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ON SOME GENERALIZATIONS OF MEIER’S THEOREMS

HipENOBU YOSHIDA

Dolzhenko formulated the notion of “porosity” for a
set, which has been shown to be highly useful in investiga-
tions of the theory of cluster sets.

In this paper, we make use of this technique in order to
generalize Meier’s results [Math. Ann., 147 (1961), 328-344] to
the direction including tangential cases.

As an application, we prove a theorem with respect to
the existence of Lusin points.

Meier proved remarkable theorems [9, Satz 1 and Satz 2] con-
cerning the boundary behaviors of functions meromorphic in the upper
half plane. His proof of Satz 1 depends on Plessner’s theorem. But
it is proved in [6, Theorem 5], [17, Theorem 3] that a tangential
analogue of Plessner’s theorem does not hold. So, we must use some-
what different tools to obtain some extensions of Meier’s theorem to
the direction including tangential cases. On the other hand, his proof
of Satz 2 depends on the category-theoretical analogue [9, Theorem
5] of Plessner’s theorem, of which an exactly analogous theorem for
tangential cases is proved in [3, Theorem 6], [17, Theorem 2].

In this note, we aim to get some generalizations of Meier’s theo-
rems, using the concept of the “porosity”, introduced by Dolzhenko
[5].

Theorem 1 is the fundamental result. As applications of it, we
prove in Theorem 2 a tangential analogue of Meier’s theorem [9, Satz 1]
by making use of the notion of a “pre-Meier point”, introduced
originally in Dragosh [6], instead of a “Fatou point”, and we also
prove in Theorem 3 that Meier’s theorem [9, Satz 2] has an exactly
analogous extension for tangential cases.

As an application of Theorem 2, we prove a theorem with respect
to the existence of Lusin points. Finally we put an open question.

1. Notations and definitions. In the following, we denote the
unit disc {#; |2/ < 1} by D, the unit circle {z; |2] = 1} by I" and the
extended w-plane by W.

Suppose a set P I" and a point { = ¢ eI’ are given. For a
number ¢ > 0, we denote an arc {¢¥’;0 — e < ¢ < 0 + ¢ by I, Q).
Let v(, ¢, P) be the largest of the lengths of arcs contained in I'(g, {)
and not intersecting with P. The set P is porous at (, if

fim Ly, e P)>0.
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A set P is porous on I'" if it is so at each {e P. A set which is a
countable sum of porous sets on I" is said to be o-porous on I'.

A o-porous set on I" is of the first Baire category on I". A o-
porous set on /" has no points of density with respect to outer measure
(i.e., no points of outer density), hence is of measure 0 (see [12, p.
129, Theorem (10.2)]). But there exists a set, which is of measure 0
and not o-porous on I" (see [4, p. T5]).

For 05¢,0<a,0<d6<1and{=e?el’, we denote a g-curve

{# alarg () — 6[*** =1 — |2], arg(2) > 6}
(or
{z; ajarg () — 0" =1 — [z|, arg(z) <6}

terminating at ¢ by t*(@, ¢)(), called a right g-curve (or t=(a, q)(),
called a left g-curve). We also denote a part of the g-curve ¢*(a, ¢)({)

(or t~(a, 9)(X)),

{z;alarg (z) — 6" =1 — |z|, arg(z) > 0,|z|> d}
(or

{z; alarg () — 0"" =1 — [2], arg(z) <4,|z|>d})

by t*(«, 8, ¢)() (or t~(x, d, ¢)({)). When convenient, we use notations
t(a, 9)(Q) or t(a, 6, q)(€) without specifying whether it be right or left.

For 05¢,0<a<p,0<d<1and (eI, we define a right g-
angle V*(a, B, 0, ¢)({) as the open region lying between the g-curves
t*(a, )(€) and t*(B, q)({), lying outside the circle {z; |2| = 0} of its
radius 0, sufficiently near 1. The left g-angle at { with parameters
(«, B, 0), dedoted by V~(a, B, 9, ¢)(£), is the reflection of /¥ («, g, 9, ¢)({)
with respect to the radius at {. When convenient, we use the shorter
notation F*(q)(), "~ (¢)({) and F(g)({) without specifying whether it be
right or left.

