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ON SOME GENERALIZATIONS OF MEIER'S THEOREMS

HlDENOBU YOSHIDA

Dolzhenko formulated the notion of "porosity" for a
set, which has been shown to be highly useful in investiga-
tions of the theory of cluster sets.

In this paper, we make use of this technique in order to
generalize Meier's results [Math. Ann., 147 (1961), 328-344] to
the direction including tangential cases.

As an application, we prove a theorem with respect to
the existence of Lusin points.

Meier proved remarkable theorems [9, Satz 1 and Satz 2] con-
cerning the boundary behaviors of functions meromorphic in the upper
half plane. His proof of Satz 1 depends on Plessner's theorem. But
it is proved in [6, Theorem 5], [17, Theorem 3] that a tangential
analogue of Plessner's theorem does not hold. So, we must use some-
what different tools to obtain some extensions of Meier's theorem to
the direction including tangential cases. On the other hand, his proof
of Satz 2 depends on the category-theoretical analogue [9, Theorem
5] of Plessner's theorem, of which an exactly analogous theorem for
tangential cases is proved in [3, Theorem 6], [17, Theorem 2].

In this note, we aim to get some generalizations of Meier's theo-
rems, using the concept of the "porosity", introduced by Dolzhenko
[5].

Theorem 1 is the fundamental result. As applications of it, we
prove in Theorem 2 a tangential analogue of Meier's theorem [9, Satz 1]
by making use of the notion of a "pre-Meier point", introduced
originally in Dragosh [6], instead of a "Fatou point", and we also
prove in Theorem 3 that Meier's theorem [9, Satz 2] has an exactly
analogous extension for tangential cases.

As an application of Theorem 2, we prove a theorem with respect
to the existence of Lusin points. Finally we put an open question.

1* Notations and definitions* In the following, we denote the
unit disc {z; \z\ < 1} by D9 the unit circle {z; \z\ = 1} by Γ and the
extended w-plane by W.

Suppose a set P c Γ and a point ζ = eiθ e Γ are given. For a
number ε > 0, we denote an arc {eiθ'; θ — s<θf<θ + ε} by Γ(ε, ζ).
Let τ(ζ, ε, P) be the largest of the lengths of arcs contained in Γ(ε, ζ)
and not intersecting with P. The set P is porous at ζ, if

fim —7(ζ, ε, P) > 0 .
ε-+0 S
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A set P is porous on Γ if it is so at each ζ e P. A set which is a
countable sum of porous sets on Γ is said to be σ-porous on Γ.

A σ-porous set on Γ is of the first Baire category on Γ. A σ-
porous set on Γ has no points of density with respect to outer measure
(i.e., no points of outer density), hence is of measure 0 (see [12, p.
129, Theorem (10.2)]). But there exists a set, which is of measure 0
and not σ-porous on Γ (see [4, p. 75]).

For 0 ^ q, 0 < α, 0 < <5 < 1 and ζ = eiθ e Γ, we denote a g-curve

{z; α |a rg (z) - θ\q+1 = 1 - \z\ , arg (z) > 0}

(or

{z; α |a rg (2) - θ\'+1 = 1 - | s | , arg (2) < 0})

terminating at ζ by t+(a, g)(ζ), called a rigfeί q-curve (or ί~(α,
called a Ze/ί q-curve). We also denote a part of the g-curve t+{a9 q)(ζ)
(or tr(a, q)(Q),

{z;a\aτg(z) - θ\«+1 = 1 - \z\ , arg(z) > ί, | ^ | > 3}

(or

{z;α|arg(z) - ^ | ? + 1 = 1 - \z\ , arg (z) < θ, \z\ > δ})

by t+(a, δ, q)(ζ) (or t~(a9 d, q)(ζ)). When convenient, we use notations
t(α, q)(ζ) or t(α, δ, g)(ζ) without specifying whether it be right or left.

For O ^ g , 0 < α < / S , 0 < ^ < l and ζ 6 Γ, we define a ri^/^ί g-
angle F+(a, β, 3, q)(ζ) as the open region lying between the g-curves
ί+(«,?)(O and t+(β,q)(ζ), lying outside the circle {z;\z\ = 3} of its
radius <5, sufficiently near 1. The left q-angle at ζ with parameters
K /3, δ), dedoted by F~(a, β, 8, q)(Q, is the reflection of F+(a9 β, 3, q)(ζ)
with respect to the radius at ζ. When convenient, we use the shorter
notation P+(q)(ζ), P~(q)(Q and Γ(g)(ζ) without specifying whether it be
right or left.

