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TORSIONAL RIGIDITIES IN THE ELASTIC-PLASTIC
TORSION OF SIMPLY CONNECTED CYLINDRICAL BARS

TsuaNn Wu TING

Under elastic-plastic torsion, the circular shaft possesses
the maximum resisting torque among all solid bars with the
same cross-sectional area and the same angle of twist per
unit length.

1. Introduction. Consider a simply connected cylindrical bar
twisted by terminal couples. If the angle of twist per unit length is
sufficiently small, then the bar behaves linearly elastic [18, 23, 26].
Under this circumstance, St. Venant succeeded in formulating it as
a Neumann problem by means of his semi-inverse method, [22]. It
was his contention that among all solid bars with the same cross-
sectional area, the circular shaft gives the maximum torsional rigidity.
This isoperimetric problem was first solved by Polya [15]. Later
similar results have also been obtained for multiply connected cross-
sections [17]. The results of Polya and Szego have had much in-
fluence and further explorations of their problems have been continued
up to the present time [4, 5,13-17, 29].

According to the theory of plasticity [26, 27], if the angle of
twist per unit length reaches a certain critical value, then some por-
tion near the boundary of the bar becomes plastic. Moreover, the
plastic region grows as the load increases, [26]. Although the elastic-
plastic torsion problem has been stated quite precisely for a long time,
[28], the answers to the basic existence and regularity problems are
recent ones, [2,9,11,12,26]. However, before the elastic-plastic
torsion problem was completely settled, Leavitt and Ungar already
showed that the circular shaft is also the strongest one under com-
pletely plastic torsion, [10].

Since the elastic-plastic torsion problem can be so formulated that
it includes both the purely elastic and the completely plastic torsions
as special cases, [26], it is the objective of this note to present
a proof for the statement in the Abstract. Needless to say that Polya’s
ideas in his first and third proofs of St. Venant’s conjecture will play
an essential role in this proof. On the other hand, the present theorem
includes Pdlya’s results as well as the one obtained in [10].

2. The elastic-plastic torsion problem. Denote by G the sim-
ply connected cross-section of a solid bar. We shall restrict G to
have the following properties: (i) dG, boundary of G, possesses con-
tinuously varying curvature except at a finite number of corners,
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(ii) between any two adjacent corners, the curvature of G achieves
only a finite number of maxima and minima, and (iii) G satisfies the
well known cone conditions.

As usual, we denote by C;°(G) the class of infinitely differentiable
functions with compact support in G and by H{(G) the completion of
Cy(G@) under the Dirichlet norm. Let ¥ be the distance function,

(2.1) ¥(q) = ko(q, 9G), ¢ G = G + 4G,

where k£ > 0 is the yielding constant and (g, G) stands for the dis-
tance from q to 0G. Let F be the closed convex subset of H}G)
specified by the rule:

(2.2) F={p|pcH(G),p <V ae. in G},

where ¥ is the majorant function difined in (2.1). The elastic-plastic
torsion problem is to find a function + in F that minimizes the
Sfunctional

2.3) Jiel = || [lgrad o | — 4pgpldady

among all @ in F, where tt and 0 are positive constants standing for
the shear modulus and the angle of twist per unit length respectively.

Let C* (@), 0 < @ < 1, be the class of functions which together
with its derivatives of order n are Holder continuous in G with
exponent . Then we have the following known results,

THEOREM 1. The elastic-plastic torsion problem (2.3) has a unique
solution  belonging to C***(G) such that wherever v < ¥, is twice
differentiable and satisfies the Poisson equation, 44 = — 24¢6.

The existence and uniqueness of the minimizing extremal + can
be proved in an elementary way for the present case. The profound
regularity result, v € C***(G), is essentially given in [2] and [11] and
it has been carried out for the present case in [26] by establishing
the existence of an elastic core.

There is another variational formulation for the same problem.
It is to replace the admissible family F' by

F,={p||gradp| <k a.e. in G} .

From the results in [26], it is easily seen that the two variational
formulations are actually equivalent. However, a direct and essen-
tially self-contained proof is given in [1].

For the convenience of later discussion we introduce some nota-
tions. Relative to the minimizing extremal -+ and the majorant
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function ¥, G can be partitioned as follows:
E=1{q]qeG, () <¥@)}, P=1{glqeG, (@ =¥(g)}.

It turns out that E is the elastic region and P is the plastic region
of G as defined in plasticity theory, [18]. Let ge P and s€dG be
such that o(q, s) = p(q, 0G). It is easy to check by using Theorem 1
that the line segment g¢s lies in P. Using this result and Theorem 1,
we can show that E is simply connected, [26].

