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UNIQUENESS FOR THE CAUCHY PROBLEM FOR
DEGENERATE PARABOLIC EQUATIONS

AVNER FRIEDMAN

Consider a second order degenerate parabolic operator L.
The present paper is concerned with the uniqueness of solu-
tions of the Cauchy problem: Lu = / in a strip 0 < t ^ T,
u(0, x) = φix) for all x in Rn. It is proved that there is at
most one solution subject to a growth condition which depends
on the degeneracy of L. In the special case where L is
ultraparabolic, uniqueness is proved under only onesided
growth condition. The methods used involve the construc-
tion of comparison functions in suitable sequences of domains.

In § 1 we state the main results on uniqueness of regular solu-
tions. The proofs are given in § 2. In § 3 we derive uniqueness
results for weak solutions defined by means of stochastic differential
equations. Finally, in § 4, a uniqueness theorem is proved in case
L is ultraparabolic, for solutions satisfying only a onesided growth
condition.

Results of the same nature as in § 1 were obtained in very
special cases in [4], [10]. Results overlapping with those of § 3
have recently been obtained by Sonin [12]; for more details see
Remark 1 of § 3.

1* Uniqueness of regular solutions* Let

Lu= ± a(j(t, x)-^;- + Σ bt(t, x)^- + C(t, x)u - §ί

where {ai5) is a symmetric positive semidefinite matrix. Let kt

(l^i^p) and m be positive intergers such that 1 ̂  kx < k2 < < kp =
m ^ n, and set

Aj = {&,-_! + 1, kj__λ + 2, , kj], 1 ^ j ^ p, where k0 = 0 .

Write

x = (V, α")ι x' = (x[, , χ'p), x) = (xk._1+1, , xkj) .

Let di(τ) (1 ̂  i ^ p) be positive value functions for r ^ 0, having
two continuous derivatives in V r and satisfying

rd'i(r)

W =s c,
d dl(r)

dr

r

c.

is monotone increasing in r (1 ̂  i ^ p) .
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132 AVNER FRIEDMAN

Here and in what follows, various positive constants will be denoted
by the same symbol C. Note that (1.1) holds if

(1.2) dt(r) = (1 + r 2 )^ , Pi ^ \ .

Δ

We shall assume:

(1.3) α«(ί, x) ^ Cdk(\ xk I) if i e Ak, 1 ^ k ^ p ,

(1.4) αw(ί, x) = 0 iί m + 1 ^ i ^ n, 1 ^j ^n ,

(1.5) I δ,(ί, a?) I ̂  C ( l + | a£ | + Σ I x\ \μιk + C\ x" \A

if ieAk, 1 ^ k < p ,

(1.6) I δy(ί, a?) I ̂  c(l + Σ I «i \Bk + | α?" | ) if m + 1 ^ i ^ w ,

(1.7) c(ίf a?) ^ Cf 1 + Σ -^4r, + I ^' I2)

where μlk, yk, δk, λ are nonnegative numbers subject to the following
conditions:

(1.8) r'^d^r) ^ C(l + i*)dk(r™) ,

(1.9) r 2^ ^ C(ί + rO

(1.10) dk(r) £ C(l + r2~δ,), dk(r) ^

If

- ^ - = i22, then write r =
d ( )

(By (1.1), e<(i2) is uniquely defined.) Set

(1.11) e(R) = max [e4

A function u(ί, a?) will be called regular if it is continuous in
[0, T] x Rn and if its partial derivatives ut, uX9 uxx exist in (0, T] x Rn.

THEOREM 1. Assume that (1.3)-(1.7) and (1.1), (1.8)-(1.10) hold.
Let u{t, x) be a regular function satisfying

(1.12) Lu(t, x) = 0 m (0, T] x i2w ,

(1.13) M(0, a?) = 0 in Rn ,
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(1.14) Iu(t, x)\£Cexp\d± J | * L + | s" |'Ί} (β > 0)
I L*=i dk(\ xk I) JJ

in [0, T] x Rn, provided

Then u(t, x) = 0 in [0, Γ] x Rn.
Stronger assertions can be made in case the δk vanish. Suppose

(1.15) I 6i(ί, x) I ^ c f l + I xk I + Σ I x\ \μkι)v(t, %") (1 ^ i ^ m) ,

(1.16) I 6y(ί, a?) I ^ C(l + I a?" |) (m + 1 ^ i ^ n) ,

(1.17) c(ίf a?) ^ Cf 1 + ΣΣ

where i(t, x") is an arbitrary continuous function. Then we can
state:

THEOREM 2. Assume that (1.3), (1.4), (1.15)-(1.17), and (1.1), (1.8)
hold. Let u(t, x) be a regular function satisfying (1.12), (1.13),
and let

(1.18) I u(t, x)\£C exp \β Σ - T ^ Ψ T T W , »f/) (^ > 0)
1 k=1 dk(\ x'k |)J

w/̂ erβ //(ί, a;;') is a continuous function. Then u(t, x) = 0 w [0, Γ] x Rn.

