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BOUNDED ENTIRE SOLUTIONS OF
ELLIPTIC EQUATIONS

AVNER FRIEDMAN

Let

(l l) Lu = V aid(β)^ ^ + Σ hix)^- .

i^±ι dXidXj i^ί ΰXi

Consider the equation

(1.2) Lu(x)=f(x).
It is shown, under some general conditions on the coefficients
of L, that if fix) is locally Holder continuous and
(1.8) f(x) = O(| x |-2-*) as \x\ > oo (μ > 0)
then there exists a bounded solution of (1.2) in Rn when n ^ 3.
If n = 2 then bounded entire solutions may not exist, but
there exists a nonnegative solution of (1.2) in R2 which is
bounded above by O(log \x\) An application of these results
to the Cauchy problem is given in the final section of the
paper.

If in (1.3) μ = 0 then already the equation Δu — f (n ^ 3) may
not have an entire bounded solution; an example is given by Meyers
and Serrin [4]

2. Existence of a bouned solution* We shall need the follow-

ing conditions:

(2.1) Σ M&)g& > 0 if x e R\ ξ e R\ ξ Φ 0 ,

(2.2) ai3 (x), bi(x) are bounded, locally Holder continuous in Rn

(1 £ij£n),

(2.3) F o r s o m e δ > 0, R > 0, 0 < p <1,

(2 + δ) I x Γ 2 Σ a>iί(Φ&, ^ P Έ Λ dϋix) + Σ nfii(x) if\x\> R,

(2.4) Σ au(χ) ^ y > 0 for all x e Rn (7 constant) .

Notice that (2.1) and (2.4) both follow from the condition of
uniform ellipticity

(2.5) Σ atj(x)ξ,ξj ^ To I ξ I2 for all xeR*, ζeRn

(7o positive constant) .
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498 AVNER FRIEDMAN

Denote t h e eigenvalues of (ai3 (x)) by \(x) ^ ••• ^ λΛ(a?) Then
t h e condition in (2.3) means t h a t

(2.6) (2 + δ)\(x) ^ /o [Mx) + + \n(x)] + Σ %A(x)

for some λ^a?) ^ λ (a?) ^ λΛ (a).
We finally impose on f(x) t h e condition:

(2.7) /(a?) =• O(| x I"2"*) as \x\ > oo ( y > 0 ) .

THEOREM 1. Suppose that either the conditions (2.1)-(2.4) or the
conditions (2.5), (2.2) and (2.3) with p = 1 fcoϊd Tfcew /or α ^ locally
Holder continuous function f(x) satisfying (2.7) ί/̂ ere eα isίs α unique
bounded solution u(x) of (1.2) m JBW satisfying u(x) -+0 if\x\—>°o.

Proof. We shall construct a function v(r) for r > R such that

(2.8) L^(r) ^ - |/(05) I if r = \x\> R,

(2.9) i/(r) < 0 if r> R .

It is easily seen that

fΣ «
r L *

If (2.9) holds then, by (2.3),

Lv(r) ^ \v"(r) + (1 + ^ ΐ j Σ
L r Jr i.ί

Take μ > 0 such that μ<l, μ<v, μ<,δ and take 0 < J?o <
Consider the function

for any constant B > 0. Then v(r) satisfies (2.9), and

v"(r) + (1 + μ)^-^- = — ,
r r 2 + v

V'(r) < _ ^ g l ,

(2.11) 0 < v(r) < B C
r μ
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if r > R, where C", C are positive constant* independent of B. Recal-
ling (2.10) and assuming that (2.3), (2.4) hold, we get

Lv(r) <: - : x) ^ -\f(x) I if \x\ = R

provided B is sufficiently large. If instead of (2.3), (2.4) one assumes
that (2.5) and (2.3) with p = 1 hold, then again one derives from
(2.10) the inequality Lv(r) S ~ |/(») | .

Consider the exterior Dirichlet problem

(2.12)

LφQ(x) = f(x) in I x

φ0 = 0 on \x

φo(x) -» 0 if I a;

In Meyers-Serrin [4] it is proved that there is a unique solution
φQ of (2.12) if (2.7), (2,2) and (2.3) with p = 1 hold, and if
Σ α^ίa^a^ > I x |2. The last condition is equivalent to the condition
(2.5). The crucial step in the proof in [4] is the construction oίv(r)
for which Lv(r) <; —\f{x) \ and (2.11) holds. Since we have constructed
such a v(r) also when the assumptions (2.5), (2.3) with p = 1 are
replaced by (2.3), (2.4), the proof of [4] shows that the problem (2.12)
has a unique solution 0O

Consider next the Dirichlet problem

(2.13)

Lφ = 0 in I x I > R ,

^ — h on I a? | = R ,

(a?) -> 0 if I α? I -> oo

where & is a continuous function. This again has a unique solution
Take Rf > R and let w be the soultion of

(2.14)

Finally let w0

(2.15)

Lw -
w =

= 0 m

- φ on

be the solution of

\LwQ(x) =

i
1

in

on

x\

x\

<

X

X

R',
R'.