For a function f(z) defined in the open unit disc D, we define,
in the usual manner, the cluster sets at ζ on the sets F+(a9 β9 39 q)(ζ)
(or F~(a, β9 89 q)(ζ)) and denote it by

Cr+(a,β>δ,q){ζ)(f, Q ( 0 Γ Cr-ί«,β,δ,q){ζ)(ff Q)

A point ζeΓ is said to be a q-angular Plessner point of f(z)

provided that

, 0= W and CF- ( g ) ( C )(/, 0 = TΓ

for each right and left g-angle at ζ. The set of all g-angular
Plessner points of f(z) is denoted by Jff(/)
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By an arc at ζ = eiθ eΓ we mean a continuous curve z = z{t),
t0 ^ t < 1, in D terminating at ζ, i.e., l i m ^ ^ ί ) = ζ. By an admis-
sible q-arc Xg(ζ) (0 ̂  q) at ζ we mean an arc at ζ such that the limit

exists. The part of an admissible g-arcXg(ζ) lying in {z; \z\ > δ} is
denoted as Xq(δ, ζ).

We denote the cluster set of f(z) at ζ relative to an admissible
g-arcXg(ζ) (or a chord X(Q) by CXq{ζ){f, ζ)(or Cx(ζ)(f, 0 ) We define

Πχg(f, 0 = Π CXq{ζ)(f, ζ) (or 77χ(/, ζ) - Π Cziζ)(f, 0

where the intersection is taken over all admissible q-arcs Xq(ζ) (or
all chords X(ζ)) at ζ.

We denote by Λq(f, ζ) (or Λ(f, Q) the set of all values weW
with the property that f(z) assumes the value w in every g-angle
P(q)(ζ) (or every Stolz angle Δ(ζ)) at ζ arbitrarily close to ζ. We de-
fine a q-angular Picard point (or an angular Picard point) of /(z) to
be a point ζ 6 Γ at which the set W - Λq{f, ζ) (or W - Λ(f, ζ)) con-
tains at most two values. We define a q-angular alternative point
(or an alternative point [2]) of f(z) to be a point ζe Γ at which

ΠXq(f, ζ) U Λq(f, ζ)=W (or / 7 χ ( / , ζ) U Λ(f, ζ) = W) .

REMARK 1. For each Stolz angle Δ(ζ) (or each 0-angle F(O)(ζ))
at ζ, there exists a 0-angle F(0)(ζ) (or a Stolz angle Δ(ζ)) which satisfies
F(0)(ζ) c Δ(ζ) (or J(ζ) c F(0)(ζ)) in the neighborhood of ζ. Hence, for
every ζ e Γ we have Λ(/, ζ) = Λ(/, 0 and an angular Picard point of
f(z) is equal to a 0-angular Picard point of f(z). But because of
ΠXo(f, ζ) S Πχ(f, ζ) , 0-angular alternative point of f(z) is an alterna-
tive point of /(#), although the converse seems not necessarily true.

2* Main results*

LEMMA 1. Let q, β, 7, δ', and μ be arbitrarily fixed numbers
satisfying 0 ^* q, 0 < β, 7, μ, 0 < β — μ, 0 < δ' < 1. Let P be a subset
of Γ and ζ be a point of Γ. Suppose that the set P is not porous at
ζ. Then, if we choose suitable positive numbers λ, p and δ satisfying
0 < 7 — λ, δ < 1, for each z0, z0 e F(Ύ — λ, 7 + λ, δ, q)(ζ), there exists a
point ξ, ξ = ξ(z0) e P such that V{β - μ, β + μ, δ', q)(ξ)Z)D(p, z0), where
D(p, z0) = {z; \z — zo\ < ρ{R(zo)}g+1} with R(z0) — the length of the part
t{ci, \zQ\, q){ζ) of the q-curve t(oc, q){ζ) on which z0 lies.
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Proof. Without loss of generality, we may assume that ζ = 1.
In the following, we suppose that

(7(7 - λ ,
f 8, q)(ζ) = - λ, 7 + λ, δ, q)(ζ)

and

V{β - μ, β + μ, δ', 9)(5) - F+(β - 9 d', q)(ξ) .