2. Proofs of Theorem 1*2• The proofs of Theorems 1, 2 are
based on the construction of (i) a comparison function H(t, x), and
(ii) a suitable family of increasing domains DR, R> 0. We begin with
the proof of Theorem 1. We take

H(t, x) = exp ^ψ^ (
i d Λ ( | x k \ )

where k > 2β and

a(x") = (1 + I x" \2)λ'2 .

By direct computations one finds that

LH(t, x) <0

provided μ, v are positive and sufficiently large, and
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(2.1) A.

Here we make use of (1.3)-(1.7), (1.1), (1.8)-(1.10), and the inequality

We shall take DR to be a product ΌR x D'R where

*=i 4(1 α* I) JIT

I)

and Z)'̂  the interior of a cone in the (t, #")-space with base

and vertex (η, 0). Clearly

dDR =

where 3β, Ω denote respectively the boundary and closure of a set
Ω. Also, dDR = Spl) Γ where Γ is spanned by the generators of the
cone. Note that

I δ,(ί, a?) I ̂  C(l + e(Λ) + | %" |)

if m + 1 ^ i ^ w, (ί, a?) G ΏR x Γ .

We wish to choose p = /t?(i2), ^ such that the partial derivative

(2.3)

at the points of ΌR x Γ is a derivative in a direction pointing into
JD^. This direction is determined by the trajectories

(2.4)

dt

ψ = hit, x', x")
ds

initiating on DR x Γ. Thus we want to choose p — ρ(R), rj so that

-fίΓ Σ Φ)T - A? - t)\ < o

at the points s = s0 where Σ"=»+i *KS) = (PVV2)(V — W Since, by
(2.2), (2.4),

(^) p)Σ ( ^
U=m+1\ (IS
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at s — 80, it suffices to choose p, η such that

(2.5) £() p)
V

Taking

(2.6) P = e(E), V<±;,

(2.5) is satisfied for all sufficiently large R. We further restrict η
by: η ^ l/(2jκ).

Consider now, for any ε > 0, the function

v(t, x) = [εH(t, x) ± u(t, x)]ert

in DR, where 7 ^ c(t, x) in DR. It satisfies

(L - 7)v(t, x) < 0 in DR Π {t > 0} .

The function v cannot assume a negative minimum at points of
DR, for at such points (L — i)v(t, x) ^ 0. Next, v cannot attain a
negative minimum in DR at points D'R x Γ, for at such points

Σ h(t, φ * o
d=m+i dXj

by the choice of p, rj in (2.6), and

Σ αw(ί, a?)-^- ^ 0, p- - 0 ( H i ^ m ) ,
i,j=i OXiOXj OXi

so that again (L — 7)v ^ 0, which is impossible.
Since v > 0 on D'R x SP (by (1.13)) and v > 0 on 3D^ x D;' if U

is large (by (1.14)), we conclude that v > 0 in DR. Hence

(2.7) I u(t, x) I ̂  sjff(i, a?)

at each point (£, α?) in D^. Taking i? —> co and noting that each
point (£, x) with 0 < ί < η is contained in DR if iϋ is sufficiently large,
it follows that (2.7) holds in the whole strip 0 < t < rj. Taking
ε —+ 0 we conclude that u(t, x) = 0 in the strip 0 <£ t <£ ̂ . We can
now proceed step by step to prove that u(t, x) = 0 in the strip
0 ^ t ^ T.

To prove Theorem 2 we note that (2.5) now becomes

V

We take p a fixed positive number > 1 and independent of R, and
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We also take a(%") = 0 in the definition of H{t, x). Then, if μ9 v
are sufficiently large (depending on p) and η <£ l/(2μ), then LH < 0
in DR. We can now proceed as before to establish the inequality

I u(t, x) I ̂  εH(t, x')

in Z)Λ. Taking R —> oo (^ is fixed) and then ε —> 0, we conclude that

%(£, a?', a?") = 0 if xf e Rm, (t, x") e D'ί

the cone D'ή is independent of p. Since this is true for any cone
Ώ"R with base SP, u(t, x) = 0 in the strip 0 ^ t ^ η. A step-by-step
argument gives u(t, x) = 0 in the strip 0 ^ ί ^ T.