3. Formulation of the isoperimetric problem. Given a simply
connected domain G with the specified properties, there is a unique
minimizing extremal -+ for the elastic-plastic torsion problem (2.3).
Of course, + depends upon the parameters ¢ and 6. It depends on
the parameter %k through the majorant function ¥. If we keep the
values of these three parameters fixed, then as the solution of the
elastic-plastic torsion problem (2.8), +r is uniquely determined by the
geometry of the domain G. Furthermore, to look into the effect of
G, which is purely geometric in nature, we shall keep the area of G
fixed in the following discussions.

Relative to a rectangular Cartesian coordinate system with the
z-axis parallel to the generators of the cylinder, the components of
the Cauchy stress, [27], are given by

bor =ty =t =1, = 0,8,y = — sy 6oy = Yy

Hence, the resisting torque M about the z-axis is given by
@) M@ = || @t — ytadsdy = ~ || @y + v)dady
- ZSS pdady .
G

Since for fixed values of the parameters %, 4 and ¢ and for fixed area
of G, is uniquely determined by the geometry of the domain G,
the formula (3.1) shows that M(G) is a functional defined on all sim-
ply connected domains G with the same area and with the specified
properties (i)-(iii). We wish to show that

THEOREM 2. If G 1s a simply connected domain with the same
area as that of a disk D and if it satisfies the conditions (i)-(iil) in
the elastic-plastic torsiom problem, then the domain functional M
defined in (3.1) must satisfy the inequality,

(3.2) M(G) = M(D) ,

where the equality sign holds when and only when G ts also a disk.



260 TSUAN WU TING

Physically, the theorem means that among all solid bar with the
same cross-sectional area and the same angle of twist, the circular
shaft possesses the maximum resisting torque. Moreover, this s so
no matter how large the angle of twist 6 per unit length may be.

In order to cover the cases not included in linear elasticity theory
we shall assume in the proof of Theorem 2 that the area of the plastice
region P in the disk D is positive. It turns out the proof still holds
even if the plastic region P is empty.

It is true that the yielding of a circular shaft does not neces-
sarily imply that all other shafts with the same cross-sectional area
will also yield when twisted by the same amount. A simple example
is a shaft with elliptic cross-sections. However, for some solid shafts,
this is so. For example, a circular shaft with a circular groove along
its generator. In order to cover these two possibilities in the proof
of Theorem 2, we first establish a lemma which is also interesting by
itself. Also, the results listed in the next section for the level curves
of the extremal are essential for the Schwarz symmetrization used in
the proof of Theorem 2.

4. An auxiliary lemma. Consider the level curves of the
minimizing extremal +,

(4.1) Jr(z, y) = const B, 0 < B < max W
G+

It is quite clear that + is nonnegative in G and hence the inequalities
for specifying g are meaningful. Each of such a level curve encloses
an open subset H(B) of G,

(4.2) H(B) = {g|v(q) > B, qeG} .

For a general domain G with the properties as was spzcified before,
it is not known whether H(R) is simply connected or even connected.
However, the following facts are known:

(a) If 0H(B) N P is nonempty, then it consists of Jordan arcs
which are either parallel to 0G or are circular arcs.

(b) All the Jordan arcs in 0 H{g) N P possess continuously varying
curvature.

(e¢) None of the boundary points of 0H(8) N P can be branch
point, because they are interior points of G and |grad +-| = k there.

(d) Since + satisfies the Poisson equation, A = —2¢0, in the
elastic region FE, it is analytic there and hence

OH(BYNE =0H(B) —oHB NP

consists of analytic curves. Consequently, the unique continuation



TORSIONAL RIGIDITIES IN THE ELASTIC-PLASTIC TORSION 261

theorem ensures that there are at most a finite number of points on
0H(B) N E at which |grad~-| = 0.

(e) At each branch point on JH(B) where |grad+ | = 0, the
level curve ++(x, ¥y) = B has only a finite number of branches, [6].

The above results, (a)-(e), assure us that the open set H(B) con-
sists of only a finite number of components. Each of these com-
ponents of H(R) is enclosed by a simple closed curve with continuously
varying tangents. With these facts in mind, we know that the
Dirichlet problem,

(4.3) tu = —2p0 in H(B), w =+ on dH(B)

always has a unique strict solution for 0 < 8 < maxg 4.

LeMMA. If wu(x, y) is the solution of problem (4.3), then

(4.4) w(®, y) = (v, y) everywhere in H(G)
and
(4.5) 1| ate, wdody > | i, yydndy

unless H(B) N P is empty.