<1

Then ^ + ô and w + w0 are solutions of Lu = / in | a? | > i? and
I a? I < JS' respectively, and they coincide on | x \ = i2'. If there exists
a function & such that

(2.16) φ + φ0 = w + wQ on I x \ = i? ,

then ^ + ô = w + ^o in i? < | a? | < R', so that
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Φ + φ0 in I x I > R ,
u(x) = . , , _

(w + Wo m I x\ < Rf

defines a bounded solution of (1.2) in Rn which tends to zero as
I X\ —• o o .

Denote by X the Banach space of continuous functions on | x \ — R
with the sup norm, and denote by || || the norm of operators in X.
Denote by Wh the restriction of w to | x \ = R. Then (2.16) reduces to

(2.17) h - Wh = wQ-φ0.

If we show that

(2.18) I W\\ < 1

then the existence of a unique solution h of (2.17) follows, and the
existence part of the theorem is proved.

The function

^ \h(x)\)

satisfies:

Lφ ^ 0 if I x I > R, φ ^ φ if I x \ = R, φ(x) - Φ(x) —> 0 if | x

By the maximum principle it follows that φ ^ φ if | x \ > R. Similarly
φ ^> —φ. Hence

^ if | * | =R' ,
v{R)

where σ < 1 by (2.9). Since, by the maximum principle,

sup I w(x) I ̂  sup [ φ(x) I ,
\x\=R \x\=Rf

we conclude that

sup I w(x) I ̂  σ || h || .
\x\ = R

This gives (2.18).
Suppose now that u{x) is another solution of (1.2) in Rn which

tends to zero as | x | —» oo. We shall prove that u = u. Let « = u — u
and denote by h the restriction of z to\x\ = R. Then ΫFΛ = h.
Since || TΓ| < 1, h = 0. It follows that ^ O ί n 12\

From the proof of Theorem 1 we obtain the estimate

(2.19) u(x) = 0(| x \~μ)

on the solution. Hence:
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COROLLARY 1. Let the assumptions of Theorem 1 hold. Then for
any number N there is a unique solution of (1.2) in Rn satisfying:
u(x) —> N if I x I —> oo further,

u(x) = N + O(\x \~μ) as I α I —> oo

for any μ ^ δ, μ < v, μ < 1.

COROLLARY 2. Suppose (2.1), (2,2) hold and suppose

(2.20) M Σ | ί φ ) | - » 0 if |α?|-*oo ,
ί=i

(2.21) a<y = lim a^a) eίm£s for 1 ^ i, j ^ n .
||

1/ ίfoe matrix (ai3) has at least three positive eigenvalues then the
assertion of Theorem 1 and Corollary 1 are valid.

Proof. A nonsingular affine transformation x-+Tx does not
change the assumptions and assertions of the corollary. Such a
transformation changes (atj) into T(ai3)T*. Thus, without loss of
generality one may assume that

ai5 = 0 if i^jfcLii = l if i = 1, 2, 3, α« = 0 or 1 if i ^ 3 .

But then the conditions (2.4), (2.3) (with p = 1) are satisfied, so that
Theorem 1 and Corollary 1 can be applied.

We recall a result of Gilbarg-Serrin [2; Theorem 3] asserting that
if (2.2), (2.5), (2.21) hold, and if n ^ 3 and

x
as

then any bounded solution of Lu = 0 in Rn has a limit at infinity.
By the maximum principle, this yields a Liouville theorem: Any
entire bounded solution of Lu = 0 is a constant. Hence:

COROLLARY 3. Suppose (2.1), (2.2), (2.20), (2.21) hold, and let the
matrix (μi3) be nonsingular. Then, any bounded solution of (1.2) in
Rn, n ^ 3, has the form N + u(x) where u{x) is the solution asserted
in Theorem 1. (Recall that u(x) satisfies (2.19).)

3. The case n = 2. If (2.20), (2.21) hold and n = 2, then the
condition (2.3) with p = 1 is not satisfied. We shall now study this
situation. The following conditions will be imposed:

n = 2 and for all x e R\ ξ e R2 ,

(3 D
Σ aij(χ)££i = vo I £ I2 (̂ o positive constant) ,

*.i=i
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(3.2) g I atj(x) - S« I rg {1 _f\χ]y (C > 0, κ> 0) ,

(3.3) ^ | W β ) | ^ _ _ ^ _ (00,0 0),

THEOREM 2, Lei ί&e conditions (2.2), (3.1)-(3.3) AoW. T&ew for
any locally Holder continuous function f(x) satisfying (2.7) there exists
a solution u(x) of (1.2) in R2 satisfying

(3.4) 0 ^ t φ ) ̂  iΠog (2 + | x |) (J5Γ constant).

