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MULTIPLICITY AND THE AREA OF
AN (n — 1) CONTINUOUS MAPPING

RoNALD GARIEPY

For a class of mappings considered by Goffman and Ziemer
[Annals of Math. 92 (1970)] it is shown that the area is given
by the integral of a multiplicity function and a convergence
theorem is proved.

1. Introduction. A theory of surface area for mappings beyond
the class of continuous mappings was initiated in [2]. This theory in-
cludes certain essentially discontinuous mappings for which it seems
natural that the area be given by the classical integral formula.

Let Q=R"N{z:0<2; <1lforl<7=<mn}. Foreachie{l,.--,n}
and reI={t: 0 <t <1} let Pi(r) = QN{x:x;=7r}. A mapping f: @ —R™,
n<m, is said to be n — 1 continuous if, for each %, f| P;(r) is continu-
ous for almost every (in the sense of l-dimensional Lebesgue mea-
sure) reI. A sequence {f;} of mappings from @ into R™ is said to
converge n — 1 to f if, for each <, f;| Pi(r) converges uniformly to
f| Pi(r) for almost every re I.

The area of an n — 1 continuous mapping f: Q—R™ is defined as

A(f) = inf lim a(f))

where the infimum is taken over all sequences {f;} of quasilinear
mappings converging n — 1 to f and a(f;) denotes the elementary
area of f;,. In [2] it was shown that A(f) coincides with Lebesgue
area if f is continuous.

For real p=1,let W.(Q) denote those functions in L*(Q) whose
distribution first partial derivatives are functions in L?(Q). Suppose
fiQ—R" withf = (f*, ---,f™ and fie W, (Q), p;>n —1for1<i<m
and 337.,1/p;; <1 whenever 1 <4,<--+ <1, =m. It was shown in [3]
that f is » — 1 continuous and

A = 1@ ds .
In this paper we prove the following

THEOREM. If f: Q — R with fie W, (Q), »;>n—land 37,1/p; =1,

then there 1s a nonnegative integer valued lower semicontinuous func-
tion N(f,y) on R™ such that

(1) A = N, udy
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and, if {f;} is any sequence of quasi-linear mappings converging n — 1
to f with A(f) = lim;_.. a(f;), then

(2) lm | ING,9) = NG, w)ldy =0
and
(3) [, s @I @de = lim | (7,@)TF,r)do

whenever ¢ is a continuous real valued function on R* with compact
support.

2. Proof of (1) and (2). Suppose f satisfies the hypothesis of
the theorem. By a full set of hyperplanes we will mean a subset P
of {Pi(r):1 =<1=<m and 0 < 7 < 1} such that, for each 1, P,(r)c P for
almost every rel.

If #C Q is an n-cube such that f | o« is continuous and y € R” — f(ox),
let 0(f, w, y) denote the topological index of y with respect to the map-
ping f|ox [4,p. 123]. If yef(or) let O(f, 7, y) = 0.

Let P be a full set of hyperplanes such that f| P;(r) is continu-
ous whenever P,r)e P. In harmony with [1, page 173] let, for y € R*,

-~ N(f,y) =sup 3 | O(f, 7, 9) |

where the supremum is taken over all finite collections G of non
overlapping n-cubes 7@ whose n — 1 faces all lie in elements of
P. From the properties of the topological index, it is easily seen that
N(f, y) is a lower semicontinuous function of y.

' If g: Q— R* is quasi-linear, then N(g, y) is 1ndependent of the
choice of P and

a@) = | No. vy .

By [3, 3.5] we know that f possesses a regular approximate dif-
ferential almost everywhere in Q. Using the arguments of [1, page
424] one verifies that

[, 177@) 1o < | N, w)dy

whenever N(f, y) is computed relative to a full set P of hyperplanes
such that the restriction of f to each element of P is continuous.

Suppose {f,;} is a sequence of quasi-linear mappings converging
n — 1 to f with A(f) = lim,_.. a(f;). Let P be a full set of hyperplanes
on each of which the sequence converges uniformly to f and define
N(f, y) relative to P. For each ye€ R” we have
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N(f,y) = liig: N(fiv)

and hence
[ N, oy < tim | N, 9y = A() -

If Pc P is a full set of hyperplanes and N (f, y) is defined rela-
tive to P, then, clearly N(f, y) < N(f, y) for all yc R*. Since A(f) =
glJf(w)ldx, it follows that N(f,y) is determined as an element of

L'(R") independent of the choice of the sequence {f;}. Thus (1) is
proved and (2) follows because N(f, y) is integer valued and

N(f, y) = lim N(f;, 9)

for almost every ye R whenever {fj} is a sequence of quasilinear
mappings converging n — 1 to f with A(f) = lim;_.. a(f}).

Proof of (8). Suppose f and {f;} satisfy the conditions of the
theorem and let P be a full set of hyperplanes dn each of which {f;}
converges uniformly to f.

For ye R" let

N¥(f, ) = sup 5210, 7, ) | £0(7, 7, 9]

where the supremum is taken over all finite collections G of non over-
lapping m-cubes 7 < @ whose % — 1 faces all lie in elements of P.
Clearly ‘

N:(f,9) = N(f,») = N*(f,9) + N (f, ») .
It is readily seen that
N=(f,y) = }13351 N*(f;, v)

and that the N*(f, y) are lower semicontinuous functions of .
In case ¢: Q — R" is quasi-linear, N*(g, y) are independent of the
choice of P and '

N(g9,y) = N*(9,v) + N~ (9, v)

for almost every ye R™.
For each positive integer j, let

5 = (y: N*(fi, v) < N*(f, y) for some k = j} .

and let E; = E;'U E.
Since the functions N* are integer valued we have
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lim Z(E,) = 0

j—oe

where &, denotes n dimensional Lebesgue measure. Now

ey

o N5 ) = N°(f, ) | dy

= S;w N*(f5 v)dy — SR,._E; N*(f, v)dy + SE; (f, y)dy
SM (N*(f;, ) + N~(f;, v))dy

= Jpus, N0 + NG )y + | N, )y

<{, Moy = NG wdy + | NG,y

alfy) - A() +2| Ny -
Thus

lim | [ N¥(fi,9) — N*(F, ) ldy = 0.

j—oo

Now

0= | ING ) + N, ) — N, wldy

= SR" I N+(fy y) - N+(f.7” y) | d’.t/ + XR” l N—(f, y) — N-(fj, y) | dy
+ | ING ) - NG ) Ly

Thus, N(f,y) = N*(f,y) + N (f, y) for almost every ye R".
Let n(f,y) = N*(f,y) — N°(f,9). Then

lim (s, 9) = nlfi ) [dy = 0.

Suppose ¢ is a real valued continuous function on R" with com-
pact support. If g: Q@ — R™ is quasi-linear (or of class C') then

|, 0@ @z = | swint, vy .

Suppose {f;} is a sequence of modifiers of f.
Then, from [3, 3.2], the sequence {f;} converges n — 1 to f and

lim §Q | Jf (@) — JF() | do =0 .

Hence
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|, #(F@)IrE)ds = lim | o(7@)IF @)z
=lim| s, vdy = | s@nis, vy -
Thus
lim | o(7,@)If@ds = lim | s@n(s;, vy
=, sns, vy = | s(f@)Ir@)ds
and (3) is proved.
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