For a function f(z) defined in the open unit disc D, we define,
in the usual manner, the cluster sets at { on the sets /'*(a, 8, 9, 9)(0)
(or F~(a, B, 9, 9)(€)) and denote it by

Crttwsnaw(fy &) (OF Cr—a,ps,0@(f, ) -

A point Lel is said to be a g-angular Plessner point of f(z)
provided that

Crtwo(f,0) = W and Cr—o(f, ) = W

for each right and left g-angle at {. The set of all g-angular
Plessner points of f(z) is denoted by I(f).
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By an arc at { = ¢?e " we mean a continuous curve z = z(%),
t, =<t <1, in D terminating at {, i.e., lim,,, 2(t) = {. By an admis-
sible g-arec X,({) (0 £ q) at { we mean an arc at { such that the limit

im (218 (@) — O] _
ltl_r'lll 1— 120 = Oz, > 0

exists. The part of an admissible g-arc X,({) lying in {z;[z| > 0} is
denoted as X,(9, {).

We denote the cluster set of f(2) at { relative to an admissible
g-are X,(§) (or a chord X(0)) by Cx (f, Ofor Cxry(f, £)). We define

I,(f, 0 = Xf'(]() Cr,0(f50) (Or II,(f, 0 = XQ) Cxa(fs ‘:)) ’

where the intersection is taken over all admissible g-arcs X, () (or
all chords X(0)) at C.

We denote by 4,(f,&) (or A(f,£)) the set of all values we W
with the property that f(z) assumes the value w in every g-angle
7(g)(€) (or every Stolz angle 4({)) at { arbitrarily close to {. We de-
fine a q-angular Picard point (or an angular Picard point) of f(2) to
be a point { e " at which the set W — 4,(f,{) (or W — A(f, L)) con-
tains at most two values. We define a g-angular alternative point
(or an alternative point [2]) of f(z) to be a point {eI” at which

IL(f,QU4(f,0 =W (or IL(f,QUAS, Q) =W).

REMARK 1. For each Stolz angle 4({) (or each 0-angle 7(0)(0))
at {, there exists a 0-angle /(0)({) (or a Stolz angle 4({)) which satisfies
7(0)(¢) < 4@ (or 4(C) <V (0)()) in the neighborhood of {. Hence, for
every (eI we have A(f, () = A(f, ) and an angular Picard point of
f(®) is equal to a O-angular Picard point of f(2). But because of
II,(f, 0 & II(f,Q) , 0-angular alternative point of f(z) is an alterna-
tive point of f(z), although the converse seems not necessarily true.

2. Main results.

LemMmA 1. Let q, B, v, &'y and p be arbitrarily fixed numbers
satisfying 09,0 < B, 7, 1, 0< B — 11,0 <& <1. Let P be a subset
of I' and C be a point of I'. Suppose that the set P is not porous at
C. Then, if we choose suitable positive numbers A\, 0 and 6 satisfying
0<v—N,0<1, for each 2y, 2, €V (Y — N, Y + N, 6, Q)(), there exists a
Cpoint &, §=E(z) € P such that V(B— ¢, B+ 1, &, q)(§) DD(p, 2,), where
D(p, z) = {#; |2 — z,| < p{R(2,)}*"'} with R(z,) = the length of the part
t(e, |z, @)(Q) of the g-curve t(x, q¢)(C) on which z, lies.
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Proof. Without loss of generality, we may assume that ¢ = 1.
In the following, we suppose that

V(’Y - 7\’, 7+ )", 5’ q)(C) = V+(,Y - 7\’y v+ 7\” 6, q)(C)
and
V(B — X, 18 =+ H“y 3’9 Q)(E) = V+(18 — U, :8 + M, 6’, q)(é) .

