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UNIQUENESS FOR THE CAUCHY PROBLEM FOR
DEGENERATE PARABOLIC EQUATIONS

AVNER FRIEDMAN

Consider a second order degenerate parabolic operator L.
The present paper is concerned with the uniqueness of solu-
tions of the Cauchy problem: Lu =f in a strip 0<¢t < T,
(0, ) = ¢(x) for all x in R”. It is proved that there is at
most one solution subject to a growth condition which depends
on the degeneracy of L. In the special case where L is
ultraparabolic, uniqueness is proved under only onesided
growth condition. The methods used involve the construc-
tion of comparison functions in suitable sequences of domains.

In §1 we state the main results on uniqueness of regular solu-
tions. The proofs are given in §2. In §3 we derive uniqueness
results for weak solutions defined by means of stochastic differential
equations. Finally, in §4, a uniqueness theorem is proved in case
L is ultraparabolic, for solutions satisfying only a onesided growth
condition.

Results of the same nature as in §1 were obtained in very
special cases in [4], [10]. Results overlapping with those of §3
have recently been obtained by Sonin [12]; for more details see
Remark 1 of § 3.

1. Uniqueness of regular solutions. Let

Lu = Z a;;(t, a) "

i,5=1 3

ou
+Zb(t x) + c(t, x)u—b—t

where (a;;) is a symmetric positive semidefinite matrix. Let £;
(L =7 < p) and m be positive intergerssuch that 1 <k, <k, < ++- <k, =
m < n, and set

Ai:{ki—1+15kj—l+2a“')kj}) léjép’ Where k0:0°
Write
r = (90', x”); x’ = (m;s ) w;))’ x; = (xkj_l-y‘—ls Tty xkj) M

Let d;(r) (1 <1< p) be positive value functions for 7 = 0, having
two continuous derivatives in 1/~ and satisfying

}frd(r) a dir)
d() dr (di(r)?

is monotone increasing in r 1 < ¢ < p) .

| = ¢ @y

(1.1)

di(”')
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Here and in what follows, various positive constants will be denoted
by the same symbol C. Note that (1.1) holds if

(1.2) )= L+, o= % .

We shall assume:
1.3) ai(t, ) < Cdy(| . |) if 1€ A4, 1<k=p,

(1.4) a;t, ) =0if m+1<i<mn, 1<j<mn,

(L5) 1Bt )| < C(1 + [ah] + S laile + Cla|)
ified,, 1=5k=p,

(1.6) lbj(t,x)|§C<1+§lx;|5k+Ix”l> tm+l<j<mn,
/ r 1x;clz 2|2
(1.7) cth,2) < 01+ 342 + 107 )

where ¢, 7., 05, M are nonnegative numbers subject to the following
conditions:

(1.8) ready(r) < C(1 + r)d,(r)

(1.9) 7k < C(L + r)dy(r)

(1.10) d(r) £ C(L + 1°75,), du(r) < C(L + 7*7%) .
It

Ell% — R, then write 7 — e)(R) .

By (1.1), ¢(R) is uniquely defined.) Set
(1.11) e(R) = max [e;(R)]” .

A function (¢, x) will be called regular if it is continuous in
[0, T] x R™ and if its partial derivatives u,, u,, ., exist in (0, T] x R".

THEOREM 1. Assume that (1.3)-(1.7) and (1.1), (1.8)-(1.10) hold.
Let u(t, ®) be a regular function satisfying

1.12) Lu(t,z) =0 wn (0, T] x R,
(1.13) u(0, ) = 0 in R",
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(114 w0 s Com {g[ S e ]} 6> 0

in [0, T]1 x R*, provided

|2 | < e(R), where R* = S ——{—%—lj—
= 2 N

Then u(t,z) = 0 in [0, T] x R"
Stronger assertions can be made in case the §, vanish. Suppose

(L.15) bt o) | < C(1+ (o] + el o) Lsism),
16 b9 SCL+ (o) m+l=i=w),

(1L 1ol "
(1.17) ott, 9) = 01 + 3 S0 |)>7(t, ")

where 7(t, 2”) is an arbitrary continuous function. Then we can
state:

THEOREM 2. Assume that (1.3), (1.4), (1.15)-(1.17), and (1.1), (1.8)
hold. Let u(t,x) be a wregular function satisfying (1.12), (1.13),
and let

(1.18) |u(t, z) | < Cexp {,3 kﬁ; d' (T;'z D}#(t, o) (8> 0)

where p(t, x') is a continuous function. Then u(t, x) =0 in [0, T] x R".