In other cases, we can prove analogously.
To begin with, we will get some estimations which are needed

in the subsequent proof.
For arbitrarily fixed numbers λ, p and δ satisfying 0 < λ, 0 < p <

7 — λ, 0 < δ < 1, we choose a point z0 — reid in F+(Ύ — λ, 7 + λ, δ, g)(l).
If we denote by t+(a9 g)(l) the g-curve on which zQ lies, we obtain the
inequality

( 1 ) 7 - λ < α < 7 + λ .

In [17],

( 2 )

we proved

- l v

+
+ a
O(θ

72 θ + O(02) (Q =

>

0)

0)

We choose rf1^ψι{z^) (or ^2=^2(^0)) so that the g-curve t+(β+μ, q){e1^),

eiψ1 e p ( o r t+(β _ μ^ g)(^ 2 ) ? β*τ̂ 2 e D is tangent to the disc D{ρ, z0)
from right (or left). We denote the distance from z0 to t+(β—μ, q)(eί^1)
(or t+(β + μ, q){e^ή) by ^ ( ^ ( o r h{z0)). The g-curve, which passes
through z0 and terminates at e^1 (or e'^2), is denoted by t+(a1,q)(eίirή
(or t+(a2, q)(e***)). We have

(3)

0{(θ -

- f 2 ) + 0{{θ - f2)
2}

(β>0)

= /o{iί(«o)}ff+1which are proved in [17]. Since we have h^Zo) =
by assumption, we obtain

(4)

Here, if we eliminate r from each of systems of simultaneous equations
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1 _ r = aθq+1

1 — r = a^θ — ^ 1 ) 9 + ]

we have respectively

aθq+1

or
— r — aθq+1

( 5 ) - (g ^ 0) or a2 = (ϊ ^ 0) .

Thus, from (4) and (5), we have

( 6 ) 1 - (Jb
β +1*

+ o(:

And we have

L
- p)(β

Hence, from (1) we have

( 7 ) -f2(20) - ψi(«o) ^ ΛΓ(2

L

^

These are the required estimates.
Now, we proceed to the proof of Lemma 1.
First, we choose λ satisfying

J2(7 - X)μ > 0

{{(? ~ λ)(i8 + μψiQ+1) - {(7 + λ)(/3 ~ ^

Next, for this λ, we choose p satisfying

= 0)

0 )

= 0)

(q = 0)

0 . (g > 0)
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p < 7 - λ

(2(7 - \)μ - pVί + (7 + λ)2{(/S + μ)Vl + (£ - μ)2

(8) AΓ= + (β - μ)l/T+JβTWl > 0 (q = 0)

{{(y-X-p)(β+μ)}ll(q+1)~{(Ύ + X + p)(β-μ)}lliq+1)>0 . (q > 0)

For this p, we have

(9) D(p,zo)(z{z;\z\<ί}

for every z0 e F(7-λ, 7+λ, 3, q)(ΐ), if <5 is sufficiently near 1. Further,
for this λ and p, we choose δ sufficiently near 1 such that (9) holds
and

(10) K(zQ) > 0

if zQ satisfies {z; \z\ ^ δ} Π D{ρ, z0) = 0 . Thus, for this λ, p and <? we
obtain from (7) and (10),

(11) ψ2(z0) - t i > 0 , where z0 eF+(y - λ, 7 + λ, δ,

Now we suppose that for λ, p and δ chosen above, Lemma 1 was
false. Then, there exists a sequence

{«•}, *• = r»ew» e F+(7 - λ, r + λ, δ,

such that

(12) the arc (β*^(β«J,

And from (11) we have

(13) ψ2(zn) -

If we set

εΛ = max {| ti(« ) I,

we have from (1) and (6)

U + 7 + x

contains no point of P .

^ K{zn) > 0 .

(14) 6. ^

(β

β-μ

and, from (12) and (13)

(15) 7(1, εn, P) ̂  ψ,(zn) - f&n) ^ K(zn) > 0 .