REMARK 1. If the d^r) are given by (1.2), then (1.8)-(1.10)
reduce to

Pi + 2μkl S 2 + jH«/0A , (2 + pk)Ίk ^ λ ,

X δ k ^ 2 + p k , δ k £ 2 + p k .

We can take

e(R) = C max {1 + i2M«><2+«>} .
m + l^i^ίi

REMARK 2. Using different comparison functions for H (such as

4^h + ̂ ΐ e α ί (^ ϊ' α positive)
i d ( | α? I) J

cf. [3; p. 56]) one can obtain variants of Theorems 1, 2 where the
growth conditions on aii9 b{, c and on the solution u are modified.

3* Uniqueness for weak solutions* We assume
(A) The coefficients aiS9 64 are independent of t and c(t, x) = O
(B) There is an m x m matrix σ(x) = (σi3 (x)) such that

m

2ai3 (x) = Σ °ik{φjk{x) (1 ^i, j ^ m)
7c = 1

and the functions σik(x), bά{x) (1 ^ i, & <£ m, 1 ^ j" ̂  w) are Lipschitz
continuous in x9 uniformly in compact subsets of Rn.

(C) Σ \σij(x)\ + ± \ b i ( x ) \ ^ C ( l + \x\).

Recall [2], [9] that if (1.4) holds and the a^x) have continuous
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second derivatives then there exists a matrix σ(x) satisfying (B).
Consider the stochastic differential system (see [5], [6] for the

relevant theory)

dUt) = bt(ξ(t))dt + Σ oio(m)dw5{t) (1 ^ i^ m) ,
(3.1)

dξjit) = bj(ξ(t))dt (m + l^j^n)

where the Wj(t) are independent Brownian motions. Let G be any
bounded domain in Rn and denote by τ the exit time of (s, ζ(s)) from
the cylinder [0, t) x G, where ξ(s) (0 ^ s ^ t) is the solution of (3.1)
with ζ(0) = x.

DEFINITION. A continuous function u(t, x) in the strip [0, T] x Rn

is a weak solution of the equation Lu — 0 if for any bounded domain
G in Rn and for every t e (0, Γ],

(3.2) M(t, α?) = Exu(t - τ, ζ(τ)) .

A slightly different definition was used in [12]. If u is a classical
solution Z/M = 0 in the strip (0, T], continuous in [0, T] then, by Ito's
formula, it is a weak solution. Conversely, a smooth weak solution
is a classical solution. A weak solution satisfying M(0, X) = φ(x) in
Rn is called a weak solution of the Cauchy problem

LN(ί, ») = 0 in (0, T] x

^(0, a;) = ^(α;) in i2" .

If H is a smooth function satisfying LH ^ 0 in the strip [0, T] then,
by Ito's formula,

H(t, x) ^ E,H(t - τ, ξ(τ)) .

From this and (3.2) we obtain, for any ε > 0,

(3.4) εH(t, x) ± u(t, x) ^ Ex{εH(t - τ, ζ(τ)) ± u(t - τ, ζ{τ))} .

Suppose now that the conditions of Theorem 1 are satisfied.
Modify the definition of the domain DR = D'R x DR used in the proof
of Theorem 1, by taking

DR = { ( t , x " ) ; 0<t<T, \x"\<ρ}.

Denote by r the exit time of (s, ζ(s)) from the cylinder DR Π {s < t);
t ^ η. For m + I <. i <: n, 0 < s < τ ,
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= I h(s, ξ(s)) I ^ C(l + Σ I ξ'k(s) | * + f Σ + i I Us) l)

Hence, if f(0) = α?0 is fixed, i2 is large and <o = e(R), rj < 1/(3C),
then £"(s) = (ίm+1(s), •••, fn(s)) does not leave the ball | α ? " | < p at
s = τ. Next, if w(0, a?) = 0 then w(ί - r, f (r)) = 0 if r = t. Using
(3.4) with the same H as in the proof of Theorem 1, we conclude
that

eH(t, x°) ± u(t, x°) ^ EAχ[eH(t - τ, ξ(τ)) ± u(t - τ, f (r))]}

where χ = 1 if ζ(τ) lies on dD'R x D"R and r < ί, and χ = 0 otherwise.
Since on the set where χ = 1,