In other cases, we can prove analogously.

To begin with, we will get some estimations which are needed
in the subsequent proof.

For arbitrarily fixed numbers \, o and 0 satisfying 0 <2, 0< 0 <
Y — N\, 0 <0 <1, we choose a point 2z, = re” in V(v — N\, ¥ + N, 9, ¢)(1).
If we denote by t*(«, ¢)(1) the g-curve on which z, lies, we obtain the
inequality

(1) Y=A< ALY+ N,

In [17], we proved
VI+ato+ 00 (¢g=0)
6 + O6°) (g>0).

We choose v, =r,(2,) (0r 1r,=r,(2,)) S0 that the g-curve t7(8+ &, q)(¢'¥r),
eviel’ (or t(B — u, Q)(e™?), e2e ') is tangent to the disc D(p, z,)
from right (or left). We denote the distance from z, to t+(8— £, q)(e*?1)
(or t*(B + M, 9)(e'¥2)) by h,(z,)(or hy(z,)). The g-curve, which passes
through z, and terminates at ¢ (or ¢2), is denoted by t*(a,, q)(¢*¥)
(or t™(a,, q)(¢'¥?)). We have

(2) R(z) =

Q- B o _
hy(z,) = {1/1 + (B — [,5)2(0 ¥u) + O{(0 )’} (g 0)
{al - (/8 - /’4)}(0 — ».#1)4+1 + O{(ﬁ _ ,l/fl)qﬂ} (q > 0)

(3)

(18 + #) — &, _ e _
hy(z,) = {Vl + (B + p? @ ¥a) + O{(¢ ¥r2)’} (q 0)

{(B+ 1) — a} (0 — )™ + o{(6 — )"}, (@>0)

which are proved in [17]. Since we have h,(z,) = hi(2,) = o{R(z,)}***
by assumption, we obtain

WV TFE 0+ 007 == B=L (0~ ) + O{(6—v.))

CVI+(B—p) _
e (5+1)—c =9
(4) 10{1/1‘1"“ g+0(0 )}Zm(ﬁ"w)‘i‘o{(ﬁ_'ﬂ)}
{0+ 00" )} = {a,— (B— )HO — )" +0{(6 — )"}
(g>0)

OO+ 0O ={(B+ 1) — A} — )" +0{(0 — )}

Here, if we eliminate » from each of systems of simultaneous equations



ON SOME GENERALIZATIONS OF MEIER’S THEOREMS 613

1 —7r=af™ 1 — p = afitt
r
lor=a@— ) @20 O |1—r=a®—y)* @0,
we have respectively

aﬂq-f—l

(5) al=% (@=0) or azzm (@=0).
Thus, from (4) and (5), we have

() = {1 _a—poV1 +é,3_—#ﬂ)2 vita 0(1)}0

Va2 = {1 _etpevi+ B+pVI+a 0(1)}6 @=0
(6) o B+ ¢

W) = {1 - (g—:—ﬁ)"“’“’ + oD}

1/(g+1 (@ >0)
o) = {1 - (g - Z)' oo .

And we have

Vo(20) — Vr(20) -
[ 2ap— oV I+ a{(B— WV I+ B+ 1+ (8+ VI (B— )% +o(1)]a

BZ —_— ‘LCZ
- (¢ =0)
(@ = DB + MP' — (@ + (B — I+
[ (5° — p)Ha+s + 0(1)]0 . (@>0

Hence, from (1) we have

(7)) al(ze) — i(20) = K(20)
[2(7 —Ve—oVI+@+NHB—VIF B+ +B+VI+(B—1))
Bz _ #z
+ 0(1)]6 @=0)
(V=N —0)(BH T {0+ M+ 0)(B— )™

These are the required estimates.

Now, we proceed to the proof of Lemma 1.

