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SUMMABILITY OF SUBSEQUENCES AND
STRETCHINGS OF SEQUENCES

DAVID F. DAWSON

In 1943 R. C. Buck gave a summability characterization
of real convergent sequences by showing that a real sequence
x is convergent if there exists a regular matrix summability
method which sums every subsequence of x. In 1944 R. P.
Agnew generalized Buck's result by showing that if a? is a
bounded complex sequence and A is a regular matrix, then
there exists a subsequence y of x such that every limit point
of x is a limit point of Ay. In the present paper a theorem
concerning "stretchings" of sequences is proved; and from
this theorem, summability characterizations of several classes
of sequences are obtained, together with an extension of
Agnew's result.

DEFINITION. The sequence y — {yp}"=l is a stretching of x = {xp}~=i
provided there exists an increasing sequence {mj^o of integers such
that mo = l and yq = xp if m3)_1 ̂  q < mp, p = 1, 2, 3, . Under these
conditions, we shall say that y is the stretching of x induced by {mp}.

Conditions which are necessary and sufficient for a matrix A =
(apq) to be a regular summability method are

(1) {apq}p=1 converges to 0, q = 1, 2, 3, ,
(2) {ΣΓ=iαί>J?=i converges to 1,
(3) suppΣ?=i |αMl < °°
Let & denote the set of all matrices P such that for all x, Px

is a subsequence of x, and let g? denote the set of all matrices Q
such that for all x, Qx is a stretching of x.

We note that any P = (pi3) e & is determined by an increasing
sequence {%}Γ=i of positive integers as follows: pi3- = 1 if j = ni9 pi3 =
0 otherwise. Similarly, any Q = {qi3) e & is determined by an incre-
asing sequence {̂ JΓ=o, n0 = 1, of integers as follows: qi0 = 1 if %_i ^
1 < n3, qi3 = 0 otherwise.

Clearly all Pe^ and Qe& are regular.
If x is the sequence of partial sums of a series Σc?» then any

subsequence of x is the sequence of partial sums of a series obtained
by bracketing the terms of ΣCP appropriately. On the other hand,
any stretching of x is the sequence of partial sums of a series obtained
by inserting zero terms in Σcp appropriately.

A series Σcp with partial sums {xp} converges absolutely if and
only if Σ | xp — xp+11 < oo. Thus a sequence {tp} is said to converge
absolutely (or to be of bounded variation) provided Σ I tP — *P+I I < °° •
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We will let BV denote the set of all complex sequences which converge
absolutely. These sequences have the property that the sequence of
real (imaginary) parts of the terms is the difference of convergent
nondecreasing sequences.

In light of Buck's result [2], [3], one might conjecture that a real
sequence x e BV if there exists a regular matrix A such that AyeBV
for every subsequence y of x. This is not true, as shown by the
following example. Let x be a null sequence such that xgBV.
Let {tiJJLi be an increasing sequence of positive integers such that

I xp I < 2~q if p nq
Let A — (apq) be defined by apq = 1 if q = np, apq —

0 otherwise. Clearly A is regular and if y is a subsequence of x,
then AyeBV. The conjecture is valid, however, if we replace "subse-
quence" with "stretching," as shown by Theorem 2.

Note that (3) of the regularity conditions is not assumed in any
of our results which follow.

THEOREM 1. If x is a complex sequence, A is a matrix satisfying
(1) and (2) of the regularity conditions, and ε is a positive term null
sequence, then there exist P G ^ and Qe & such that PAQx = x + u,
where \ un | < en, n — 1, 2, 3, .

Proof. Let w? = 1 + | ^ |
and mγ such that

< e^

+ \xn\,n = 1,2,3, •••. Take n,

Σ

Using (1), we can find a positive integer N such that if n > JV, then

Σ
9=1

Take n2> nι + iV and m2 > Wi such that

Σ an2q - 1
q=m1

and

q=s
Σ O»,5

<

, m2 <L 8 <Z

Take ^ 3 > n2 and m3 > m2 such that

Σ I ^ q I < ez2~2w2, Σ α % 3 , - 1
9 = 1

Σ «»,(!

< εd2~2w3,

< ej2j-6w4, m3 ^ β ^ t, j = 1, 2, 3 .
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Continue the process. Let y be the stretching of x induced by
{mp};=0, where m0 = 1. It is trivial to apply the Cauchy condition
in order to show that ΣΓ=i ^,.9^ converges, r = 1, 2, 3, •••, and we
omit the proof. If r is a positive integer, we have

Σ a>nrnVq -

+ Σ Σ .
np

+ r\ Σ
9 = 1

α«

V

Σl
p=r

Σ

+ εr2-2 +

<er

Thus if Pe^ is determined by {ŵ } and Q e & is determined by
{mj, then PAQx = x + u, where \un\ < 6W, ̂  = 1, 2, 3, . This com-
pletes the proof.

THEOREM 2. A complex sequence x is convergent (absolutely
convergent) [bounded] {divergent to 00} if there exists a matrix A
satisfying (1) and (2) of the regularity conditions such that Ay is
convergent (absolutely convergent) [bounded] {divergent to 00} for every
stretching y of x.