(eff ± u) > 0 if R > oo ,

it follows that | u(t9 x°) \ ̂  sH(t, x°). Taking ε -> 0 we conclude that
u(t, x°) = 0. Hence u(t, x) = 0 in the strip 0 ^ t ^ η. We thus
obtain:

THEOREM 3. Let the conditions (A)-(C), (1.3)-(1.6), (1.8)-(1.10)
hold. If u(t, x) is a weak solution of the Cauchy problem (1.12),
(1.13) and if it satisfies (1.14) where \x"\ ^ e(R) (R, e(R) as in
Theorem 1), then u(t, x) = 0 in [0, T] x Rn.

Similarly one can prove:

THEOREM 4. Let the conditions (A)-(C), (1.3), (1.4), (1.15), (1.16),
and (1.1), (1.8) hold. If u(t, x) is a weak solution of the Cauchy
problem (1.12), (1.13) and if it satisfies (1.18) where μ(t, x") is a
continuous function, then u(t, x) = 0 in [0, T] x Rn.

Split the coordinates of x" into q sets:

x " = (x[\ , x ; ) , x'/ = ( α ? ; ; . _ 1 + 1 , , x'J.) ( l ^ j ^ q)

where σ0 = m + 1< σx < < σg = %, and let B3 = {σ^i + 1, , σy}.
We can refine Theorems 1 — 4 by imposing different growth conditions
on the bi with respect to the variable x'J. We give here one example.

Suppose

(3.5) au{x) ^C (1 £ i ^ m) ,

(3.6) I bt{x) I ̂  C(l + I α?; I + I x" 10 (1 ^ i ^ m) ,

and (1.4) holds, and replace (1.6) by
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(3.7) I 6 , ( 0 0 1 ^ C ( l + \ x ' \ δ ι + \ x " \ ) i f j e B t , l ^ l ^ q .

We can then proceed as in the proof of Theorem 3, but with
modified DR = D'Rx D^:

Df

R = K; \x'\<R),

m = DRΛ x x DBtq , DSti = {x/; I x ; I < Rδή .

We also

where λ,

(3.8)

take a

H(t, x)

= 2/δ,.

modified

— e x p I -

If

function

k Γ
— μtL

7 ^

H:

τ +

min

Σ
1=1

1

then we can again prove that LH < 0 provided μ, v are sufficiently
large and 0 ^ t ^ 1/(2^). We sum up:

THEOREM 5. Lei £&e conditions (A)-(C), (1.4) α^d (3.5)-(3.8) hold.
If u is a weak solution of (1.12), (1.13) and

(3.9) I u(t, x ) \ ^ C exp {/s[| x' I2 + Σ I %" ί2/^]} (/5 > 0)

then u (ί, a;) Ξ 0 iw [0, Γ] x i2%.

REMARK 1. Sonin [12] has proved theorems which overlap with
Theorems 3-5. His method is entirely probabilistic; our method is
much simpler. In the growth condition on u(t, x) he allows | xr |2 to
be replaced by a slightly more general function, namely, | xf \ h(\ xf |)
where

dr

h(r)

However he imposes more restrictive growth conditions on the b{(t, x)
(1 ^ i £ n).

REMARK 2. Under some smoothness and growth conditions on
Φ(x), one can easily establish the existence of a regular solution for
the Cauchy problem (3.3) (with coefficients depending also on t) by
means of a probabilistic formula. It is convenient to write the
Cauchy problem in the form
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|f + Σ M*, x)^- + Σ Ut, χ)p- + c(t, x)v = 0
at i,j=i oXidXj i=ί ax{

(3.10) in [0, T) x Rn ,
!>(T, a?) = ^(a;) in i?w .

This form is obtained from (3.3) by the transformation t = T — s
upon denoting ai3 (T - s, a?), 6<(Γ — s9 a?), c(Γ — s, x) by α^ίβ, a?), &<(«, a;),
c(s, x) respectively. Suppose there is a matrix (σiS(t, x)) (i, i = 1, , m)
such that

2αw(ί, a?) = Σ <Jik(t, x)σάh(t, x) (1 ^ ί, i ^ m) ,

and suppose ^<y(i, a?), δ,(ί, a?) satisfy a uniform Lipschitz condition in
ί, a? and are bounded by C(l + | a? |). Denote by ξx,t(s) the solution of

m

df{(s) = 64(β, ί(β))ίfe + Σ σ«(β, ί(s))dw3 (s) ( U ί ^ m ) ,

if *(«) = δ*(β, f (s))ds (m + 1 ^ k S n) ,

ίx,*(ί) = a?