Proof. Without loss of generality we may assume that aiά =
δϋ, 1 ^ i, j ^ 2. We shall construct functions vx{r), v2(r) for r > Ro

(RQ and fixed positive number) satisfying:

JM(r) ^ 0 if r ^ i?0 ,
k ( # ) = 0, vί(r) > 0 if r > Ro ,

JM(r) ^ 0 if r ^ Ro ,
( ' U2(i20) - 0, v'%(r) > 0 if r > i?0 .

The inequality Lvt ^ 0 is satisfied if

(3.7) v'l + — (l + —)v[ = 0, vί > 0
r \ rΛ/

where c is a sufficiently large positive constant. A solution of (3.7)
which vanishes at r = Ro is given by

V l(r)= Γ exp{-Γ -^dsW

= Γ expj^r -Λ.-')}^.
J BQ I fC ) t

This function then satisfies (3.5). Similarly,

(3.9) vz(r) = [ βxp {-^( ί- - Ro~κ)}^

JRO I /c it

is a solution of (3.6). From (3.8), (3.9) it is clear that

(3.10) d log (1 + r) ^ ^(r) ̂  v2 (r) ̂  c2 log (1 + r) (cx > 0, c2 > 0)
for all r^RQ + l.

For each R > Ro + 1, let uB be the solution of

LuR = 0 in Ro < I α? | < R ,

u Λ = 0 on I α; | = Ro ,

u Λ = v2(R) on I a; I = R .
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From the maximum principle it follows t h a t uR^v2 if Ro < \x\ < R.
From (3.10) we have:

uB ^ ^-vx{R) on I x I = R .

Hence, by the maximum principle,

uR ^ - ^ if Ro < I x I < R .

Using (3.10) once more we conclude that

cλ log (1 + r) ^ uR{x) ^ ^c2 log (1 + r) if i?0 + 1 ^ | a? | < # .

We can now take a subsequence {̂ ijm}, with Rm—> ©o if m—> co,
that is uniformly convergent in compact subsets of {x; \ x | ^ i?0} to a
solution w2(#) of

j L ^ 2 - 0 if RQ< \x\ < oo ,

( Wz — o on I a? | = i?0 ,

and

(3.12) cλ log (1 + r) ^ w2(a?) ^ -^c2 log (1 + r) (r = | x \ > Ro + 1) .

Let Rf = Ro, R" > Rf and denote by S' and S" the circles given
by I a? I = R' and | a? | = R" respectively. Let wt be the unique solution
(see [4]) of

(3.13)

fLw1 = / ' in I x I > Rf ,

W! = 0 on S ' ,

w! bounded in | x \ > R' .

Let ^i and z2 be the solutions of

Lzt = f in I x | < Λ" ,
<3 1 4 > U » on S" ,

O in
off

^ on S
Denote by 2?, ^* the restriction to S' of zι and ^2, respectively.

We shall introduce now an operator W similar to the operator W
in the proof of Theorem 1. We denote by X the Banach space of
the continuous functions h on S' provided with the uniform norm.
For any he X, let w be the unique solution (see [4]) of
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(3,16)

Lw = 0 in I x I > R' ,

w = h on S' ,

k w bounded in | a? | ^ R' ,

and let 2 be the solution of

Lz = 0 in I α; I < 22" ,

z = w on S" .

Then TFΛ is defined as the restriction of z to S'.
By the maximum principle, for any ε > 0,

II h || + εv^r) ^ ± w(x) in | α? | > 22' .

This implies that

s u p I w(x) \ <^ \\h\\ .
\x\=R»

Again by the maximum principle,

sup I z(x) I <£ sup I z(x) I = sup | w(x) | .
|as|=.B' |x|=.R* \x\=R»

Hence, || TΓΛ|| ^ | |λ | | . Since, for h(x) = 1, Wh = h, it follows that

II w = ||i.
Employing the function ^(r) and using the maximum principle

it can be shown (see [4, p. 523]) that Liouville's theorem is valid
(under the assumptions of Theorem 2), that is, every bounded solution
u of Lu = 0 in R2 is a constant. Now, h satisfies Wh = h if and
only if the corresponding w and z coincide on S', S" and, consequently,
in the region R' < | x \ < 22"; thus, W7& = /& if and only if the pair
w, z defines a bounded entire solution u of Lu — 0. By Liouville's
theorem it follows that u = const, and, in particular, h = const.
Thus, 1 is an eigenvalue of W and the eigenspace is one dimen-
sional.