Proof. Take ε̂  = 2~p, p = 1, 2, 3, , and apply Theorem 1 to
obtain P e ^ and Q e & such that PAQ# ~ x Λ- u, where \un\ < eΛ,
w = 1, 2, 3, •••. If AT/ converges for every stretching y of cc, then
AQα? converges and so PAQx converges since P is regular. Thus x =
PAQx — u converges since u converges. If Ay eBV for every stretch-
ing y of x, then AQx eBV and so PAQx eBV since P is super regular,
i.e., preserves absolute convergence. Hence x — PAQx — ueBV since
ueBVo The statements involving boundedness and divergence to co
follow similarly. This completes the proof.

Next we use Theorem 1 to prove an extension of the result of
Agnew [1] previously mentioned. Specifically, we obtain Agnew's
conclusion (in a sense) after weakening his hypothesis in two ways.
Besides dropping the assumption that A satisfy (3) of the regularity
conditions, we replace the boundedness of x with the assumption that
x have a finite limit point.
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THEOREM 3. If x is a complex sequence having a finite limit
point and A is a matrix satisfying (1) and (2) of the regularity
conditions, then there exist Pl9 P2e^ such that every finite limit
point of x is a limit point of P1AP2x.

Proof. Following Agnew [1, p. 596], we use the separability of
the complex plane to obtain an infinite sequence ul9 u2, uz, , such
that each uό is a finite limit point of x and every finite limit point
of x is either a term of ul9 u2, u3, or a limit point of this sequence.
Still following Agnew, we form the sequence

which is then relabeled vl9 v29 v3, . Let A be a matrix satisfying
(1) and (2), and let {εp} be a positive term null sequence. Apply
Theorem 1 to obtain an increasing sequence {np} of positive integers
and a stretching z of v such that

Zu Un qόq <sp,p = 1, 2, 3,

Then every finite limit point of x is a limit point of {(As)Wp}~=i Let
{mp}~=0 be an increasing sequence of positive integers such that z is
the stretching of v induced by {mp}. If p is a positive integer, then,
since each of the sequences {ajq}J=1, m M ^ q < mp — 1, is convergent,
there exists a number Lp > 1 such that \ast\ < Lp, s ^ 1, mp_γ <̂  t <
mp — 1. We now construct a subsequence y of x as follows. Let yί9

• , ymι-i be a finite subsequence of x such that

Let ymi, , 2/W2_! be such that yu , ym^γ is a finite subsequence of
x and

Continue the process. Using the convergence of Σ Γ = i S « Z ί a n ( ^
Cauchy condition, it is easy to show that Σ ^ = 1 anpQyg converges, p =
1, 2, 3, . The details will not be given. Let λ > 0. Take k to be
a positive integer such that 2~k < λ. Take N so that if n > N, then
Ianq\ < λ, 1 ^ q < mk. For nφ > N, we have
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Σ a%.y9 - vf
I ? = 1 P q=l P

\anυq\\yq

Σ <
q = l

3=1

+
j

Σ Σ I<*>npqI \Vq
j = k + l q=m,j_1

<*>npqI \Vq - VjI + ep

< X Σ 2~j + Σ Lii&Lj)-1 + εp
3 = 1 k=k+l

< X + 2'k + ep

< 2λ + εp .

Hence every finite limit point of x is a limit point of {(A2/)np}~=1.
Clearly the conclusion follows.

COROLLARY. A complex sequence x diverges to oo if there exists
a matrix A satisfying (1) and (2) of the regularity conditions such
that Ay diverges to oo for every subsequence y of x.

Proof. Suppose A satisfies (1) and (2) and Ay diverges to oo for
every subsequence y of x, but x has a bounded subsequence. Then
x has a finite limit point P, and by the theorem, there exists a subse-
quence z of x such that P is a limit point of Az. But this is a con-
tradiction. Thus x cannot have a bounded subsequence. Hence x
diverges to oo, and the proof is complete.

It is interesting to note that in Theorem 3 we cannot in general
prove that every limit point of x (finite or infinite) is a limit point
of {(Ay)np}~=1. For example, let x = {1, 0, 4, 0, 16, 0, •••} and let A
be defined by apq = 2v~q~1 if q ^ p, apq = 0 otherwise. Clearly, if a
subsequence y of x contains at most a finite number of nonzero terms,
then (Ay)n —• 0 as n —> oo. But if y contains infinitely many nonzero
terms of x, then ΣΓ=i a

PqVq diverges, p = 1, 2, 3, .
On the other hand, we have the following modification of Theorem 3.

THEOREM 4. If x is a complex sequence and A is a row-finite
matrix satisfying (1) and (2) of the regularity conditions, then there
exists a subsequence y of x such that every limit point of x (finite or
infinite) is a limit point of Ay.

The proof of Theorem 4 involves only minor changes in the proof
of Theorem 3, and will be omitted.

COROLLARY. A complex sequence x is bounded if there exists a
matrix A satisfying (1) and (2) of the regularity conditions such that
Ay is bounded for every subsequence y of x.
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Proof. Suppose A satisfies (1) and (2) and Ay is bounded for
every subsequence y of x, but x is not bounded. Then A is row-finite,
for otherwise we could construct a subsequence z of x such that Az
is not defined. Thus by the theorem, there exists a subsequence w
of x such that oo is a limit point of Aw. But this is a contradiction.
Hence x is bounded.
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