2. Proofs of Theorem 1.2. The proofs of Theorems 1, 2 are
based on the construction of (i) a comparison function H(¢, x), and
(ii) a suitable family of increasing domains D, R>0. We begin with
the proof of Theorem 1. We take

epl k[
it o) = exp (= £ G - e )

where k& > 28 and
a@") = (L+ |a" 57
By direct computations one finds that
LH(t, x) <0

provided p, v are positive and sufficiently large, and
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1

2p "

Here we make use of (1.3)-(1.7), (1.1), (1.8)-(1.10), and the inequality
lay; | < ViV a5 -

We shall take D, to be a product D X D% where

IA
A

2.1) 0<t

S LBl _
D ={es & gty < B

and D’ the interior of a cone in the (¢, x”)-space with base
S, = {(¢, @");t =0, 2" < 0}
and vertex (1, 0). Clearly
oDy = [0D}, x D}] U [D}y x dDY]

where 02, 2 denote respectively the boundary and closure of a set
Q. Also, 0D} = S, U I" where I' is spanned by the generators of the
cone. Note that

[0;(t, #) | = CL + e(R) + |2”]) = C(1 + e(R) + 0)

2.2) . .
ftm+1=5j=n, t,x)e Dy x I'.

We wish to choose 0 = o(R), 1 such that the partial derivative

(2.3) L R YO gL

ot j=mt1 0x;
at the points of D, x I' is a derivative in a direction pointing into
D;. This direction is determined by the trajectories

at _ _
ds
Czli% = b;(t, @', 2") (m+1=j=<mn)
. ds

(2.4)

initiating on D}, x I'. Thus we want to choose o = o(R), 7 so that

H s 50| - Lor - nh <o

% j=m+1
at the points s =s, where >7_.. @¥s) = (0*/7)(y — t)’>. Since, by
(2.2), (2.4),

{Z(B) =caramo
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at s = s, it suffices to choose p, » such that

(2.5) CA + e(R) + p) < % )
Taking

_ 1
(2.6) e = eR), N < 30’

(2.5) is satisfied for all sufficiently large R. We further restrict »

by: 7 = 1/(2t).
Consider now, for any & > 0, the function

v(t, ) = [eH(t, ®) = u(t, x)]e™
in D,, where ¥ = c(t, ) in D,. It satisfies
(L — Yt x) <0 in DN {t > 0} .

The function v cannot assume a negative minimum at points of
D, for at such points (L — 7)v(t, ) = 0. Next, v cannot attain a

negative minimum in D, at points D} x I', for at such points

ov u ov
-2 b.(t, g =0
ot * j=§+1 (¢, @) ox;

by the choice of o, 7 in (2.6), and

m

o™ >0 ov

, =0 11 m),
0x;

t%) ty =
1 @ J( x)ax,,ax]

(2¥)

so that again (L — ¥)v = 0, which is impossible.
Since v > 0 on D% x S, (by 1.13)) and » > 0 on oD%, x Dy if R
is large (by (1.14)), we conclude that v > 0 in D,. Hence

(2.7) lu(t, ©) | = eH(t, @)

at each point (¢,2) in D;. Taking R-— « and noting that each
point (¢, #) with 0 < ¢ < 7 is contained in D, if R is sufficiently large,
it follows that (2.7) holds in the whole strip 0 <t < #n. Taking
¢ — 0 we conclude that u(f, ) = 0 in the strip 0 <¢ < 7. We can
now proceed step by step to prove that wu(¢,x) = 0 in the strip
0t T.

