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COMPLEMENTATION PROBLEMS FOR
THE BAIRE CLASSES

WiLLiIAM G. BADE

This paper initiates a study of the classes of Baire meas-
urable functions on the unit interval I from the standpoint
of the theory of spaces of continuous functions. For each
countable ordinal «, the ath Baire class B, has a representa-
tion as C(2,), where 2, is a certain compactification of the
discrete set I. For 1 < a < $3, B, is a closed subalgebra of Bg.
The principal result proved here is the fact that B, is always
uncomplemented as a closed subspace of Bg. The method of
proof relies on a detailed analysis on the canonical onto map
é: Qg — 2, induced by the imbedding of B, in Bg, and consists
of showing that this map admits no ‘‘averaging operator.”” It
depends heavily on recent results in the theory of averaging
operators due to S.Z. Ditor.

In this paper scalars and functions are real valued. However,
the arguments extend easily to the complex case. In the last section
we show how corresponding results may be obtained when I is replaced
by any uncountable compact metric space.

1. The Baire classes as function algebras. We shall start by
recalling classical definitions and facts concerning the Baire classes
of functions on the unit interval I. Let C(I) be the class of all real
continuous functions on I with supremum norm. Denote by B, the
class of all bounded functions which are pointwise limits of sequences
of functions in C(I), and for each countable ordinal « inductively
define B, to be the class of all bounded functions on I which are
pointwise limits of sequences of functions in (Jsc. Bs. We call B, the
class of Baire functions of order a.

There is another approach to B,. Each countable ordinal « is
even or odd as follows: 1 is odd and each limit ordinal is even; the
immediate successor of an even ordinal is odd, and of an odd ordinal
is even. Let F, be the class of all closed subsets of I; and F, be
the class of countable unions of sets in F,. For each «

(i) F, is the class of all countable unions of sets in Us<a F,
if « is odd;

(ii) F, is the class of all countable intersections of sets in
Us<« Fs, if a is even.

Correspondingly, let G, be the class of all open subsets of I, and
G, be all countable intersections of G, sets. For each «

(iii) G, is the class of all countable intersections of sets in [Js<.Ge»
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if « is odd;

(iv) G. is the class of all countable unions of sets in Js<a Gs,
if a is even.

If « is odd (even) the class F,(G,) is called the additive class of
type a.

If a« is odd (even) the class G.(F,) is called the multiplicative
class of type a.

For each a define H, = F,N G.. We call H, the class of ambig-
wous sets of type «a.

The classes F,, G,, H, satisfy many simple relationships. In
particular, the complement of an F), set is in G,, etc., and H, is a
field of sets (i.e., closed under finite unions and intersections and
complements). For a complete discussion see [4] and [6].

Now for each a denote by 2, the class of all bounded functions
f on I such that for every real )\, the sets

{tlf@ =M, () = M

all belong to the multiplicative class of type @. The following clas-
sical result ([6], page 393) connects B, and 2.

THEOREM 1.1. (Lebesgue-Hausdorff). If « 1s a finite ordinal,
B, = oo If @ is infinite, then B, = Wyii.

We apply this theorem to characterize those subsets A of I whose
characteristic functions k, are in 8,. Observe that k, e, iff Aec H,.

COROLLARY 1.2. Let A be a subset of I. Then
@) k.eB, iff Ac H,, if a is finite.
o) k,eB, iff Ae H,,,, if a is infinite.

To avoid constantly considering cases we also define the class
K, = H, if « is finite and K, = H,,, if « is infinite.

In what follows we shall need a separation theorem ([6], page
351).

LEMMA 1.8. Let R and S be disjoint subsets of I which are of
multiplicative type a. There exist disjoint sets A and B belonging
to H, such that

Rs A, SEB.

Returning to B,, we note that it is an algebra of bounded func-
tions on I which is closed under uniform convergence ([4], page 134).
Thus B, is a Banach algebra of bounded functions under the uniform
norm satisfying the obvious condition.
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e+l = 1P, f, 9€Ba .

Let 2, be the compact set of nonzero multiplicative linear functionals
on B, with the weak star topology. Define

fl) = o(f),veQ, feB,.