Let

(3.11) v(t, x) - JS7ψ(fβft(Γ)) exp

If

(3.12) |2J^(a?) I ^ C(l + | x \2r) for i = 0, 1, 2 (r > 0) ,

if c(s, a;) ^ 0, and if the derivatives

DtσiS, DA, D'xσiί9 Da

xbi9 Die (a = 1, 2)

are continuous and bounded then, by [6], v(t, x) is a regular solution
of (3.10), and | v(t, x)\^C(l + \x Γ)

If m < n and if <̂  = 0 in the condition (1.6), then the last
assertion is valid under weaker growth conditions on φ(x), namely,
(3.12) may be replaced by

I Φ(x\ x") I + I Dxφ{x\ x") I + I Dxxφ(x\ x") I
g C(l + I x' \r)g{x") (r > 0)

where g(x") is a continuous function. The regular solution v(t9 x) is
bounded by C(l + \x'\r)h(x")9 h{x") a continuous function.

REMARK 3. Suppose (A)-(C) hold and suppose σiS(x)9 bk(x) satisfy
a uniform Lipschitz condition in Rn. If φ(x) is a continuous function
satisfying
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(3.14) I φ{x) I g C(l + I x 10 (r > 0)

then the function

u(t, x) =

is well defined. Using the Strong Markov property of the solutions
of (3.1) one can easily show that u is a weak solution of the Cauchy
problem (3.3). If m < n and δk = 0 in (1.6), then the last assertion
remains true if (3.14) is replaced by

\x'Y)g{x")

where g{x") is a continuous function.

4* Uniqueness for solutions satisfying a lower growth con-
dition* From the proof of Theorem 1 we obtain the following
maximum-principle-type result:

LEMMA 1. Assume that (1.3)-(1.7) and (1.6), (1.8)-(1.10) hold.
Let u(t, x) be a regular function satisfying

Lu(t, x) g 0 in (0, T] x Rn ,

^(0, x) ̂  0 in Rn ,

u(t, x) :> -Cexp \β\± - M J L + I a?" | ' 1 |
I L*=ι d Λ ( | a?; |) JJ

m [0, Γ] x Rn provided

\x"\^ e(R), where R2 = ± J ^ 1 ' ,
&=1 dfc([ »* I)

where C, β are positive constants. Then u(t, x) ̂  0 in [0, T] x Rn.

Similar results hold under the assumptions of Theorems 2-5.
We shall prove in this section that, under further restrictions

on L, if Lu = 0 in 0 < t £ T, u(0, x) = 0 on Rn, u(t, x)^0in0^t<T,
then u(t, x) = 0 in 0 g ί ^ Γ. For such results for nondegenerate
parabolic equations, see Friedman [3], Aronson and Besala [1] and
the references given there.

We shall take L to have the form

Lu = Σ M<, a, » ) ^ - + Σ α,(ί, α;, » ) | ^
i 1 OXOX ii OX
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where k ^ m and the matrix (α^ ) is uniformly positive definite. Such
operators are called ultraparabolic operators. If the coefficients are
sufficiently regular, then (see Weber [13], Ilin [7], Sonin [11]) there
exists a fundamental solution Γ(t, x, y; τ, ξ, rj) for the Cauchy problem

(4 2) Lu = 0 in 0 < t ^ T ,

(4.3) ^(0, x, y) = φ(x, y) for (x, y) e Rm+k .

Thus, if φ is continuous and bounded, then a solution of (4.2), (4.3)
is given by

u(t, x,y)=\ [ Γ(t, x, y; 0, ξ, η)φ(ξ, η)dξdη .
j R k ;<R™>

Set

/7 = {(t, χ9y);0^t£ T, xeRm, yeRk} .

We shall assume:

(P) There exists a positive constant a0 such that

Σ
i

α«(ί, », ^Wi ^ ô I ί I2 for all f e i2m, (ί, x,y)eΠ .

(Q) The functions α o and their first three derivatives are con-
tinuous and bounded in Π; the functions a{ and their first two
derivatives are continuous and bounded in 77; the function c and its
first derivatives are continuous and bounded in 77.