To prove Theorem 2 we note that (2.5) now becomes

ca+p<.
Ui

We take p a fixed positive number >1 and independent of R, and
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1
7<%¢"

We also take a(x”) = 0 in the definition of H(¢, «). Then, if g, v
are _suﬂ‘iciently large (depending on p) and 7 < 1/(2¢), then LH < 0
in D,. We can now proceed as before to establish the inequality

[u(t, ©) | = eH(, o)
in D,. Taking R— « (o is fixed) and then ¢ — 0, we conclude that
u(t, ', ¢"") = 0 if '€ R™, (¢, ") e Dy ;

the cone D} is independent of p. Since this is true for any cone
D% with base S,, u(t,x) = 0 in the strip 0 =t < 7. A step-by-step
argument gives u(f, x) = 0 in the strip 0 ¢t < T.

REMARK 1. If the d;(r) are given by (1.2), then (1.8)-(1.10)
reduce to

O+ 20 £ 2 + Uuos @2+ o) =N,
7\,5k§2+40k, 5k_—<:2+40k‘

We can take

e(R) = C max {1 + R¥i/®+ed)} |

m+1Sisn

REMARK 2. Using different comparison functions for H (such as

[S: % Kt]qe“ (K, q, a positive)
A

cf. [3; p. 56]) one can obtain variants of Theorems 1, 2 where the
growth conditions on a;;, b;, ¢ and on the solution « are modified.

3. Uniqueness for weak solutions. We assume
(A) The coefficients a;;, b; are independent of ¢ and c¢(¢, z) = 0.
(B) There is an m X m matrix o(x) = (0;;(x)) such that

20:,(®) = 3, 0us(@)0 (@) A=i,j=m

and the functions o,,(x), b;(x) 1 =<4, k < m, 1 < j < n) are Lipschitz
continuous in 2, uniformly in compact subsets of R".
©) ,

Recall [2], [9] that if (1.4) holds and the a;;(x) have continuous

|05(@) | + 3 1b(@) | = O + [a]) .

1,3=1



UNIQUENESS FOR THE CAUCHY PROBLEM 137

second derivatives then there exists a matrix o(x) satisfying (B).
Consider the stochastic differential system (see [5], [6] for the
relevant theory)

dei(t) = bE®)L + 3 0uEO)dw, ) (L =i=m),
d&,(0) = b6t (m+1=j<mn)

(3.1)

where the w;(t) are independent Brownian motions. Let G be any
bounded domain in R™ and denote by 7 the exit time of (s, §(s)) from
the cylinder [0, {) X G, where &(s) (0 < s < t) is the solution of (3.1)
with £(0) = .

DEFINITION. A continuous function u(¢, ) in the strip [0, T] x R”
is a weak solution of the equation Lu = 0 if for any bounded domain
G in R and for every te (0, T],

(3.2) u(t, ) = EBu(t — 7, 4(7)) .

A slightly different definition was used in [12]. If w is a classical
solution Lu = 0 in the strip (0, T'], continuous in [0, T'] then, by Ito’s
formula, it is a weak solution. Conversely, a smooth weak solution
is a classical solution. A weak solution satisfying u(0, ) = ¢(x) in
R™ is called a weak solution of the Cauchy problem

Lu(t,x) = 0 in (0, T] x R,

(3.3) .
u(0, x) = ¢(x) in B™.

If H is a smooth function satisfying LH < 0 in the strip [0, T'] then,
by Ito’s formula,
H(t, ) = E,H(t — 7, (7)) .
From this and (3.2) we obtain, for any ¢ > 0,
(8.4) eH(t, ®) + u(t, x) = E {cH(t — 7, &(7)) &= u(t — 7, &(7))} .

Suppose now that the conditions of Theorem 1 are satisfied.
Modify the definition of the domain D, = D% x D7 used in the proof
of Theorem 1, by taking

Dy =A{t,2"); 0<t<T, [a"]|<p}.

Denote by 7 the exit time of (s, &(s)) from the cylinder D, N {s < t};
t=7n. Form+1=i=zn 0<s<rT,
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| L9~ jus, ) 1= (1 + Jla@ 1+ 3, 166)])
ds k=1 i=m+1
< C + e(R) + p) .