By the real form of the Gelfand-Naimark theorem (Arens [1]), the
map x: f— 7 is an isometric algebra isomorphism of B, onto C(2,).
Since evaluation at a point of I is multiplicative, there is a natural
imbedding 7,: I — 2, of I into 2, determined by

Frt) = ft), tel, feB,.

Moreover, 7,(I) is dense in 2,, since if 7 vanishes on 7.(I), f must
vanish on I. Also 7,(I) is discrete in its relative topology as a subset
of Q,, since the characteristic function of a point of I belongs to B,.
Thus we may regard 2, as a certain compactification of the discrete
unit interval.

Our next aim is to prove that 2, is totally disconnected. Note
that the following statements are equivalent for a function fe%,.

(a) f takes only the values 0 and 1 on I,

(b) f =k, where Ac K,

(c) 7 takes only the values 0 and 1 on 2,

() f = ky where B is an open and closed subset of 2,. More-
over, we have

B =7,(4), A=t Bnt/)) .

The correspondence A — B defines an isomorphism of the Boolean
algebra K, of subsets of I onto the Boolean algebra K* of all closed
and open subsets of 2,. To prove that 2, is totally disconnected we
must prove that K* separates points of 2,.

THEOREM 1.4. The space 2, is totally disconnected.
Proof. Let w, and ®, be distinct points of 2,. We can find
feC(RQ,) such that the sets
U = {o|fl®) 21}, U, = (0| f(0) < 0}

are closed neighborhoods of w, and w,.
Define f(t) = f(z.(t)), t € I. Then the sets A;=7;(U;N7(l)),?=1,2
satisfy

A= {tlf@® 21}, A, = {t[/¢) = 0},
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and thus are of multiplicative class a(a + 1) if a is finite (infinite).
By Lemma 1.3 there exist disjoint sets W, W, in K, such that
A, S W,. The sets V, = 7,(W,) are open and closed neighborhoods of
;. They are disjoint, since otherwise their intersection contains a
point of the dense set 7,(I), contradicting the fact that W, N W, = @.

2. Topological tools. In this section we collect some basic facts
concerning spaces of continuous functions and projections onto sub-
algebras. Let S and T be compact Hausdorff spaces and ¢: S— T be
a continuous onto map. We call the elements of the collection

R={s7(0)[teT}

fibers. Then R forms an upper semi-continuous closed set decomposi-
tion of S ([5], page 99). Define ¢% C(T) — C(S) by the formula

(#°1)(s) = f(8(s), fe C(T), seS .

The map ¢° is an isometric algebra isomorphism of C(T) onto the
subalgebra of those functions in C(S) which are constant on each set
of R.

If the closed subalgebra ¢°(C(T)) is the range of a bounded pro-
jection P from C(S), we define the projection constant p(s) to be the
infimum of ||P|| for all such P. We define p(¢9) = + « if ¢°(C(T))
is uncomplemented. We shall need a result of S. Z. Ditor [2] (for-
mulated here in somewhat different terms) which relates p(¢) to the
topological structure of S and ¢. Suppose {t,} is a net in T converg-
ing to t,. We define the cluster set for {t,} to be

s| for each a, and neighborhood U of s,}

I it} =
m sup {¢7(¢)) {there exists & = a, with ¢7(t) N U+ @

The cluster set for {t,} is a nonempty compact subset of the fiber
¢ (o).

DEFINITION 2.1. Let ¢: S— T be continuous and onto. Define

M = it| there exist nets {t.}, {ts} converging} )
~ |to ¢ whose cluster sets are disjoint

and inductively define

Mo = {t} there exist nets {t,}, {t;} of points of M ‘”“”}

converging to t whose cluster sets are disjoint

Clearly MY2M® 2 «... The next theorem is due to S. Z.
Ditor [2].
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THEOREM 2.2. If M™ # @, then p(¢) =n. If N, M™ = @, then
#°(C(T)) 1s uncomplemented in C(S).

In our application of this result to the Baire classes, matters
will be simplified by the fact that the map ¢: S— T appearing in
that context will be irreducible (i.e., there is no proper closed subset
S, of S such that ¢(S,) = T). In the case of irreducible maps the
set M is just the set of multiple points for 4. We prove this. The
necessary lemma is a consequence of the uppersemicontinuity of R.

LEMMA 2.3. Let ¢: S— T be continuous and onto. The following
are equivalent.

(1) ¢ s irreducible.