Under these assumptions the above mentioned fundamental solu-
tion exists and, for any K > 0, c > 0,

Γ(t, x, y; τ, ξ, rj) Σ
ί l

4-Γ(t, x, y; τ, ξ, η)

( 4 # 4 ) ^ Mexp {-μ \ x |2 - μ \ x' + 2/12} (ilf > 0, ^ > 0)

where a?' = (xί9 , α?Λ), provided \ζ\ + \η\ ^ K, t — τ ^> c, where
M, μ depend on K, c. [Sharper estimates are valid (see [7]) but
will not be needed here.] Furthermore, for the adjoint Cauchy
problem

L*v(τ,ζ,rj) - 0 i n 0 g τ < Γ ,

η) for (ξ, ri) e Rm+k

there also exists a fundamental solution Γ*(τ, ξ, Ύ]\ τ, f, rj) (r < τ).
Using Green's identity as in [3; p. 29] and employing (4.4) and the
analogous estimates for Γ*, one deduces that

Γ(t, x, y; τ, ξ, rj) = Γ*(τ, ζ, 27; t, x, y) .
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Hence,

(4.5) L*Γ(£, x, y; τ, ξ, rj) = 0 for each fixed (ί, x, y) .

Note that Γ ^ 0; the proof is as in the nondegenerate parabolic
case [3; p. 45].

THEOREM 6. Let (P), (Q) hold and let u(t, x) be a regular
solution of (4.2) satisfying

(4.6) u(t, x, y) ^ - C e x p {/9[| x |2 + | y I2]} (C > 0, β > 0)

provided \y\ ^ \x\. If u(0, x, y) = 0 <m J R m + & ί ^ ^ w(ί, a?, y) = 0 m 77.

Proof. In view of Lemma 1 it suffices to prove the theorem in
case u(t, x, y) ^ 0 in 77.

lί k < m, then introduce

77 - {(ί, a?, i/, »fc+1> , yj; 0 < ί < T, (x, y, yk+1, , 7/m) € R2m} ,

δ(ί, », V, Vk+i, , Vm) = ^(ί, », 2/) ,

i=k+i oyi

It is clear that u ^ 0 and 7/& — 0 in 77. Also, u = 0 if ί = 0.
Therefore, if we prove the theorem in case k — m then u = 0 in 77
and, consequently, u = 0 in 77. Thus, it suffices to prove the original
theorem in case u ^ 0 in 77 and k — m.

For any R > 0,

(4.7) u(t, x, y) ^

Indeed, denoting the right hand side by v(ί, as, ?/), we have: 6̂ — v ^ 0
on t = τ and

lim inf (u — v) ^ 0.
|

Hence by Theorem 9 in [3; p. 43] (which holds also for degenerate
parabolic operators, since the proof requires only the weak form of
the maximum principle), u — v ^ 0 in 77.

Integrating both sides of (4.7) with respect to τ, 0 ^ r ^ f, for
some t* e (0, ί), and taking R—> oo, we obtain

(4.8) Γ ( ί Γ(t, x, y; τ, ξ, η)u(τ, ξ, rj)dξdΎ]dτ ^ t*u(t, x, y) .
JO JR™ jRk

If 7 > c(t, x, y) then
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(4.9) eri £ \ \ Γ(t, x, y; s, ξ, η)e?sdξdη .
JBm JRk

Indeed, denoting right hand side by w(t, x, y), we have: L(ert — w) =
Lert ^ 0 , eγt — w = 0 on t = s, eγt — w is bounded in the strip [s, ί].
Now apply Theorem 9 in [3; p. 43]. From (4.9) with s = 0 we con-
clude that, for any (t, x, y),

Γ(t9 x, y; 0, f°, η«) > 0 for some (ί°, rf) .

Hence, for some p > 0, a > 0,

(4.10) Γ(ί, x, ^ r, ί, ^) ^ α > 0 if 0 ^ r ^ ί*, | ξ - $° |2 + | η - rf |2 ^ ^ 2 ,

provided ί* is sufficiently small.

LEMMA 2. Under the assumptions of Theorem 6, /or α%τ/ (f, x, y)
and t*, p, ί°, rf as in (4.10), and for any 0 < t < ί*, ί sufficiently
small,

(4.11) Γ(F, », y; r, £, ?) ^ c exp {-λ[| f - f° |2 + | rj - rf

provided \ ζ — ξ° |2 + | rj — rf |2 ^> p2, 0 ^ τ ^ t, where c, λ are positive

constants.