Hence, if £(0) = 2° is fixed, R is large and p = e(R), 7 < 1/8C),
then &”(s) = (£,:.(8), +++, &.(s)) does not leave the ball |2”| < p at
s = 7. Next, if %(0,2) =0 then u(t — 7,&(tr)) =0 if ¢ =t Using
(3.4) with the same H as in the proof of Theorem 1, we conclude
that

eH(t, o) &+ u(t, @) = E{y[eH(t — 7, (7)) £ u(t — 7, §(0))]}

where ¥ = 1 if &(z) lies on oD% x D% and 7 <t, and ¥ = 0 otherwise.
Since on the set where y =1,

(H -+ %) — 0 if R—> oo ,

it follows that |u(t, 2°) | < eH(t, °). Taking ¢ — 0 we conclude that
u(t, ) = 0. Hence u(t,x) =0 in the strip 0=¢t=<7%n. We thus
obtain:

THEOREM 3. Let the conditions (A)-(C), (1.3)-(1.6), (1.8)-(1.10)
hold. If w(t,x) is a weak solution of the Cauchy problem (1.12),
(1.18) and if it satisfies (1.14) where |2 | < e(R) (R, e(R) as in
Theorem 1), then u(t, x) = 0 in [0, T'] X R™

Similarly one can prove:

THEOREM 4. Let the conditions (A)-(C), (1.3), (1.4), (1.15), (1.16),
and (1.1), (1.8) hold. If wu(t,x) s a weak solution of the Cauchy
problem (1.12), (1.18) and if it satisfies (1.18) where pu(t, x”’) is a
continuous function, then u(t, z) =0 tn [0, T] x R"

Split the coordinates of &’ into q sets:

of =@ e w), Y = @, e, @) =729

where 0, =m + 1< o0, < -+- <0o,=mn, and let B; = {o;_, + 1, --+, 0,}.

We can refine Theorems 1 — 4 by imposing different growth conditions

on the b; with respect to the variable x/. We give here one example.
Suppose

(3.5) a;(@) = C l=si=m,
(3.6) [bi(@) | = C(L + || + ["]) I=sit=m),
and (1.4) holds, and replace (1.6) by
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3.7 10;(@)| = CA + [&|" + [0”]) if jeB,,1=1=q.

We can then proceed as in the proof of Theorem 3, but with
modified D, = D% x D%:

Dy = {e; | 2| < R},
Df=Dpy X+« X Doy  Dyp;={a; o] | < R} .

We also take a modified function H:

k q
t — ’ |2 rr(2\2;/2
Hit, 2) exp{l_#t[le-i—lZ:l(l-l—lxll)l]-l—vt}
where N, = 2/6,. If
.1
(3.8) v £ min —
1=l<q Bl

then we can again prove that LH < 0 provided y, v are sufficiently
large and 0 < ¢t < 1/(2¢). We sum up:

THEOREM 5. Let the conditions (A)-(C), (1.4) and (3.5)-(3.8) hold.
If w is a weak solution of (1.12), (1.13) and

(3.9) ult, ®)| < Cexp{g] 1o’ + 3 ot/ ]} (5> 0)

then uw (t,x) =0 wn [0, T] x R~

REMARK 1. Sonin [12] has proved theorems which overlap with
Theorems 3-5. His method is entirely probabilistic; our method is
much simpler. In the growth condition on wu(¢, ) he allows |z'|* to
be replaced by a slightly more general function, namely, |2’ | k(] 2" |)
where

N

However he imposes more restrictive growth conditions on the b,(¢, x)
1=i=n).

REMARK 2. Under some smoothness and growth conditions on
#(x), one can easily establish the existence of a regular solution for
the Cauchy problem (8.3) (with coefficients depending also on t) by
means of a probabilistic formula. It is convenient to write the
Cauchy problem in the form
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ov w v ~ ov
v 5 t: bz t9 . tv =0
P + mZ,ﬂa (¢, x) 500, + gf (t, x) 52 + c(t, z)v

(3.10) in [0, T) x R",
(T, x) = ¢(x) in R™.