Thus, from εn -* 0 (% —>• oo), we have by (8) and (15),

(tf = O)

(Q>0)
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O^P) mK{^ M > Q ( ^ 0 )

ω =

7 + λ + pVl + Q9 + μfVl + (7 + λ)2

 ( ( ? = 0 )

This contradicts the assumption that the set P is not porous at

C= 1.

LEMMA 2. (See [17, Lemma 2].) Let ay λ be numbers satisfying
0 < λ < a and z0 be a point in the q-angle V+(a — λ/2, a + λ/2, δ,
We denote the distance from z0 to t+(a — λ, g)(ζ) (or t+(a + λ,
by Λi(s0) (or h2(z0)). If z0 lies on a q-curve t+(y, q)(ζ), put R(z0) = the
length of t+(y, \zo\, g)(ζ). We set

h(z0) = min (or max) {/&i(z0),

Then we have

where constants Kn and K'n (or Kx and K'x) depend on a, λ, d and
satisfy

lim Kn = 0 , lim if: - 0 (or lim if, - 0 , lim K'm = 0) .
; o j o 2o o

THEOREM 1. // f(z) is meromorphic in D and q ^ 0, ί^e^ except
on a σ-porous set on Γ, every point of Iq(f) is a q-angular Picard
point of f(z) or a q-angular alternative point of f(z)

REMARK 2. In the proof of [9, Satz 1], Meier proved the analogous
result of this theorem in the case q = 0 for a function f(z) meromor-
phic in the upper half plane But, since his proof is based on an
"alternative point" of f(z) in stead of a "0-angular alternative point"
of f(z), Remark 1 shows that Theorem 1 in the case q = 0 is sharper
than Meier's. Furthermore, I think it is remarkable that, as the ex-
ceptional set, the set-theoretical notion "σ-porosity" is used in stead
of "Lebesgue measure 0".

Proof. The fundamental ideas of the following proof go back to
Meier [9, Satz 1]. We denote by E the set of points of Γ, which



616 H. YOSHIDA

are neither g-angular Picard points of f(z) nor g-angular alternataive
points of f(z). Then, for each point ζ e E, there exist three different
values a\9 a\, a\ e W, an admissible g-arc Xq(ζ) and three g-angles

[Q)(Q> P*(Q)(Q> which satisfy a\ $ CZq{ζ)(f, ζ) and f(z) Φ a\ for
(t = 1, 2, 3).

We denote by F the set of points of E, at which the above three
values a\9 a\9 a\ are finite.

In the following, we will prove that except on a <τ-porous set on
Γ, every point of the set F is not a g-angular Plessner point of f{z).
For the set E — F, we can prove the same conclusion without diffi-
culty.

Let {Ci}?=1 be a sequence consisting of all complex numbers, which
lie dense in the sphere W, with rational real parts and imaginary
parts. Let {/9jΓ=i be a sequence of all rational numbers satisfying

For positive integers ml9 m2, m3, n1} n2, n3, k satisfying the
inequality

. ^ , . 100 /• , - • • _ - , o nv
\Gmi -~ Cmj I ^ —j— X1 ^ J', τ, J — -Lj ^j ύ) 9

we define P(mlf m2, m3, nl9 n2, nz, k) as the set of points ζ of F, at
which the following conditions are satisfied:

\f(z)~cmi\>ψ for z e J
k

(1) f{z)Φa\ for

| α ' c - c r o t | < - ί ( ί = l , 2 , 3 ) .

Then we have (see Meier [9, p. 332-333])

F = Σ i'ίwΊ, m2, «,, %!, »2, »3, Λ) .

We define P*^, m2, m3, n l f n2f n3, k) as the set of points of
P{mu m2, m3, nx, w2, tι3, k) at which P(mi, m2, m3, ^x, wa, %, Λ) is not
porous. Then, at every point of the set P(mlf m2, m3, nu n2y nz, k) —
P*(ml9 m2, m3, nl9 n29 n3, k), the set P(mlf m2, m3, nl9 n29 n3j k) is porous,
and the set P(ml9 m2, m3, ̂ , n2, ̂ 3, k) — P*{mx, m2, m3, n19 n2, n3, k) is porous,
too. Therefore, the set P{mλ, m2, m3, ̂ , w2, nz, k) — P^(mι, m2, m 3 , ^ , w2, ̂ 3, A:)
is a porous set on Γ.