A similar result holds for nondegenerate parabolic equations;
see [3], [1]. The proof given below employs a comparison argument
as in [1].

Proof. Take for simplicity ξ° = 0, rf = 0. Consider the function

V(T, £, 7̂) = e χ P j — — - ^ — — 3 \fJίV + (σ — τ)ί

for 0 < T < σ, I f |2 + | rj |2 ^ ^2, where σ e (0, ί*). If σ is sufficiently
small and | μ \ > 1, then

(4.12) J i J L + {μη^σ

{σ_~y)ξ][2 ^ 1

Writing

and setting
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σ — T

one easily verifies that

; ^ i f + c | (Σaii) a{ξ + ζ)
V (σ — T)2 σ — τ σ — z

Writing [ ξ + ζ I2 = I ξ |2 + | ζ |2 + 2f C and taking μ - -(4α 0 λ + 1),
the terms involving ξ ζ disappear from the right hand side. Taking
λ sufficiently large and using (4.12), we then conclude that

(4.13) L * F > 0 if 0 ^ τ < σ, [ ξ |2 + | η |2 ^ p2 .

We shall compare V with

w(r, ί, rj) - Γ(ί, «, »; r, ί, i?)

in the region 0 < τ < σ, \ ξ |2 + | η |2 ^ ί)2. By (4.5), (4.13), L*(w - αV) < 0
in this region, where α is any positive number. Taking α as in
(4.10) we have w - αV ^ 0 if 0 ^ τ ^ σ, \ ξ |2 + | η |2 = /O2. Since
also w — «:F — w ^ 0 if τ — σ, \ ξ |2 + | η |2 :> |02, we can apply Theorem
9 of [3; p. 43] to conclude that w — αV ^ 0 in the region 0 < τ < σ,
ζ |2 + \η\2 ^> p2. This yields the assertion of the lemma (with a

different λ) for any 0 < t < σ.
Substituting (4.11) into (4.8) we obtain

(4.14) Γ [ ( u(τ, ζ, V) e x p {-μ[\ ζ\2+\y \2]}dξdτ]dz ^ C < -
Jo )R™ )R™>

where μ, C are positive constants.
We shall deduce from (4.14) that u = 0, employing an argument

similar to that used in Lemma 5 of [8]. Let

For any ε > 0,

L*Z < 0 if 0 < t < t, x e Rm, yeRm

provided t is sufficiently small and Q is sufficiently large. Let
ζ(x,y) be a C~ function satisfying ζ(x,y)=l if | a?|2 + \y\2 < R2,
ζ(x9 y) = 0 if I x I2 + 12/12 > R2 + 1, 0 ^ ζ(a?, y) ^ 1 elsewhere. We can
choose ζ so that its first derivatives are bounded by a constant
independent of R. Let
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Z(t, x, y) = ζ(x, y)Z(t, x, y) .

Then, by Green's identity,

(L*Z u — ZLu)dxdydt = 0

We have used here the facts that Z(t, x, y) = 0, u(0, x, y) — 0. Since

Lu = 0, we get

* I L*Z*udxdydt = — Γ \ L*Z udxdydt .
0 J l * ! 2 + l y | 2 < β 2 JO J i2 2 <|a ; | 2 +!y l 2 <i2 2 +l

Taking ε > μ and using (4.14) one easily concludes that the right
hand side converges to 0 if R—> oo. Since ^ ^ 0, L*Z < 0, it follows
that u(t, x, y) == 0 in the strip 0 ^ ί <Ξ ?. Now proceed step by step
to show that u = 0 in the strip 0 ^ ί ^ T.

REMARK. Denote by Lu the operator obtained from Lu in (4.1)
upon replacing

k riot k rinr

Σ xqr- b y Σ 6*(ί, » f , 2/)-^-, a ' = 0*i, •••,»*) .
*=i dy{ *=i 3̂ /i

Suppose the transformation

(4.15) ^ = 64(ί,»', 2/) (i = l, ...,fc)

is a diffeomorphism from i2& onto Rk and that the first four deriva-
tives of this mapping and of its inverse are bounded. Then, by the
change of variables (4.15) we obtain an operator of the form (4.1) to
which Theorem 6 can be applied. Consequently, Theorem 6 extends
also to the operator L.
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