Proof. If H(B) N P is empty, then « is identically equal to v in
H(B) and there is nothing to prove. Accordingly, we assume that
H(B) N P is nonempty. The intersection property of the plastic region
P ensures that H(B) N P consists of line segments perpendicular to
0G. Moreover, 0P does not contain any segment perpendicular to 0G.
This fact can be proved by assuming the contrary and then by con-
sidering the Cauchy probem for +r,, + +,, = —2¢8 with Cauchy date
V¥, e, prescribed along a segment on the y-axis. The uniqueness
theorem for the Cauchy problem will lead to a contradiction to the
fact that |grad | < k in E. These two properties of P assure that
if H(B) N P is nonempty then it has positive area.

We proceed to show that if % is the solution to (4.3) then

(4.6) U > a.e. in HR N P.

If this inequality has been established, it follows from the continuity
of u — + in H(B) N P that w = + on 0{H(B) N P). Hence, an applica-
tion of the maximum principle for elliptic inequalities [19] leads to
that u = + on H(B) N E. This inequality together with the inequality
(4.6) proves the lemma.

To establish (4.6) we first appeal to computation to check that
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— g — _—Kk(s) _
A«/f—Aq/r—ﬁTs)z_]- in P— 0P,
where s stands for the arc length of dG, £ the curvature of G and ¢
the distance measured from 0G along the inward normal. The ex-
pression on the right-hand side clearly shows that the set of points
in P on which 4y = —2¢6 always has two dimensional measure zero.
Hence % can not identically equal to 4 in H(B) N P.

Suppose that <+ in H(B) N P. Then u < + over some subset
of positive area in H(B8) N P. Moreover, it implies that » <+ on
0(H(B) N E) and by maximum principle, v <+ in H(g) N E. Con-
sequently, w < + in H(G) and

Sg udxdy < gg Jdady .
JH(B) H(p)

That is, » and + can not be identical on H(B). Now the Dirichlet
principle for the solution % to (4.3) implies the strict inequality,

SS [ grad u | — dpbu)dedy
(4.7) e
< SS [lgrad v |* — 4poy]dedy .
H(B)

On the other hand, u < . on H(B) implies that the function,

w in H(),
{«/f in G- H@Q),

belongs to the admissible family F for the elastic-plastic torsion
problem. Hence, the minimizing property of ++ implies that

|| Uerady i — 4uoyldody

(4.8)

< SS [lgrad v |* — 4pbu]dxdy .
H(B)

The contradiction caused by (4.7) and (4.8) proves that u > 4+ some-
where in H(B) N P and that this set has positive area.

Let H(B) N P. be the maximum open subset of H(B) over which
% > . If the set H(B) N (P — P,) has positive area, then we can apply
the same reasoning for the set H(G) N P to the set H(B) N (P — P)
and conclude that u >+ somewhere in H(B8) N (P — P,). This con-
tradicts the maximality of the set H(g8) N P,. Hence the assertion in
(4.6) is established and the lemma is now proved.

In the proof of Theorem 2, we shall apply the lemma with 8 > 0.
Of course the lemma is true for the case 8 = 0. In this case, G(0) = G
and the proof can be simplified. Hence we have the
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COROLLARY. Among two geometrically and elastically identical
cylindrical bars, the ome without yielding behaviors offers larger
resisting torque under the same angle of twist. Accordingly, for safety
in design the elastic-plastic theory is preferred.

5. Proof of Theorem 2. We shall compare the values of M(G)
with M(D) by using the Schwarz symmetrization process [16, 21] to
change the functions defined on G + 8G into functions defined on
D + 6D. To this end, let B be the solid bounded by the domain G
and by the surface z = v (x, y) for (z,%) in G + 0G, where 4 is the
miminizing extremal of the elastic-plastic torsion problem over G. Let
¥ be the majorant function defined in (2.1). The Schwarz symmetri-
zation is to change each section of the solid B parallel to its base into
a parallel disk with the same area. In this way, the solid B is trans-
formed into a solid B* of revolution with its base being the disk D
such that it is bounded from above by the surface of revolution
z =™, y) for (x,y) in D + 6D. The Schwarz symmetrization has
the basic properties that it preserves volume and decreases surface
area. More precisely, we have the Polya-Schwarz theorem,

o Iy, G] = Sgaq/fdmdy - HD y*dady = Ily*, D],
" DIy, 6] = SSG[ grad v [* dody = Sgalgrad w* [F dedy = D[y, D] .

It should be mentioned that the regularity results for the solution to
the elastic-plastic torsion problem assures that Schwarz’s proof given
in [21] can be applied here.

