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RESTRICTING ISOTOPIES OF SPHERES

J. A. CHILDRESS

In this note we consider the problem of determining
whether isotopic homeomorphisms of Sn that agree on a subset
X of Sn are isotopic by an isotopy that is fixed on X. In par-
ticular, in the PL category, an affirmative answer is obtained
for X a locally unknotted closed cell or an unknotted sphere.

If X and Y are polyhedra and h0 and hx are homeomorphisms of
X onto Y, then an isotopy between h0 and hγ is a homeomorphism
H:X x I-+Y x 1(1 = [0, 1]) such that H(x, t) = (ht(x), t) for all
(a?, t)e X x I. Two embeddings /, g of X in Y are said to be ambient
isotopic if there is an isotopy H: Yx I —* Y x I such that h0 = id., and
hj = g. The isotopy H is fixed on Ad Y iΐ H(x, t) = (x, t) for all
(x, t)e A x I. Let Sn denote the standard ^-sphere, En Euclidean
%-space, Δk a A -simplex in some combinatorial triangulation of Sn or
En, and let "PL77 denote "piecewise linear." If k < n we regard Sn

as the (n — fc)-fold suspension of Sk, so there is a natural inclusion
Sk c Sn. A PL embedding i: Sk -* Sn is unknotted if (S% i(Sk)) PL

(Sn, Sk), which is always the case if k ^ n — 3. Clearly an unknotted
sphere Σk in Sn is PL locally flat; i.e., for each point xeΣk, there is
a neighborhood U of # in Sw such that

(U, U Π Σk) PL {E% Ek) .

The main results of this paper are the following:

THEOREM 1. Let X = Δk or X = Sk, and let i: X-+Sn be a PL-
embedding, unknotted if X = Sk, locally unknotted if X = Ak. If f
and g are PL-homeomorphisms of Sn that are ambient isotopic, and if
f\ i(X) = g I ί(X)y then f and g are PL ambient isotopic fixing i(X).

THEOREM 2. Let Σk cz Sn be unknotted, n ^ 5, k Φ 3, and f and g
be homeomorphisms Sn that are isotopic and agree on Σ. Then f and
g are ambient isotopic fixing Σ.

If k ^ n — 3, then Theorem 1 is a special case of [2]. Note that
in Theorem 2, we do not require / and g to be PL.

The key step in the proof of these theorems is

LEMMA 3. Let X be a k-simplex in Sn or the standard k-sphere
Sk c Sn. If f is an orientation preserving PL-homeomorphism of Sn
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that is the identity on X, then f is PL-isotopic to the identity keep-
ing X fixed.

Proof. The proof is by induction on n, with the case n = 0
trivial. Assume the lemma is true for X a simplex or a sphere in

Case 1. X= Δk.

Let D be a second derived neighborhood of X mod dX; if k — 0,
D is a regular neighborhood of X; if k — n,D — X. Observe that
f(D) is also such a regular neighborhood. Thus there is an isotopy
H of Sn, keeping X fixed, such that Ho = id., and HJ{D) = D [1].

Now HJI 3D is an orientation preserving PL homeomorphism;
since HJ \ (3D Π X = S*"1) = id., and 3D PL Sn~\ by induction, fζ/1 3D
is isotopic (in 3D) to the id. fixing 3D Π X. Thus there is a PL isotopy
G; of 3D such that Go" - id., G[HJ \ 3D = id., and G\HJ \ 3D n X - id.
for 0 ̂  ί ^ 1. Suspend this isotopy to obtain an isotopy, G, of Sn

that keeps X fixed; to do this, pick suspension points x e X, y e Sn\D,
and note that we may assume that X is then a subcone of D. Thus
G has similar properties to G'; i.e., GtHJ \ 3D U X = id. for 0 ̂  £ g 1,
and Go — id. The PL-homeomorphism G^f of S% is the id. on 3D (J X,
so the Alexander technique yields an isotopy F of Sn such that
Fo = G.HJ, F, = id., and ί7 keeps 3D u X fixed. The isotopy

H<t(f(x)) Q^t^λ.,xeSn,
4

is the required result.

Case 2. X - S°
Let X = {a, b}, and let ΛΓ be a second derived neighborhood of

a mod b in S\ Let M be a second derived neighborhood of b mod
(N{Jf(N)) in S\ Then ΛΓ and f(N) are regular neighborhoods of
a in Q = cl (Sn — M) that meet 3Q regularly. Thus there exists an
ambient isotopy if of Q, keeping 3Q (J a fixed, such that Hγf(N) = N.
Extend H to Sn by the identity on M.

HJ\ 3N: 3N—> 3N is an orientation preserving PL homeomorphism
(3N^Sn~ι), so we may use the Alexander technique to obtain an ambient
isotopy G of Sn such that G^f — id. and Gt \ X — id. As before,
this yields the desired result.
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Case 3. X = S\ k ^ 1.
Clearly we may assume k < n, and that if Sn = Σ^S1, then

S* = J*-^ 1 . Let α, 6 e S1 c S*, and let S;-1 = -Σ*"1 {<*, &}. (In each of
these suspensions, we are using the same suspension points in the
same order.) Let B+, Bl be the closed complementary domains of
ST1. Let B% = Sk Π Bl; Bί = Sk Π Bl.

Observe that B+ is a regular neighborhood of B\ mod B1!, as is
f(Bl). Thus by Theorem 3 of [1], there exists an isotopy H of Sn,
fixed on B\ [J Bί = S\ such that

Ho = id, and HJ(Bl) = Bj .

Note that HJiSΓ1) = SΓ1, and that

S* Π SΓ1: Sk n iSΓ1( = S*"1) — SΓ 1 is the id .

Thus HJI iStp1 is isotopic to the identity keeping Sk Π Sj""1 fixed.
Proceed as before to complete the proof.

COROLLARY 4. If f is an orientation preserving PL homeomorphism
of En such that f\Ak = iά., then f is PL-isotopic to the id. fixing Λk.

COROLLARY 5. Let g: Δk —• En(Sn) be a PL-embedding, locally
unknotted if k = n — 2. If f is an orientation preserving PL-homeo-
morphism of En(Sn) and if f\ g{Δ) = id., then f is PL-isotopic to the
identity fixing g(A).

COROLLARY 6. Let g: Sk —•> Sn be an unknotted PL-embedding.
If f is a PL-homeomorphism of Sn that is orientation preserving and
the identity on g(Sk), then f is PL-isotopic to the identity fixing g(Sk).

Proof of Theorem 1. Observe that gf~ι is an orientation preserv-
ing PL-homeomorphism of Sn that is the identity on i(X). Thus
there is a PL ambient isotopy ht of Sn such that

h0 = id .

K = gf~\ and
ht I i(X) = id .

ht: Sn —•> Sn is the desired isotopy.

Proof of Theorem 2. As in the proof of Theorem 1, it suffices to
consider the case when / is orientation preserving and g is the identity.
By [3],/ is isotopic to a PL-homeomorphism / ' fixing Σk. Apply
Lemma 3 to /'.
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