From the interior Schauder estimates (see, for instance, [1]) one
deduces that W maps bounded subsets of X into compact subsets.
Hence the Fredholm-Riesz-Schauder theorem can be applied to solve
equations of the form

(3.18) ζ + Wh = h.

Denoting by h an eigenfunctional of the adjoint W* of W, we can
assert that the equation (3.18) has a solution if and only if

- 0.

We wish to solve the equation
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(3.19) z\ + xz*2+ Wh = h

for some real number λ. We first show that

(3.20) K(z%) Φ 0 .

Suppose h(z%) = 0. Then the equation

(3.21) z* + Wh = h

has a solution h. Denote by w, z the corresponding solutions of (3.16),
(3.17). Then the functions w + w2 and z + z1 coincide on S" and (by
(3.21)) on S'. Since they both are solutions of Lu = 0 in R' < \ x \ < R",
it follows that they coincide in this region. Consequently, the function

w(x) + w2(x) if I x I > R',

z(x) + z2(x) if \x\<R"

is an entire solution of Lu0 = 0. Since, by (3.12), uo(x) —> °° if
I ̂  i __• oo, te0 must attain a minimum at some point in R2. But then,
by the maximum principle, uo(x) = const.; this is impossible since

oo if I X I —> oo .

Having proved (3.20), we choose in (3.19)

λ = -h{z*)lh{z*) .

Then

(3.22) A(z? + λz*) = 0;

consequently (3.19) has a solution which we shall denote by h. Denote
by w, z the solutions of (3.16), (3.17) corresponding to this h. The
functions

w + wλ + Xw2, z 4- Si + λz2

are solutions of Lw = / in | $ | > R' and | a? | < R" respectively. They
coincide on S" and (by 3.19)) on S'; consequently, they coincide in
Rf < I x I < # " . The function

(w(a?) + w,{x) + λ^2(α;) if | x \ > R' ,

( φ ) + ^(OJ) + λz2(x) it\x\<R"

is then an entire solution of Lu = / . In view of (3.12), the function
u(x) = u(x) + Ko is a solution of {1.2) in i22, satisfying (3.4), provided
Ko is a sufficiently large positive constant.

REMARK. If L = A then for any locally Holder continuous func-
tion f(x) with compact support K for which
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Φ = ( f(χ)dx Φ 0

there does not exist a bounded entire solution of Lv — f in R2. Indeed,
suppose Φ > 0 and let

w(χ) = 7Γ \ flu) ^g\x - y\dy .

Then Aw = / in i22 and

w(x) = J L log I a I + 0(1) if α? —• °o .

If there is a bounded entire solution v(x) of Δv — f in i22 then the
function u = w — v is harmonic in i?2 and tt(a;) -^ oo if x —> oo. Con-
sequently % must attain its minimum (in R2) at a finite point. By
the maximum principle, u(x) = const., which is impossible.

4* An application* Consider the Cauchy problem

(4.1) 4 ^ = A1* + Σ ^ ( α j A if 0 < ί < oo, α? e JB
5ί <I OT

(4.2) w(0, a?) = f{x) if xeRn .

We shall assume: a^x) are locally Holder continuous and

fix), is continuous and

(4.4) \fix) -fry) \<^N\x- y\ (JV> 0)

It is then well known [1] that the problem (4.1), (4.2) has a unique
solution in the class of functions v(ί, x) satisfying, for each T > 0,

I vit, x) I ̂  Ceσ|*12 (0 ^ ί ^ Γ, x 6 JSΛ)

for some positive constants C, c depending on v, T.

THEOREM 3 Let (4.3), (4.4) hold, and let n^Z. Then the solu-
tion nit, x) of (4.1), (4.2) satisfies

M

for all t*tθ,xe Rn where M is a constant.

Proof. We can write nit, x) in the form (see [3])



BOUNDED ENTIRE SOLUTIONS OF ELLIPTIC EQUATIONS 507

(4.6) u(t, x) = Ef(ξx(t))

where E is the expectation and ζx(t) is a solution of the stochastic
integral equation

(4.7) £,(«) = x+\* a(ξx(s))ds + 2 Γ dw(s)
Jo Jo

here w(t) is w-dimentional Brownian motion. Similarly (for α* = 0)

(4 8) nk^ L e x p {-^ir
By Theorem 1 there exists a bounded solution vά{x) of

in

By Ito's formula [3],

E Γ I αy(ί.(8)) I ds -
Jo

Hence,

where C is a constant independent of (ί, x). Recalling (4.7), we con-
clude that

(4,9) E I ζx(t) - x - 2w(t) I ^ C .

Combining (4.6), (4.8) with (4.4), (4.9), the assertion of the theorem
follows.

For n — 2 one can employ Theorem 2 and establish the inequality

^ If log (2 + t+ \x\) .
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