(2) For each open set USS, the set

V=1{tls7(t) & U}
18 a nonempty open set in T.
(3) For each open set U in S, the set
W= u{s"®Is7¢t) & U}

is an open set dense in U.

PROPOSITION 2.4. If ¢: S— T is an irreducible onto map, then

M® = {t|¢~'(t) contains at least two points} .

Proof. Let s, s, be distinet points of ¢~'(f) with open neighbor-
hoods U, U, with U,n U, = @. By Lemma 2.3 (3), there is a net
{t.} —t, with ¢7'(t,) = U,. Similarly, there is a net {{;} —¢t, with
¢4 (ts) & U,. Their cluster sets must be disjoint. Thus every multiple
point lies in M, The converse inclusion is clear.

3. Nonexistence of complements. Let @ and @B be fixed count-
able ordinals with 1 < a < 8. Then B, is a closed subalgebra of B,.
Under the representation of B, as C(2,), B, as C(2,), the natural im-
bedding of %, in B, induces a canonical continuous onto map ¢: 2, — 2.
To show that B, is uncomplemented in B, is equivalent to showing
that ¢%(C(2,)) is uncomplemented in C(2;). We do this by proving
that the sets M =2, for ¢ are all nonempty.

Since ¢ is one-to-one as a map of 7,(I) onto 7,(I), and these sets
are open and dense in 2, and 2, respectively, it follows from Lemma
2.3 that ¢ is irreducible. Thus by Proposition 2.4 M is just the
set of multiple points of ¢. Since B, is a proper subalgebra of B,
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(see [3]), M™ is nonempty. We shall prove that if 2 < « < B, then
MY = M*® = ..., The case when a = 1 is more complicated.

As in Section 1, K* denotes the Boolean algebra of open and
closed setsin 2,. If Aec K* ¢7'(4) € K¢, and ¢* yields an isomorphism
of K= onto a subalgebra of K?. The sets in ¢(K*% are just those
sets in K* which are unions of fibers for ¢.

DEFINITIONS 3.1. (a) A set Ae K¢ is of countable or uncountable
type depending on whether the Borel set 77'(4A N 74(A4)) € K; is count-
able or uncountable.

(b) A point we 2, is a special multiple point for ¢ if the fiber
¢ (w) contains at least two distinct points all of whose open and
closed neighborhoods are of uncountable type.

We shall prove the following results.

ProproSITION 3.2. If 1 < a < B, then every set in K* of uncount-
able type contains a special multiple point for ¢: 2, — 2,.

THEOREM 3.3. If 1 < a < B, the set Q of special multiple points
1s nonempty, and

Mo

1

Q

in
D8

THEOREM 3.4. If 1 < a < B, then B, is uncomplemented in B,.'

Theorems 2.2 and 3.3 clearly imply Theorem 3.4. The role of
Proposition 3.2 is to ensure the existence of special multiple points.
Its proof is complicated for a = 1, so we assume it now and prove
Theorem 3.3.

Proof of Theorem 3.3. Let w, be a special multiple point in 2,
for ¢ and let 4, 4, be distinet points of ¢7*(w,) all of whose K? neigh-
borhoods are of uncountable type. Let B, and B, be in K*? with
J;€B,t=1,2and BN B, = @, B, U B, = 2;. Let A be any K* neigh-
borhood of w, in 2,. The sets

C:=B;Ng¢"(4),1=12,

are disjoint neighborhoods of +r; of uncountable type. Consider C..
The uncountable Borel set

E, = 71(C. N 7p(1))

1 It would suffice to suppose 8 = a + 1, but this assumption does not simplify the
proof.
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contains a Cantor set F) ([6], page 446) which is necessarily in K, & K,.
Thus the set

D1 = Ta(F1) S Qa

is of uncountable type, D,& A and ¢'(D)<C,. By Proposition 3.2
D, contains a special multiple point ®, and clearly ¢™'(w)=SC,. A
similar argument applies to C,. Since A was arbitrary, it follows
that there exist two nets {®.}, {w,} whose members are special mul-
tiple points, such that

a)e—’—’wo, a),]———ﬂwo

95—-1((05) —g C1 ’ ¢_1((0,7) g Cz .