We will show that every point of the set P*(ml9 m2, m3, wx, ^2, ns, k)
is not a g-angular Plessner point of f(z). In the following, we set
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P{mu m2, m3, nl9 n2, ns, k) = P and P*(ml9 m2, m3, nl9 n2, n2, k) = P * .

Let ζ 6 P * . For each ί, ί = 1, 2, 3, we set /3 = £»,, 7 - ft^(ζ), 3' -
1 — 1/k and μ = 1/k in Lemma 1, then from Lemma 1, we can choose
positive numbers λίy pt and ^ (0 < δt < 1) such that for each z0, zQ e

P(Pχq(o — ̂ >t, Pxg(o + λί, δt, g)(ζ), we can find a point ίt, ft = ξt(z0) e P
satisfying

v{β%t - i , ^Wf + 1 , 1 - A , gr)(ff) z) D ( A , ^0) (ί = 1, 2, 3) .

We set

λ4 = min (λx, λ2, λ3) , -o = min (jO^ |02, ̂ >3) and <?4 = m a x (δx, §2, δ3) .

Then, for each 2;0j ^0 e ^(^x^o — λ4, ρXq(ζ) + λ4, δ4, g)(ζ), we have evidently

1 Λ . 1-ί, βnt + 1 , 1 - λ , g)(ί t) =) Z)(Λ z0) (« = 1, 2, 3) .

Next, for this λ4, we can choose δs, 1 > δs > δ4, such that

Hpzqlv - \, PχQ(o + \, K q)(O => X,(S,, Q

Thus for each zoe Xq(δb, ζ) we have

nt - 1, β»t + 1, 1 - 1, q)(ξt) 3 D(p, z0) .

And from (1), we have

f(z) Φa\t (t = 1, 2, 3; i = 1, 2, 3) for 2 6 D(>, 20) with z0 e Xq(δ5, ζ) .

Therefore, three different complex numbers α^, α|2, α|3 e TF are not
taken by f(z) in D(p, zQ) with 2;0 e X9(δ5, ζ).

Now for each z0 e Xq(o5, ζ), we consider the linear function

which maps the disc {rj; | r? | < p} of ^7-plane into the disc D(p, z0) of
2~plane. Then the function F(η) = /(^ 0 + {JS(̂ 0)}

?+1)7) is meromorphic
in \η\ < p and does not take three values a\χ, α|2, α|3 e T7 there. And
we have

^ (iφj; ί,j= 1 , 2 , 3 ) ,

\F(0) - cmi\ > ^ ,

F{η)Φa\t for I37I < p (ί = 1, 2, 3) ,
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K - o - i K - l - (*=1,2,3).

By the exactly analogous procedure as in [9, p. 334-335], we can
choose a suitable constant d, and for this constant d we obtain the
result

( 2 ) \F(V)-cmi\ϊ>j- for \V\<d.

Since the linear function z = z0 + {R{zQ)}q+1η maps the disc {η\ \η\ <d)
onto the disc {z; \z — zo\ < d{R(zo)}q+1}, we have from (2)

(3) | / ( s ) - c m i | ^ i for ze{z; |z-zo|<<TOzo)r+1} with ^ e l A Q
fc

Now, in Lemma 2 we set a = px (C) and we choose λ (0 < λ < λ4)
and δ (1 > δ > δ6) satisfying K'x < d. * Next we choose δ6 (1 > δ6 > δ)
such that

< 4) χq(δ6, Q c F + ^ X g ( ζ ) - A , ̂ g ( C ) + A , δβ,

For each 2;0 e Xq(δ, ζ), we denote the distance from z0 to t+(pXqi!ί) — X, g)(ζ)
(or ί+(^X ρ ( ζ ) + λ, q)(Q) by ^(^o) (or h2(z0)) and we set

Λ(20) = max

Then we have from (4) and Lemma 2

\g+i
, hence h(zQ) <

for each ^0 e Xg(δ6, ζ). Thus for δ7 (δ7 > δ6) sufficiently near 1, the g-
angle F+(pXqiζ) - λ, |02ff(ζ) + λ, δ7f q)(ζ) is covered by the set

U {z;\z-zo\ < d{R(zo)Y+1} .
zoexq(δ6,ζ)