The above Schwarz symmetrization process can be applied to
change the surface z = ¥(w, 9), (v, ¥) in G + 0G, into a surface z =
U*(x,y), (x,y) in D+ 0D. Let @ be the distance function, @(q) =
ko(q, 0D) for all ¢ in D. We assert that

(5.2) O(q) = ¥*(q) for all points ¢ in D,

where the strict inequality holds everywhere in D unless G is also
a disk. To show this we denote by G(p) the set of all point in G at
distance > o from 0G. Let S(p) be the total arc length of dG(p) and
A(p) the area of G(p). Then we have the well-known isoperimetric
inequality, S(0) = 2(wrA(p))"*. Consequently,

—dA(0) = S(0)do = 2(wA(0))"*dp,

where the negative sign follows from the fact that A(p) is a strictly
decreasing function of o. Upon integrating the inequality from 0 to
o, it yields
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(5.3) o = 7 [(A(0)” — (A(0)"] = o™,

where the equality sign holds only when G is also a disk. Now for
each p=0,¥ = ko on 0G(p). Moreover, under the Schwarz sym-
metrization ¥ goes over to ¥* and the region G(o) enclosed by the
level curve ¥ = ko changes into a disk D(o0*) which has the same
area as that of G(p) and is bounded by the level curve ¥* = kp.
Thus, * = kp on 0D(p*). Hence for all o* = 0, we have from (5.3)
that

(5.4) o — ¥ =k(e*—0) =0 on oD(p%).

In fact, the equality sign in (5.4) holds only when either p* = 0 or G
is also a disk. This proves the assertion (5.2).

Let @ be the unique solution of the elastic-plastic torsion problem
over the disk D. Then there is a unique constant #», such that

_ jyﬁ(rg—r2)+k(R—ro),0§¢§7'o,

(5-5) —fk(R—r),rogfrgR,

where R is the radius of the disk D. Let pf = R — r,. D(of)is the
set of points in D with distance > of from o0D. From the estimate
in (5.2) and (5.5) we see that

(5.6) P=0zT*zy* in D— D@y,

where the first strict inequality sign holds everywhere in D — D(of)
unless G is also a disk. As was already mentioned before, we assumed
that D — D(p§) has positive area.

Let v be the solution of the problem:

(5.7 dv = =210 in D(of), v = +* on oD(oF) .
It follows immediately from (5.6), (5.7) and the maximum principle that
(5.8) P —wv=Fkry— ") >0 in D(of),

unless G is also a disk. From the very definition of Schwarz sym-
metrization of the solid B, we see that the region H(B,) in G, which
is enclosed by the level curve

(@, Y) = B = vH(r) >0,

is carried over onto the disk D(pF) under the Schwarz symmetrization.
As were listed in § 4, 0H(B,) has all the nice properties, so we may
consider the solution # of the Dirichlet problem:

(5.9) du = =210 in H(B),u =+ on 0H(B,) .

According to the auxiliary lemma,
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(5.10) u =+ everywhere in H(B,).

Under the Schwarz symmetrization, the function % defined in (5.9)
goes over to a function u* defined on D(o;) such that

I — B, H(B)] = I[w* — Bo, D(05)] »
Dlu — By, H(B))] = Dlu* — S, D(05)] ,
where the notations for I and D are completely similar to that given

in (5.1). Now, from (5.7) and from Polya’s variaticnal formulation for
torsional rigidities [17], we see that

(5.11)

~ o Iy — 8y DO - Il — 8y D(D)]
(5:12) o = 8 DD = 50— D(on)] = Dlur — 6, Do) °

Also, it follows from (5.11) and (5.9) that

I'lu* — 8o, D(03)] ~ I’lu — B, H(BJ)] _
5.13 > = Ifu — B, H(B))] -
G1) B g Dlon] = Dlu— o Alg] 10 A HE)]
By combining (5.8), (5.12), (5.13), and (5.10), we find

I[® — o, D(0D)] = I[v — B, D(0D)] Z I[u — B, H(BY)]

= I[y — B, H(B)] -

Since D(o5) and H(B,) have the same area, it follows immediately that

(5.14) Ilp, D)) =z Iy, H(B)] -

It may be noted that the above equality sign can not hold unless
H(B,) is also a disk. On the other hand, the volume preserving
property of Schwarz symmetrization implies that

I[v*, D — D(0o%)] + B, area of D(05)
= Iy, G — H(B)] + B, area of H(B) ,

and hence we have from this and the estimate in (5.6) that
(6.15)  Ilp, D — D(o5)] = Ily*, D — D(0)] = Iy, G — H(B)] »

where the strict inequality sign holds unless either D — D(of) is
empty or G is also a disk. By adding the corresponding sides in
(5.14) and (5.15) we find

Ilp, D] =z Ilvy, G]

where the equality sign holds when and only when G is a disk.
Theorem 2 is now established.
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