First, we choose )\ satisfying

{2(’)’ —Ne>0 (¢ =0)
{(r = M(B + P —{(v + M — W}/ > 0. (¢>0)

Next, for this A, we choose o satisfying
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o<Y—2X
and

200 =M — oVT + (v + MH(B + VT + (8 —
(8) M={ +B—wVI+B+©H}>0 (@=0)
{("=r=0) B+ —{(V N+ P)(B— >0, (¢ > 0)

For this o, we have
(9) D(p, z)) < {z; |z2] < 1}

for every z, €V (v—N\, Y+, 0, ¢)(1), if 6 is sufficiently near 1. Further,
for this » and p, we choose § sufficiently near 1 such that (9) holds
and

(10) K(z) >0

if 2, satisfies {z; |2]| < 0} N D(p, 2) = @. Thus, for this A, 0 and 6 we
obtain from (7) and (10),

(A1) Yy(20) — ¥u(20) = K(2) > 0, where z, el (v — 2,7+ N, 0, 9)(1) .

Now we suppose that for A, o and ¢ chosen above, Lemma 1 was
false. Then, there exists a sequence

(2.}, 2o = o602V (Y — N, 7+ N, 0,0)(1), z,—1
such that
12) the arc (e, ¢i¥2)) contains no point of P.
And from (11) we have
(13) Vao(2a) — V:(24) 2= Ki(2,) > 0.
If we set
&, = Max {{¥:(2,) |, |¥2(2a) [} 5

we have from (1) and (6)

1+ 7+x+pV1+(B+p)ZV1+(7+x)2+0(1)}0ﬂ (q = 0)
14 ¢, < o Lo
{1 + <—_—,6’ 7 ) + 0(1)}62 @>0
and, from (12) and (13)

Thus, from ¢,— 0 (n— ), we have by (8) and (15),
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=YL, & P) o 77—~ K(2a) < M -
et e miE e g >0 @20
where
1+7+h+pV1+(B+#)2V1+(7+x)2 (@ =0)
B— I
@ =
1+(7+7\:+3>1/(¢1+1). @>0)

NEC Ry
This contradicts the assumption that the set P is not porous at
=1

LEMMA 2. (See [17, Lemma 2].) Let «, » be numbers satisfying
0 <)\ < a and 2z, be a point in the g-angle V(o — N2, & + N2, 8, ¢)(©).
We denote the distance from z, to t*(a — \, )(C) (or t*(a + N, g)())
by h(z) (or hy(2)). If 2z, lies on a g-curve t*(7, ¢)(§), put R(z,) = the
length of t*(7, |2, 9)( ). We set

h(z) = min (or max) {(zo), h(20)} -

Then we have

h(zO) ’ 4
K, (or K,) £ -2 __< K, (or K}),
{R(zo)}*
where constants K, and K, (or K, and K]) depend on a, \, 0 and
satisfy
IimK, =0, lximK,’L:O (or ljmK,=0, lim K] = 0).
0 —0

A—0 i—0
d—1 d—1 a1 01

THEOREM 1. If f(z) is meromorphic in D and q = 0, then except
on a o-porous set on I', every point of I(f) ts a g-angular Picard
point of f(z) or a g-angular alternative point of f(z).

REMARK 2. In the proof of [9, Satz 1], Meier proved the analogous
result of this theorem in the case ¢ = 0 for a function f(z) meromor-
phic in the upper half plane. But, since his proof is based on an
“alternative point” of f(z) in stead of a “0-angular alternative point”
of f(2), Remark 1 shows that Theorem 1 in the case ¢ = 0 is sharper
than Meier’s. Furthermore, I think it is remarkable that, as the ex-
ceptional set, the set-theoretical notion “g-porosity” is used in stead
of “Lebesgue measure 0.

Proof. The fundamental ideas of the following proof go back to
Meier [9, Satz 1]. We denote by E the set of points of 7I°, which
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are neither g-angular Picard points of f(2) nor g-angular alternataive
points of f(2). Then, for each point { € E, there exist three different
values ai, aZ, ale W, an admissible g-arc X,({) and three g-angles
71@)©), 7@ (©), 7*(@)(€), which satisfy ai ¢ Cx (f, £) and f(z) = at for
zel(@@) (¢=1,2,3).