Hence, from (3) we obtain

I f(z) - cmi I ̂  \ for z e V+{pXq{ζ) - λ, pXq{ζ) + λ, S7, g)(ζ) ,

and this shows that

, Q

Therefore, ζ is not a g-angular Plessner point of f(z).
Since ζ is an arbitrary point of P * , every point of the set

P*(mi, m2, m3, ^ , n2, ̂ 3, k) is not a g-angular Plessner point of f(z).
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Thus, except on the set

P{mu m2, m3, n,, n2, nz, k) - P*(mu m2, m3, nl9 n2, n3, k) ,

which is σ-porous on Γ9 every point of the set P(ml9 m2, m3, nl9 n2, n3, k)
is not a g-angular Plessner point of f(z).

Next, we will obtain a tangential analogue of Satz 1 of Meier [9].
We define

CAq(f, 0 = U Cm ) ( ζ )(/, ζ) ,

where the summation is taken over all g-angles V{q){ζ) with vertex
at ζ. A point ζ e /"* is said to be a q-angular pre-Meier point of /(z)
provided

LEMMA 3. (See [17, Theorem 1].) Let g^O and f(z) be meromor-
phic in D. Then except on a σ-porous set on Γ every point ζeΓ is
either a q-angular pre-Meier point of f(z) or a q-angular Plessner
point of f(z).

THEOREM 2. Let q ^ 0 and f(z) be meromorphic in D. Then
except on a σ-porous set on Γ, every point ζ e Γ is a q-angular pre-
Meier point of f(z) or a q-angular Picard point of f(z) or a q-angular
alternative point of f(z).

Proof. From Lemma 3 and Theorem 1, we can easily prove this
Theorem 2.

We will obtain a tangential analogue of Satz 2 of Meier [9].
A point ζ e Γ is said to be a q-angular Meier point of f(z) provided

where CD(f, ζ) denotes the cluster set at ζ on D.

LEMMA 4. (See [3, Theorem 6] and [17, Theorem 2].) Let q :> 0
and f(z) be meromorphic in D. Then every point ζ G Γ is either a
q-angular Meier point of f(z) or a q-angular Plessner point of f(z)
except on a set of the first Baire category on Γ.

THEOREM 3. Let q ^ 0 and f(z) be meromorphic in D. Then
except on a set of the first Baire category on Γ, every point ζe Γ is
a q-angular Meier point of f(z) or a q-angular Picard point of f(z)
or a q-angular alternative point of f(z).
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Proof. From Lemma 4 and Theorem 1, we can easily prove
this Theorem 3.

3* Application. Let D(r, ζ), 0 < r < 1, ζ e Γ, denote the disc
{z; \z — (1 — r)ζ\ < r}, internally tangent to the unit circle Γ at the
point ζG Γ. A point ζe Γ is a Lusin point of a meromorphic func-
tion f(z) in j?, if the Riemannian image of every disc D(r, ζ), 0 <
r < 1, has infinite area. The set of Lusin points will be denoted by
L,{f).

A p o i n t ζeΓ s u c h t h a t

CAq(f9 0 - /?*,(/, 0 ,

will be called a q-angular Lindelb'f point of f{z) [1].

THEOREM 4. Lβ£ /(#) ί>β meromorphic in Ό. Then except on a
σ-porous set on Γ, every point ζe Γ is either an 1-angular Lindelb'f
point of f(z) or a Lusin point of f(z).

Proof. Since an 1-angular pre-Meier point of f(z) is an 1-angular
Lindelof point of f{z), the Lemma 3 shows that we have only to
make inquiries about the set /i(/). Evidently, an 1-angular Picard
point of f(z) is a Lusin point of f(z). So let E be a subset of I^f)
such that every ζ e E is neither an 1-angular Lindelδf point of f(z)
nor an 1-angular Picard point of f(z). Since for each ζeE there
exists an admissible 1-arc X^ζ) such that CXl(ζ)(/, ζ) £ TΓ, ΠXl(f, ζ) is
subtotal for every ζ e £7. And from Theorem 1, except on a (7-porous
set on Γ, every ζ e E is an 1-angular alternative point of f(z). Thus
at an 1-angular alternative point ζ of f(z) in £7, Λ(/, 0 contains an
open subset of W, hence every disc D(r, ζ) has an infinite area.