This form is obtained from (8.3) by the transformation ¢t= T — s
upon denoting a;;(T — s, x), b;(T — s, ), (T — s, x) by a;;(s, x), by(s, x),
c(s, ») respectively. Suppose there is a matrix (o;;(¢, ®)) (1,5 =1, -+, m)
such that

2aij(ty x) = kﬁ: Uik(t’ x)o-jk(t’ x) (1 é 7:’ j é m) 3

and suppose og;;(¢, ), b,(t, ) satisfy a uniform Lipschitz condition in
t, ¢ and are bounded by C(1 + [«[). Denote by &, .(s) the solution of

dés) = bils, E(@Nds + 3 0s(s, ENdwy(s) L =i=m),

d5,(s) = b(s, &())ds m+1<k=<n),
WOEED

Let

(3.11) ot, ©) = Bfp.T) exo| | cls, .0)ds ]}

If

(3.12) |Dig(x)| < C(L + | ) for 1 =10,1,2 (r > 0),

if ¢(s, ) < 0, and if the derivatives
D, D,b;, Dio;, D3b;y Dic (a=1,2)

are continuous and bounded then, by [6], v(t, ) is a regular solution
of (3.10), and |v(t, 2)| < CA + |z]|").

If m <n and if 6, = 0 in the condition (1.6), then the last
assertion is valid under weaker growth conditions on ¢(x), namely,
(3.12) may be replaced by

[o(a, @) | + [ Dap(@', &) | + | Dou(@', 7) |

(8.13) < O + |o Pg(a) (r > 0)

where g(«’) is a continuous function. The regular solution (¢, x) is
bounded by C(1 + |«’'|")k(x"), h(x”) a continuous function.

REMARK 3. Suppose (A)-(C) hold and suppose o;;(x), b.(x) satisfy
a uniform Lipschitz condition in R”. If ¢(x) is a continuous function
satisfying
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(3.14) l¢(@) | = CA + [=]) (r>0)
then the function
u(t, ®) = B {s(5(D)}

is well defined. Using the Strong Markov property of the solutions
of (8.1) one can easily show that u is a weak solution of the Cauchy
problem (3.3). If m < » and 4, = 0 in (1.6), then the last assertion
remains true if (3.14) is replaced by

l(x) | = CL + |2 [)g(=")
where ¢(2”) is a continuous function.

4. Uniqueness for solutions satisfying a lower growth con-
dition. From the proof of Theorem 1 we obtain the following
maximum-principle-type result:

LEMMA 1. Assume that (1.3)-(1.7) and (1.6), (1.8)-(1.10) hold.
Let u(t, x) be a regular function satisfying

Lu(t, ) <0 in (0, T] X R,
w0, ) = 0 in R",

u(t, ®) = — Cexp {B[Z E% e ,]}

in [0, T] x R™ provided

(2" ] < e(R), where R* = kz‘; dl(:T;cxl’ZD ,

where C, B are positive constants. Then u(t,x) = 0 in [0, T] x R"

Similar results hold under the assumptions of Theorems 2-5.

We shall prove in this section that, under further restrictions
on L,if Lu=0in0<{=T,u0,2)=00on R", u(t,2) =20in 0=t T,
then u(t, ) =0 in 0<t<T. For such results for nondegenerate
parabolic equations, see Friedman [3], Aronson and Besala [1] and
the references given there.

We shall take L to have the form

o
0%;

m 2, m
Lu= 3 aylt, 2,920 + 3 at, o, %)

@1 $7=1 ow,0x; =L
‘ ko ou ou
+ 2 %— + c(t, @, - =
2 i, T YU — o
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where & < m and the matrix (a;;) is uniformly positive definite. Such
operators are called wultraparabolic operators. If the coefficients are
sufficiently regular, then (see Weber [13], Ilin [7], Sonin [11]) there
exists a fundamental solution I'(t, z, y; 7, &, 1) for the Cauchy problem

(4.2) Lu=0in0<t<T,
(4.3) w0, z, y) = ¢(x, y) for (z,y)e R"**.

Thus, if ¢ is continuous and bounded, then a solution of (4.2), (4.3)
is given by

ut,e,0) = | 12,00, 1o, masdy

Set
II={tey;0=t=T, xcR", yeR%.