We denote by F the set of points of K, at which the above three
values a}, a, a} are finite.

In the following, we will prove that except on a o-porous set on
I", every point of the set F' is not a ¢-angular Plessner point of f(z).
For the set F — F, we can prove the same conclusion without diffi-
culty.

Let {c;}z, be a sequence consisting of all complex numbers, which
lie dense in the sphere W, with rational real parts and imaginary
parts. Let {8}, be a sequence of all rational numbers satisfying
0 < B

For positive integers m,, m,, m,;, m, M, n; k satisfying the
inequality

fome = 0y > 200 G #5,0,5= 1,2,9),
we define P(m,, m,, m,, n,, N, N, k) as the set of points { of F, at
which the following conditions are satisfied:

10 1
@) = en,| > = for zeX,,(l——?,C),

: _1 141 _
(1) f@#at for zel(gn, =4 fut 1= 0)O) (1=1,2,3)
+ 1
lac—cmtl<_k‘ (t=1)2)3)'
Then we have (see Meier [9, p. 332-333])
F = > P(m,, My, My, Ny, Nog, Ny, k) «

My, Mo, M3, M1, Mg, 13, K

We define P*(m,, m,, ms;, n, N, N, k) as the set of points of
P(m,, m,, ms, Ny, Ny, N, k) at which P(m,, m, m,, n, n, N, k) is not
porous. Then, at every point of the set P(m,, m,, m,, 0, %y, Ny, k) —
P*(m,, m,, m,, n,, n,, n,, k), the set P(m,, m,, m;, n,, n,, n,, k) is porous,
and the set P(m,, m,, ms, 0,5 Mgy gy k) — P* (10, Mgy Mgy Nyy Mgy Mgy k) IS poTOUS,
too. Therefore, the set P(m,, m,, My, Wy, Ngy Mgy k) — P* (M), Mgy Mgy My Wy Mg, k)
is a porous set on [

We will show that every point of the set P*(m,, m,, m,, %, Ny, 1y, k)
is not a g-angular Plessner point of f(2). In the following, we set
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P(m,, my, My, Wy Ny, Mg, k) = P and P*(m,, m,, m,, 0, Ny, N, k) = P*.

Let {e P*. Foreacht t=1,23, weset 8= B,,7 = Ox,0), 0 =
1 —1/k and ¢ = 1/k in Lemma 1, then from Lemma 1, we can choose
positive numbers \,, 0, and 4§, (0 < 6, < 1) such that for each =z, z,¢
V(0x,00 — Moy Ox 00 + My 04y 9)(C), We can find a point &, &, = &(z) e P
satisfying

1

S INS N h -
P(Bui= 7 Bu + 11— 22 0)E) D Dloyz)  (1=1,2,3) .

We set
7\'4 = min (le )"Zy 7\‘3) ’ p = min <101’ 1027 (03) and 54 = max (317 527 33) .

Then, for each z,, 2, €/ (0x ) — N\, Ox ) + Ny, 04y, 9)(C), We have evidently

’

1 1 1 —
P(6e = B+ 71— 1 0)E) D Dlo,z)  (E=1,2,3).

Next, for this \,, we can choose d,, 1 > J; > 0,, such that
V(0x 0 = My Oxgr + Ny 05, () D X (05, C) -
Thus for each z,¢ X,(0,, ) we have

1

1 1
V(Bnt - ‘ZZ_’ Bnt + 7;’ 1- 76_’ q)(st) - D([O9 zO) .

And from (1), we have
flz) #ai, (t=1,2,8;1=1,2,3) for ze D(p,z) with z,e X, (3, () .