Since C, N C,= @, the cluster sets lim sup ¢~ (w;) and lim sup ¢~*(w,)
are nonempty disjoint subsets of ¢~'(w,). Since w., w,€ M, by De-
finition 2.1 w, e M®. However, now each w,, ®, satisfies the hypotheses
for w,, so by the same argument w;, ,€ M*® and w,e M®, ete. Thus
w, € Ny M™,

To prove Proposition 3.2 we first establish

LEMMA 38.5. Let 1< a<pB. FEvery set in K* of uncountable
type contains a multiple point.

Proof. Let A be a set in K* of uncountable type. The Borel
set

E =7 (AN 7))
contains a Cantor set F. We may write FF = G U H, where G and
H are both uncountable sets lying in K; ~ K,, since the Cantor set

contains Borel subsets of every Baire class relative to itself and hence
also relative to I ([3] and [6], page 351). Thus

C =75(G), D = 74(H)

are disjoint sets in K? ~ ¢7'(K*. Let B = 7,(F). Then
$(B)=CUDESs'(4) .

If ¢: ~(B) — B were one-to-one it would be a homeomorphism and
C and D would lie in ¢(K%. Thus B (and hence A) contains a
multiple point.

Proposition 3.2 for & = 2 now follows from

LEMMA 3.6. Let 2 < a < B and w, be a multiple point for ¢: 2, —
2,. FEach point of ¢ '(w,) has all its K*? neighborhoods of uncountable
type.
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Proof. Let 4 c¢™(w)) and C be a K? neighborhood of - whose
complement also intersects ¢ '(w,). Suppose that

E = t7/(C N 74(1))
were countable. Then Fe K,= K, and
C = ¢7'(r.(E)) ,

which is a union of fibers. Since C intersects ¢'(w,) it must contain
it, contradicting the fact C° intersects ¢ (®,).

COROLLARY 3.7. If 2 < a < B, then every multiple point is a
special multiple point, and

Q=M= M® = ...

To prove Proposition 3.2 for &« = 1 we first need

LEMMA 3.8. Let F be a Cantor set in I. There exists a subset
B of F such that BAC e K, ~ K, for every countable set C in L.

Proof. We start by constructing a certain subset of I. Let
A = Uy, K,, where each K, is a Cantor set and A is dense in I.
If U is any nonempty open set in I, A°N U is of second category
in U. Thus AN U and A°N U are both uncountable. Let : F—1
be any continuous irreducible onto map. (Such a map exists, since
if @: K— I is a continuous map from the Cantor set K onto I, there
exists a closed subset 7 of K such that @|T is irreducible. Since
T can have no isolated points, it is homeomorphic to K.) Now take
B =4 (A)S F. Suppose V is any nonempty relatively open subset
of F. By Lemma 2.3 there exists a nonempty open set U in I such
that +(U)S V. Thus BN V and B°N V are both uncountable, since
they contain the sets (U N A) and +(UN A9.

Now consider F as a subset of T and BESF. Let C be any
countable set in I. Then B4AC = (BU D, N D:, where D, and D, are
disjoint countable sets. It W is any open set in I which intersects F,

Fnwn(@B4C)2 Wn BN D;
Fnwn(B4Cy2Wn B N D;

and these sets are uncountable. Thus the characteristic function of
B4C is everywhere discontinuous on F, so BAC¢ K, ([6], page 419).
Since B is an F, set, B4C e K,.

2 BAC denotes the symmetric difference of B and C.
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Proof of Proposition 3.2 when a« = 1. Let ¢: 2, — 2, and let E
be any set in K* of uncountable type. Since z;(E N 7,(I)) contains
a Cantor set, it follows from Lemma 3.8 that there exists a set
A S ¢7(E) S 2; (necessarily of uncountable type) such that A4Ce K*~
67} (K") for every set Cin K* of countable type. Let R = ¢(4) N ¢(4°).
Then R is a compact subset of E. We shall prove that R contains
a special multiple point for ¢. Note that for we R, AN ¢~*(w) and
A° N ¢ (w) are both nonempty. If a point @ of R is not a special
multiple point, then there is at most one point of ¢~'(w) all of whose
K* neighborhoods are of uncountable type. It follows by compactness
of AN ¢*(w) and A°N ¢~ '(w) that there exists a neighborhood B, of
® in K'® such that either ¢~'(B,) N A or ¢ *(B,) N A° is of countable
type in K® Suppose now that R contains no special multiple point.
By compactness, a finite number of such neighborhoods B, cover R.
We may suppose them to be disjoint and divide them into two groups
whose unions C, and C, satisfy

(1) GnC.= @,

(2) RsC, UG,

(8) #C)N A and ¢7*(C,) N A° are both of countable type.

