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ATTACHING HUREWICZ FIBRATIONS WITH
FIBER PRESERVING MAPS

JAMES E. ARNOLD, JR.

When working with fibrations, there are times when
standard topological constructions involving identifications are
useful. The problem of course, is to show that identifying
fibrations in the proper way yields a fi brat ion. This paper es-
tablishes a fairly general result concerning attaching Hurewicz
fibrations over a fixed base space with a fiber preserving map.
This can be applied to obtain many common topological con-
structions. In particular a theorem of P. Tulley on mapping
cylinders is strengthened, which in turn strengthens the main
theorems on strong fiber homotopy equivalence and extensions
of fibrations obtained by P. Tulley and S. Langston. In ad-
dition, these results are applied to obtain a stronger version
of Dold's pasting lemma, an important step in the construction
of classifying spaces for fibrations.

1Φ Definitions and notation*

By a space over B we will mean a triple ξ = (E, p, B) where
p: E —>JB is a map. We will often refer to £7 as the total space, and
B as the base space of ξ. If A c B we will let ξA = (EM pM A) =
(p~ι(A), pip"1 {A), A). Given two spaces over B, ξ = (E, p, B) and
ξ' = (E'f p', B) we will denote by /:?—*£' a fiber preserving map
from ξ to f, i.e. a map f:E—+E' such that p'f = p. Two such
maps f,g:ξ—+ ξ' are said to be fiber homotopic denoted / ~ g: ξ —> ξ'
if there is a homotopy H from ftog such that for each t e I, p'H(e, t) =
p(e). ξ is fiber homotopy equivalent to ξ', denoted ξ — ξ'9 if there
are fiber preserving maps /: ξ —• ξ' and g: ζ' —• ξ with fg and gf fiber
homotopic to the respective identity maps.

A space over B will be called a Hurewicz fibration, or more simply
a fibration if it has the universal covering homotopy property, or
equivalently has a lifting function λ. Recall that a lifting function
for ξ — (E, p, B) is a section for (E1, p, Ωp), where

Qp = {(e, ω)eEx BΣ\p(e) = ω(0)}

and p{ω) — (ω(0), pω). (i.e. a map λ: Ωp —> E1 with X(e, ω)(0) = e and

p\(e, ω)(t) = ω(t).)
A lifting function is regular if it takes constant paths in the base

space to constant paths in the total space, and if a fibration ξ has a
regular lifting function, ξ will be called a regular fibration,
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DEFINITION (1.1). A slicing function for ξA is a map φ: EA x A-+EA

such that φ(e, p{e)) — e and pφ(e, a) — α.
Note that the existence of a slicing function for ξA implies ξΛ is

a regular fibration. (A regular lifting function is defined by λ(β, ω){t) =
φ{e, Q)(t)).) For our purposes slicing functions are generally easier to
work with than lifting functions since the product topology is simpler
than the compact open topology of function spaces.

DEFINITION (1.2). A pair of spaces over B (ξ, ξ0), is a pair of
triples ξ = (E, p, B), ξ0 = (Eo, p0, B) such that EoaE and p0 = p\E0.

If ξ and ς0 are both fibrations (ξ, ς0) will be called a pair of
fibrations. If in addition there is a lifting function λ: Ωp —* E1 for f
such that X\ΩPQ is a lifting function for ξ0, then (ζ, ξQ) will be called
a fibered pair.

Finally, we will make frequent use of cofibrations.

DEFINITION (1.3). (X, A) is a cofibration if any partial homotopy
H: X x {0} U A x /-> Y has an extension H: X x J~> Y.

If in addition A is closed we will say (X, A) is a closed cofibra-
tion. If X is a Hausdorff space all cofibrations (X, A) are closed.

2* Preliminary lemmas and the main theorem^

LEMMA (2.1). (X, A) is a closed cofibration if and only if there
are maps D: X x I—•* X, 0: X—> J m£λ £Λe following properties:

( a ) £>(#, 0) = a? for all xeX
( b ) D(a, t) = α / o r αW ae A,te I
(c ) A = ό-2(l) α^rf Z?^- 1 ^, 1] x 1) c A.

The proof, which we will omit, is an exercise in [7], p. 57. The
proof is essentially the same as that in [11].

LEMMA (2.2). If (ξ, ξ0) is a regular fibered pair, then (E, Eo) is
a closed cofibration if and only if there are maps D: E x /—> E and
a: E—+ I with the following properties:

( a ) D(e, 0) = e for all eeE
( b ) D(e, t) - e for all eeE0,teI
( c ) or\l) = EQ

(d) Dicr'iO, 1] x 1) c EQ

( e ) pD{e, t) = p(e) for all eeE,te I.

Note that the only difference between Lemmas (2.1) and (2.2) is
part (β), which says that D moves points along fibers.

Proof. Define D(e, t) = λ[D'(β, ί), ω(e, ί)](l) and a(e) = φ(e), where
Dr and φ are as in Lemma (2.1), ω(e, t) is the path given by ω(e, t)(s) =
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pD'(e, (1 — s) t), and λ is a regular lifting function for ζ whose restric-
tion to ΩPQ is a lifting function for ζ0. Property (b) is a consequence
of the regularity of λ, and (d) is a consequence of X\ΩPo being a
lifting function for ξ0.

Let ΔB = {(δ, b)eB x B) denote the diagonal of B in B x B.
The main theorem will be proven for fibrations with paracompact,
locally compact base spaces B such that (B x B, ΔB) is a closed cofibra-
tion. (ANR's for example satisfy this last condition.) If B is metric
then this condition is equivalent to B ULC (uniformly locally con-
tractible). The following lemma in fact concludes that all such spaces
are ULG.