We define the cluster set of f(z) at ζ on D(r, ζ) by Cmr,ζ)(f, ζ).
A point ζ G Γ is called an oricyclic Eaton point of /(s) with an ori-
cyclic Fatou value w e W (or an oricyclic Plessner point of f{z))
provided that

U CmrAf, 0 = M (or Π C^cί/, Q = W) .
l>r>0 \ l>r>0 /

The set of oricyclic Fatou points (or oricyclic Plessner points) of
f(z) will be denoted by F?(f) (or I?(f)).

We denote, in the usual manner, the set of Fatou points (or
Plessner points) of f(z) by F{f) (or /(/)).

For a meromorphic function f(z) in Dy we denote by L(f) the
set of points ζeΓ such that for each ζe L(f) the Riemannian image
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of every Stolz angle A{ζ) has infinite area.
We remarked in [14] that for a meromorphic function f(z) in D,

the sets Lc(f) - F(f), F(f) - Lc(/), L(f) - /(/) and !(/) - L{f) are
of measure 0, where the set Sc denotes the complement of a set S
with respect to Γ.

In the tangential case, we want to consider analogous problems.
Since the difference of the sets I^f) and I*(f) is at most σ~

porous on Γ (therefore, of measure 0 on Γ) by [15, Theorem 2],
every point of Ii*(/), which is not an 1-angular Lindelof point of f(z),
is a Lusin point of f(z) except on a set of measure 0 on Γ by
Theorem 4. There exists a bounded holomorphic function f(z) in D
such that the set Lγ{f) - /* (/) and F?(f) - L\{f) are both of measure
2π (see [8, Corollary 1], [11, Theorem 4] and [10, Theorem 1]).

Open question. Is it true that for a meromorphic function f(z)
in D, the set Ififi-L^f) is of measure 0 and also the set L\{f)~F*{f)
is of measure 0?

REFERENCES

1. J. M. Anderson, Boundary properties of meromorphic functions, Quart. J. Math.
Oxford (2), 18 (1967), 103-107.
2. F. Bagemihl, Chordal Limits of Holomorphic Functions as Plessner Points, J. Sci.
Hiroshima Univ., 30 (1966), 109-115.
3. f Horocyclic boundary properties of meromorphic functions, Ann. Acad. Sci.
Fenn., AI, 385 (1966), 1-18.
4. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Camb. Univ.
Press, New York, (1966).
5. E. P. Dolzhenko, Boundary properties of arbitrary functions (in Russian), Izv. Acad.
Nauk SSSR, 31 (1967), 3-14. English translation: Math, of the USSR-IZVESTIJA, 1
(1967), 1-12.
6. S. Dragosh, Horocyclic cluster sets of functions defined in the unit disc, Nagoya
Math. J., 35 (1969), 53-82.
7. J. A. Jenkins, On a problem of Lusin, Michigan Math. J., 3 (1955-1956), 187-189.
8. A. J. Lohwater and G. Piranian, On a conjecture of Lusin, Michigan Math. J., 3
(1955-1956), 63-68.
9. K. Meier, Uber die Randwerte der meromorphen Funktionen, Math. Ann., 142
(1961), 328-344.
10. G. Piranian, Construction of functions with prescribed boundary behavior, Ann.
Acad. Sci. Fenn., AI, 250 (1958), 1-8.
11. G. Piranian and W. Rudin, Lusin1 s theorem on areas of conformal maps, Michigan
Math. J., 3 (1955-1956), 191-199.
12. S. Saks, Theory of the Integral, Dover Publications, Inc., New York, (1964).
13. T. A. Vessey, Some properties of oricyclic cluster sets, J. d'Anal. Math., 21 (1968),
373-380.
14. H. Yoshida, A remark on Plessner points, J. Fac. Eng. Chiba Univ., 38 (1969),
153-154.
15. , Tangential boundary properties of arbitrary functions in the unit disc,
Nagoya Math. J., 46 (1971), (to appear).



622 H. YOSHIDA

16. H. Yoshida,Ow Plessner points of meromorphic functions, (to appear).
17. _, Tangential boundary behaviors of meromorphic functions in the unit
disc, (to appear).

Received March 2, 1972.

CHIBA UNIVERSITY, CHIBA, JAPAN




