic to Y — Y.

4., Examples.

(A) Fk-absolute spaces.

(a) The rational numbers @ form a realcompact, thus k-absolute
space which is nowhere locally compact. Hence R(X) = Q is not
compact.

(b) Let X be the ordinals < w, with the discrete topology except
at w,, which has a neighborhood base of tails. Then X is realcompact
and R(X) = {w,} is compact.

(¢) If W is the set of ordinals < w, with the interval topology
and N is the positive integers, then W x N is locally compact, yet
neither realcompact nor pseudocompact. (Not realcompact follows
from the fact that closed subsets of realcompact spaces are realcom-
pact, and W x N contains closed copies of W).

(d) To construct a class of k-absolute spaces which are neither
locally compact nor realcompact, let Y be any k-space and as in 2.4,
let X=W* x BY — {w,} x Y. This is a k-absolute, pseudocompact
and not compact, hence not realcompact space. R(X) is homeomorphic
to BY — Y, hence it is compact if and only if Y is locally compact.
Note: X is locally compact if and only if Y is compact.

(B) A pair of k-absolute spaces X and Y with 83X — X homeo-
morphic to 8Y — Y, yet K(X) and K(Y) not isomorphic. Let T =
(0, 1) under its usual topology, T* its one point compactification and
T** its two point compactification. Write 7* — T = {a} and T** —
T = {b, c}.

Set X = W* x T* — {w,} X T, so R(X) = {(w,, a)}.

Set Y=W*x T** —{w} x T, so R(Y) = {(w, D), (w,¢)}. So
|[R(X)| # |R(Y)|, yet X — X =pR8Y — Y = {w,} x T, which is a k-
space.
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Place the following compact partition on BX — X: for each », 0 <
r<1/2, let F,={(w,7),(w,1—7r)}; choose t,¢ 83X and set aX =
[B—U-F,JU{t:0 < r<1/2}. Define the map f: sX—aX by f(z) =2
ifwxe Xand f(x) = t,if xe F, and f(w,, 1/2) = (0, 1/2). If GEpX — X,
then f<o f[G] = G if and only if G is symmetric with respect to
(w,, 1/2). Place the quotient topology with respect to f on aX. To
show aX is Hausdorff, we apply (¢) of Lemma 1.0.

Let x € X — {a} and U be an open set of 83X such that x€ U. Then
set V=UNX—-{a}. So f~o f[V] = V, which is an open set in BX,
and pe V= fIV]c U.

If U is a gX-open neighborhood of @, then UN X — X2{w,} %
0,1) — {w,} x [d,e] for some [d,e]=(0,1). Choose ¢ >0 so that
[d) e] & [59 1- s] S (0, 1)'

Then {w,} X (0,1) — {w,} x [e,1 — €] is open in X — X, so there
exists a gX-open set H such that H N X — X equals this set. Let V=
fIUN H]. Since UN HNBX — X is symmetric with respect to
(w,, 1/2) we see that

FIVI=f=fIIUNHNBX — X) U (UN HN X)]
=(UNHNBRX-X)U f-f(UNHNX)
=UNHEU.

Therefore V is open in aX,ac V and f[V]< U.

If t,eaX — X, then f(t) = F,. Let U be a pgX-open neigh-
borhood of F',. Then UnN BX — X contains (w,, ), so there exists an
g > 0 such that {w} x (r —e,r+e)cUNRX — X. In the same
way, there exists an ¢, > O suchthat{w,} x A —7r —¢,1 —7r+ &) S
UNnpX—X. Let e=min(,s). Then [{w} x (r—¢,r+¢)]U
o} x 1 —7r—¢1—7r+4¢] is an open set in X — X. So there
exists a BX-open set H such that HN 83X — X is equal to this set.
Let V= f[UNH]. Note UNHNRX — X=HNBRX — X is sym-
metric with respect to (@, 1/2), f~ofIUNHNRX — X]=UNHN
BX — X. Hence f~of[UNH]= UN H and V is open in «X. Since
F.=UnN H, we have t,e V and f[V]S U. So aX is Hausdorff and
thus in K(X).

Suppose I: K(X) — K(Y) is any isomorphism; then by 3.4 there
is a homeomorphism #: BX — X— RY — Y such that # [["(@X)] N
BY — Y)={h[H]: He & (@X)N (Y — Y)}. Notice that any home-
omorphism from (0,1) to (0,1) must be monotone: our argument is
the same whether 2 is monotone increasing or monotone decreasing.
So without loss of generality, suppose i monotone increasing.

Write I'(@X) = aY, where aX is the previously consEructed com-
pactification of X and let g be the restriction of the Cech map of
aY to BY — Y. Since f:pX — X—aX — X is perfect, it follows
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that if £k = goho f-, then k is a homeomorphism from aX — X onto
aY — Y. Consider the sequence ¢, = (w, 1/n),n =2, in X — X.
The image of this sequence in aX — X, which we may write as p, =
f(t),n =2, has limp, = a. So (p,), n = 2, is a converging sequence
in cly(@Y—Y). Butinel,,(8Y — Y), lim A(w,, 1/n) = b and lim (w,, 1—
1/n) = ¢.  Therefore k(p.),n =2, converges to both b and ¢ in
cly(@Y — Y). Since in a Hausdorff space, no sequence can converge
to more than one point, I"(@X) must not be Hausdorff. So I" must
not be an isomorphism and thus K(X) and K(Y) are not isomorphie.

REFERENCES

1. A. Arhangel’skii, Bicompact sets and the topology of spaces, Dokl. Akad. Nauk
SSSR 150 (1962), 9 = Soviet Math. Dokl., 4 (1963) 561-564.

2. N. Boboc and Gh. Siretchi, Sur la compactification d’un espace topologique, Bull.
Math. Soc. Sci., Math. Phys. R. P. Roumaine (N. 8.) 5 (563) (1961).

3. L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand Co.,
Inc., Princeton, N. J., 1960.

4. K. D. Magill, Jr., A note on compactifications, Math. Zeitschr., 94 (1966), 322-5.

5. , The lattice of compactifications of a locally compact space, Proc. London
Math. Soc., 18 (1968), 231-44.

6. N. Noble, k-spaces and some gemeralizations, Doctoral Dissertation, University of
Rochester, June 1967.

7. T. Thrivikraman, On the lattices of compactifications, J. London Math. Soc., 4 (1972),
T11-717.

Received September 30, 1971 and in revised form September 27, 1972. The results
of this paper are based on part of a doctoral dissertation submitted to the University
of Kentucky in April, 1969. The author wishes to acknowledge the guidance and encou-
ragement of his mentor, Dr. John E. Mack.

THE UNIVERSITY OF MANITOBA
‘WINNIPEG, MANITOBA, CANADA