Therefore, three different complex numbers a:, ai, al ¢ W are not
taken by f(z) in D(p, z,) with 2,¢€ X,(d;, 0).
Now for each z,€ X,(5;, {), we consider the linear function

2 =2 + (R(z)}""7 ,

which maps the disc {7; 7| < 0} of 7-plane into the disc D(p, z,) of
z-plane. Then the function F(1)) = f(z, + {E(2,)}"*'y) is meromorphic
in [7]| < 0 and does not take three values a:, a}, ai,€ W there. And
we have

eni—en| >0 (£ 0,5=1,29),

1F(0) — ¢, | >,
k

F(v)#:a:’t for [7]l<‘0 (t:1y2)3)’
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: 1 -
[cztet—cmt|<7 t=123).

By the exactly analogous procedure as in [9, p. 334-335], we can
choose a suitable constant d, and for this constant d we obtain the
result

(2) !F(v)—cmllz% for [7]<d.

Since the linear function z = z, + {R(z,)}*"'n maps the disc {7; |7]| < d}
onto the disc {z; [z — z,| < d{R(z,)}**'}, we have from (2)

(3) lf(z)—cmllz%c— for z e {2; [2—2 [ <d{R(2)}""} with 2z, € X,(J;, C)

Now, in Lemma 2 we set a = 0, , and we choose M (0 <X\ <))
and 0 (1 > 0 > J;) satisfying K, < d. Next we choose d; (1 > 9, > 0)
such that

(4) Koo, ©) © P Pryr = 2 Orger + 5, 80 0)(0) -

For each z,€ X,(9, ), we denote the distance from z, to t*(0x ;=\, 9)(C)
(or t*(Px,0 + N @) by hi(z) (or hsy(2;)) and we set

Mz,) = max {h,(z,), h(20)} «

Then we have from (4) and Lemma 2

{R}(L;oz)o})«: < K/ <d, hence h(z) < d{R(z)}""",

for each z,€ X,(0,, £). Thus for 6, (6, > ;) sufficiently near 1, the g-
angle V*(0x,c) — N, 0x,() + ¥, 07, )(0) is covered by the set

{z; |2 — 2| < d{R(29)}*""} .

20€ X q(3g,¢)

Hence, from (3) we obtain

(@) — on | = —,1; for 2€7*(Or,0 — N Pxyer + N 3 DO 5

and this shows that
le ¢ CV+(PXq(c)-—Lqu(c)+1,67:q)(C)(f’ C) .

Therefore, { is not a g-angular Plessner point of f(z).
Since { is an arbitrary point of P*, every point of the set
P*(m,, m,, m,, n,, N, 1y, k) is not a g-angular Plessner point of f(z).
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Thus, except on the set
P(ml’ Moy M3y Wiy Ny N, k) - P*(mh Mgy Mgy Wiy Mgy N, k) ’

which is o-porous on 7, every point of the set P(m,, m,, m,, n,, N, N, k)
is not a g-angular Plessner point of f(z).

Next, we will obtain a tangential analogue of Satz 1 of Meier [9].
We define

CAq(f; Q= Craoa(fs 0

riq)(g)

where the summation is taken over all g-angles F(q)({) with vertex
at {. A point (eI is said to be a g-angular pre-Meier point of f(z)
provided

qu(f: Q= CAq(f, DeE W.

LEemMmA 3. (See [17, Theorem 1].) Let ¢=0 and f(z) be meromor-
phic in D. Then except on a g-porous set on I" every point el is
either a g-angular pre-Meier point of f(z) or a q-angular Plessner

point of f(z).

THEOREM 2. Let ¢q =0 and f(z) be meromorphic in D. Then
except on a o-porous set on I', every point Ll is a g-angular pre-
Meier point of f(z) or a g-angular Picard point of f(z) or a g-angular
alternative point of f(z).

Proof. From Lemma 3 and Theorem 1, we can easily prove this
Theorem 2.

We will obtain a tangential analogue of Satz 2 of Meier [9].
A point { e I" is said to be a g-angular Meier point of f(z) provided

qu(fy D=0C(f,0& W,
where C,(f, () denotes the cluster set at { on D.