We shall assume:
(P) There exists a positive constant «, such that

S @it @, )88 = e | for all ER™, (4,0, p)e 1T .
i,j=1
(@) The functions a;; and their first three derivatives are con-
tinuous and bounded in [//; the functions a; and their first two
derivatives are continuous and bounded in /7; the function ¢ and its
first derivatives are continuous and bounded in /I.
Under these assumptions the above mentioned fundamental solu-
tion exists and, for any K > 0, ¢ > 0,

Tt 5,357, 8,7)| + 3| 2T 0,07, 6,7)

@4 < Mexp(—pt|af— ] +yl) (M >0, 12> 0)
where ' = (v, ---, x,), provided |&|+ |9|=<K,t—7=¢, where
M, ¢ depend on K, c. [Sharper estimates are valid (see [7]) but
will not be needed here.] Furthermore, for the adjoint Cauchy
problem

L*o(c,&,7)=0in 0=7< T,
o(T, & n) = ¥, ) for (§,n)e R"**

there also exists a fundamental solution I'*(z, &, 7;7,&,7) (t < 7).
Using Green’s identity as in [3; p. 29] and employing (4.4) and the
analogous estimates for I'™*, one deduces that

'tz y 7, &n=I%7§nty.
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Hence,
(4.5) L*I'(t, «, y; 7,8 1) = 0 for each fixed (¢, %, y) .

Note that I" = 0; the proof is as in the nondegenerate parabolic
case [3; p. 45].

THEOREM 6. Let (P), (Q) hold and let w(t,x) be a regular
solution of (4.2) satisfying

(4.6) u®, »,y) =2 —Cexp{gllz"+ |y} (C>0, 8>0)
provided |y| < |z|. If u(0,,y) = 0 on R™* then u(t, », y) = 0 in II.
Proof. In view of Lemma 1 it suffices to prove the theorem in

case u(t,z,y) = 0 in II.
If & < m, then introduce

17 = {(t, x, yy yk-Hy ct ym); 0 < t < T’ (xy y, yk-!-ly M) ym) € R2m} ’
A, @, Yy Yass, =+ 05 Yn) = u(l, @, 9) »

fv=ILv+ 3 xﬁ_v
i 0y,

It is clear that # =0 and L& =0 in I7. Also, % =0 if ¢ = 0.
Therefore, if we prove the theorem in case k& = m then @ = 0 in [T
and, consequently, v = 0 in I7. Thus, it suffices to prove the original
theorem in case u = 0 in I7 and k = m.

For any R > 0,

@n  ut,eu)z | It &, ; %, & Mule, & 7didy .
12124+ 7]2< B2

Indeed, denoting the right hand side by v(¢, =, ¥), we have: u — v = 0
on t =7 and

lim inf (v — v) = 0.

lz]+ly|—oe
Hence by Theorem 9 in [3; p. 43] (which holds also for degenerate
parabolic operators, since the proof requires only the weak form of
the maximum principle), v — v = 0 in II.

Integrating both sides of (4.7) with respect to 7, 0 < 7 < t*, for

some t*e (0, t), and taking R— <, we obtain

@y (] | 1w w6 e, & ndsdnds < tut, 5, 0) -

If v> ¢(t, ¢, y) then
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(4.9) et < SRm SRk I(t, @, y; s, &, n)erdédy .

Indeed, denoting right hand side by w(t, «, y), we have: L(e"* — w) =
Le* <0, ¢*—w=0o0nt=s,e*— w is bounded in the strip [s, t].
Now apply Theorem 9 in [3; p. 43]. From (4.9) with s = 0 we con-
clude that, for any (¢, 7, %),

I, z,y; 0,8, 7) > 0 for some (&° 7° .
Hence, for some 0 > 0, a > 0,
(4.10) I'(t,Z, 77,6 )=a>0if 0Sc <t [§— &P +|p—7' ) <0,
provided t* is sufficiently small.

LEMMA 2. Under the assumptions of Theorem 6, for any (t, Z, ¥)
and t*, 0,8, 7° as in (4.10), and for any 0 < t < t*, t sufficiently
small,

(4.11) '@, %, 97,67 Zcexp{—M[& =& + [p— [}

provided |& — &P +|p— 7" = 0% 0=t <, where ¢, \ are positive
constants.