The open set

W= {w]|™(w) & A}
is dense in A by Lemma 2.3. Because

W~ WSRSC UG,
the set

G=W~(C,uC)
is open and closed in 2,. Moreover

$7(G) = A~ ¢ (CUGC),
because
$7(G) = ¢7 (W) ~ 7 (CLUCHE A~ ¢ (CLUC)S 474G,
since
A~¢HCUC)EA~¢7(R) =¢7(W).

Thus the set K= A ~ ¢7(G) is a subset of ¢7'(C, U C,), and hence
of countable type, and A4K = ¢ (G) €4~ (K"). This contradiction
proves the existence of a special multiple point for ¢ in R.

The method above may also be used to prove that C(I) is uncom-
plemented in B, for « =1 and also that each B, is uncomplemented
in the Banach space B, = Uas<u,B. of all bounded Borel measurable
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functions. We shall not give the details. The fact that C(I) is un-
complemented in B, was proved earlier by B.B. Wells, Jr. in [11]
using Phillips Lemma ([9], page 525). He also proved that B, is
uncomplemented in [.(I), assuming the continuum hypothesis.

4, TFinal remarks. We conclude with some observations and
open problems.

1. The first observation is that our noncomplementary results
for B, on I hold equally well when I is replaced by any uncountable
compact metric space. If M is such a space, then by a fundamental
result of Milutin ([7], [8]) there exists a linear isomorphism ¢: C(M) —
C(I) of C(M) onto C(I). If {f,}<C(M), then, by the Lebesgue
Dominated Convergence Theorem, lim,_..f.(s) exists for each seM
iff Tim,_.. g f.dp exists for each ge C(M)* = ¢*C(I)* iff Tim,_.. (6.)(0)
exists for each teI. It follows easily that ¢ extends to an isomor-
phism of B,(M) onto B,(I) and, inductively, of B,(M) onto B,(I), a<w,.
Thus B,(M) is uncomplemented in B,(M) for 1 < a < 8. Further,
F. K. Dashiell has shown (using the Borsuk-Dugundji Theorem) that
our results hold in any compact space containing a homeomorph of
the Cantor set.

2. A Banach space X is imjective if it is complemented in each
Banach space Y into which it is imbedded. Theorem 3.4 and the
first remark show that none of the Banach spaces 8,(M), M uncount-
able compact metrie, are injective. This fact may also be proved as
a simple consequence of a theorem of H. Rosenthal [10]. Suppose
B,.(M) were injective. Since B,(M) contains c¢,(M), it follows from
Rosenthal’s results that B,(M) contains a subspace isomorphiec to 1.(M).
However, this subspace has cardinality 2°, while the cardinality of
B.(M) is c.

The argument just given shows also that B, (M), the space of
bounded Borel functions on M, is not injective. This fact does not
seem to follow from our methods.

3. We now give an example of a compact Hausdorff space 4 for
which C(4) is complemented in B,(4), even though C(4) is not injec-
tive. We may represent B, (I) = C(4) where 4 is a g-stonian space.
Let 7: I — A be the natural imbedding of I as an open dense discrete
subset of 4. Let ge®B,(4) and {f,} be a bounded sequence in C(4)
converging pointwise to g on 4. Then the functions &, €%, (I) defined
by

ha(t) = fulc®), tel,n=1,2, -

converge pointwise to a function k€%, (I). Its correspondent ! in
C(A) agrees with g on 7(I) (but not on all of 4 unless g is continuous).
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Clearly ! is independent of the sequence {f.}. The map g — ! defines
a norm one projection of B,(4) onto C(4).
4. Information concerning the spaces £, is very incomplete.

Question 1. Let a < B and ¢: 2, — 2, be the canonical map. Is
the set of multiple point for ¢ closed in 2,?

Question 2. For the map ¢: 02, — 2, can one characterize the
special multiple points?

Answers to these questions would greatly simplify the arguments
in §3.
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