LEMMA 4. (See [3, Theorem 6] and [17, Theorem 2].) Let ¢ = 0
and f(z) be meromorphic in D. Then every point { €l is either a
q-angular Meier point of f(z) or a g-angular Plessner point of f(z)
except on a set of the first Baire category on I.

THEOREM 3. Let ¢q =0 and f(z) be meromorphic in D. Then
except on a set of the first Baire category on I’y every point el is
a g-angular Meier point of f(z) or a q-angular Picard point of f(2)
or a g-angular alternative point of f(z).
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Proof. From Lemma 4 and Theorem 1, we can easily prove
this Theorem 3.

3. Application. Let D(r,{),0<r <1,{e ', denote the disc
{z; ]2 — 1 — r){| < 7}, internally tangent to the unit circle I” at the
point Le . A point (eI is a Lusin point of a meromorphic fune-
tion f(2) in D, if the Riemannian image of every disc D(r, ), 0 <
r < 1, has infinite area. The set of Lusin points will be denoted by

L(f)-
A point { eI such that

CAq(f’ Q= qu(f, 0
will be called a q-angular Lindelof point of f(z) [1].

THEOREM 4. Let f(z) be meromorphic in D. Then except on a
o-porous set on I'y every point L eI is either an l-angular Lindelof
point of f(2) or a Lusin point of f(z).

Proof. Since an l-angular pre-Meier point of f(z) is an l-angular
Lindelof point of f(z), the Lemma 3 shows that we have only to
make inquiries about the set I,(f). Evidently, an l-angular Picard
point of f(z) is a Lusin point of f(2). So let E be a subset of I.(f)
such that every (e E is neither an l-angular Lindelof point of f(z)
nor an l-angular Picard point of f(z). Since for each {e E there
exists an admissible l-arc X,({) such that Cy,(f, Q) & W, I1,,(f,C) is
subtotal for every {e E. And from Theorem 1, except on a g-porous
set on I, every { e F is an l-angular alternative point of f(z). Thus
at an l-angular alternative point { of f(z) in E, 4,(f, {) contains an
open subset of W, hence every dise D(r,{) has an infinite area.

We define the cluster set of f(z) at £ on D(r,{) by Cuu.(f, §).
A point e is called an oricyclic Fatow point of f(z) with an ori-
cyclic Fatou value we W (or an oricyclic Plessner point of f(z))
provided that

U Cowa(£,0 =t (or N oo, 0 = W).

The set of oricyclic Fatou points (or oricyclic Plessner points) of
f(z) will be denoted by F*(f) (or L*(f)).

We denote, in the usual manner, the set of Fatou points (or
Plessner points) of f(z) by F(f) (or I(f)).

For a meromorphic function f(z) in D, we denote by L(f) the
set of points { € I" such that for each {e L(f) the Riemannian image
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of every Stolz angle 4({) has infinite area.
We remarked in [14] that for a meromorphic function f(z) in D,

the sets L°(f) — F(f), F(f) — L(f), L(f) — I(f) and I(f) — L(f) are
of measure 0, where the set S° denotes the complement of a set S
with respect to I'.

In the tangential case, we want to consider analogous problems.

Since the difference of the sets I,(f) and I[*(f) is at most o-
porous on I' (therefore, of measure 0 on I”) by [15, Theorem 2],
every point of I*(f), which is not an l-angular Lindelof point of f(2),
is a Lusin point of f(2) except on a set of measure 0 on /" by
Theorem 4. There exists a bounded holomorphic function f(2) in D
such that the set L,(f) — I* (f) and F*(f) — Li(f) are both of measure
2r (see [8, Corollary 1], [11, Theorem 4] and [10, Theorem 1]).

Open question. Is it true that for a meromorphic function f(z)
in D, the set [*(f)— L,(f) is of measure 0 and also the set L:(f)— F*(f)
is of measure 07
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