A similar result holds for nondegenerate parabolic equations;
see [3], [1]. The proof given below employs a comparison argument

as in [1].

Proof. Take for simplicity &= 0, 7° = 0. Consider the function

Ve, &) = exp{— 2L — [ + (0 = D)L

-7 (0— 7)3

for 0<t<o, |+ |n}F= 0, where o (0,t*). If o is sufficiently
small and | 2| > 1, then

[§F g+ (@ — 8P - 4
(4.12) p— + c—o =>1.
Writing
Lrw = iaw 0w ﬁ‘. 3690 4w+ W

af ag] ‘Ei =1 8771. at

and setting
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§=£17;:j_(i7__§_7)_5, &= (@, -, a8,

one easily verifies that

|4 (o0 — 1) o—T o—7T
v .. MEE L SMCE L 2 .. o
T o= - -t

Writing (& + (PP =[]+ [{P + 26- and taking ¢ = —(4an + 1),
the terms involving &-{ disappear from the right hand side. Taking
A sufficiently large and using (4.12), we then conclude that

(4.13) L*V>0if0st<o, [+ |nfzp0.
We shall compare V with
w(r, &) =I'(E, 7,57, 7)

in the region 0 < <o, [+ |n|*= 0*. By (4.5), (4.13), L*(w —aV) <0
in this region, where « is any positive number. Taking «a as in
(4.10) we have w—aV =0 if 0790, |§°+ |9P= 0. Since
alsow —aV=wz=0ift =0, |£+ | 9| = p? we can apply Theorem
9 of [3; p. 43] to conclude that w — @V = 0 in the region 0 < 7 < g,
|6+ |npP= e This yields the assertion of the lemma (with a
different ) for any 0 < ¢ < 0.
Substituting (4.11) into (4.8) we obtain

@1 | | ule, & mexp —pllE + |yldednds < C <

where ¢, C are positive constants.
We shall deduce from (4.14) that » = 0, employing an argument
similar to that used in Lemma 5 of [8]. Let

Zt, w,y) = ( — 1) eXp{_%a_l_?/t_l)Z.} .

For any ¢ > 0,
L*Z<0if0<t<?t, xecR", yec R™

provided ¢ is sufficiently small and Q is sufficiently large. Let
l(x,y) be a C= function satisfying ((z,y) =1 if |z + |y < R?,
l,y) =0if |2]*+ |yP> R+ 1, 0 <{(x,y) =1 elsewhere. We can
choose ¢ so that its first derivatives are bounded by a constant
independent of R. Let
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Zt, ©, y) = L(z, 9)2(t, 2, ) -
Then, by Green’s identity,

m (L*Z-u — ZLu)dedydt = 0 .
R2m

0

We have used here the facts that Z(f, 2, y) = 0, (0, z, ¥) = 0. Since
Lu =0, we get

A
t t

g S L*Z-udwdydt = — |
|22+ |y|2<R2 N

0

L*Z-udndydt .

0 JR2<|z|2+1y|2<R2+1

Taking ¢ > ¢ and using (4.14) one easily concludes that the right
hand side converges to 0 if BR— . Since u =0, L*Z < 0, it follows
that u(t, », ¥) = 0 in the strip 0 < ¢ < f. Now proceed step by step
to show that v =0 in the strip 0 ¢t < T.

REMARK. Denote by Lu the operator obtained from Lu in (4.1)
upon replacing

k 3 k
Z xiﬁ_ by Z b,,(t, x!’ y)%_’ 2z = (xl, KRN {Bk) .
=1 ayl =1 ay'b

Suppose the transformation
(4.15) Z; = bi(t, &', y) (E=1,--, k)

is a diffeomorphism from R* onto R* and that the first four deriva-
tives of this mapping and of its inverse are bounded. Then, by the
change of variables (4.15) we obtain an operator of the form (4.1) to
which Theorem 6 can be applied. Consequently, Theorem 6 extends
also to the operator L.
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