LEMMA (2.3). If (B x B9 ΔB) is a closed cofibration then there is
a neighborhood U of ΔB and a map σ; U—> X1 such that

( a ) σ(x,y)(0) = x
( b ) σ(x,y)(l) = y
( c ) σ(x, x)(t) = x for all t e l .

Proof. Choose D and φ as in Lemma (2.1) and define

σ(x, y)(t) -

, y,2t) 0 g ^ ~

π2D(x,y,2-2t) ±. £ t £ 1
Δ

where π{: B x B—+ B is projection on the ith coordinate i = 1, 2 and
(a?, y)eU= φ-'φ, 1].

The next lemma will allow us a more satisfactory statement of
the main theorem.

LEMMA (2.4). Let (f, £0) &e α pair 0/ spaces over B with (E, EQ)
a closed cofibration. Then (ξ, ζ0) is a fibered pair if and only if (£, ξ0)
is a pair of fibrations.

The proof of this lemma, which we will omit, consists of choosing
a lifting function λ0 for f0 and extending it to a lifting function for
ξ. This can be done exactly as in the Lifting Extension Theorem in
[1], replacing λ^ and ΩPA by λ0 and ΩPo throughout the proof, and
noting that (E, Eo) a closed cofibration implies (Ωp, Ωp) is a closed
cofibration. In fact if we let πλ: Ωp —> E be projection on the first
coordinate, then Γ = (Ωp, πl9 E) is a fibration (Γ = the pullback by
p of the standard path fibration over B), and since ΩPQ — πϊ^Eo),
(Ωp, ΩPo) is a closed cofibration by Theorem 12 of [8].

We come now to the main theorem. If (£, ζ0) is a pair of spaces
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over B,Ύ] a space over B and / : ζ0 —> η a fiber preserving map, we
let £U/ V = (EVf E', Q, B) where £ = (E, p, B), rj = (E\ p\ B) and q is
the map induced by p and pf.

THEOREM (2.5). Let B be a paracompact, locally compact space
such that (B x B, ΔB) is a closed cofibration, and (ζ, £0) a pair of
fibrations over B with (E, Eo) a closed cofibration. Then for any
fibration rj over B and f: ξ0 —* η, (ξ \jf η, rj) is a fibered pair.

Proof. Since (B x B, ΔB) is a closed cofibration, we can define
d: B x B — I by d = 1 - φ, (ψ as in Lemma 2.1) with rf-^O) = ΔB.
By Lemma (2.4), there is a lifting function λ for £ whose restriction
to ΩPo is a lifting function for £0. We may assume, in addition, that
λ is regular, and that there is a regular lifting function λ' for rj.
The proof is the same as in [4], using d: B x B—+I instead of a
metric.

Since B is paracompact, the Uniformation Theorem applies (see
[4]) and thus we need only show any point has a neighborhood W
such that ((£ U / V)w, Vw) is a fibered pair. We choose η and σ to be
as in Lemma (2.3), and given a point boeB choose a neighborhood
V of b0 with V x VdU. We then have slicing functions φ and ψ
for £Γ and ηv respectively defined as follows:

φ(e, x) = λ[e, σ(p(e), x)](l) (e, x) e Ev x V

ψ(e\ x) = λ'[β', σ{p'{e'), x)](l) (e\ x) e E'v x V .

It is important to note here that if e e Eo, φ(e, x) e Eo for all xeV.
We now let Θ be a neighborhood of (&0, &0) in U which has the

property that σ(x, y)(t) e V for all (x, y) e θ and all te I. There is such
a neighborhood since σ is continuous and σ(bOy b0) is the constant path
at δ0. Finally we choose a neighborhood W of b0 with compact closure
such that Wx WciθciU. W then the property that for eeEψ,
e'eE'w, xe W and te I, the functions

Φ(e,σ(p(e),x)(t)) and Ψ{e\ σ{p{e'), x)(t))

are defined.
Let D and a be defined for the closed cofibration (E, Eo) as in

Lemma (2.2) using the lifting function λ, and μ: Eψ U E^ —• (E U / E%
be the identification map. Given D, a, μ, φ, ψ, d and W as above, we now
define a map χ:(EwΌE'w) x W—>(E\JfE')w which will induce the
slicing function χ for (£ (J/ y)w To simplify the notation in the defini-
tion of χ we will let d = d(p(e), z), and σ(t) = σ(p(e), z)(t).
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χ(e', z) = μ{ψ{e', z)) if e' e E& and for eeEψ is given by the fol-
lowing formula:

/μ{φ[D(e, d),z\) if 0 ^ a{e) ^ 1/8

μ{φ[D(e, 8α(β) 5), z]} if 1/8 ^ α(e) ^ 1/4 and

0 ^ 4α(β) d ^ 1/2

, 1), 2)]} if 1/8 g α(e) ^ 1/4 and

1/2 g 4α(e) d ^ 1

, 2d), z]} if 1/4 g a(e) ^ 1/2 and 0 ^ d ^ 1/2

e, z) = I μ{ψ[f(Φ[D(e, 1), σ(2 - 4α(β) + (4α(e) - l)/2d)]), 2]} if

1/4 ^ α(e) g 1/2 and 1/2 ^ d ^ 1

μ{φ[D(e, d/(l - α(e))), 2]} if 1/2 g α(e) ^ 1, α(e) Φ 1 and

0 ^ d £ 1 — α(e)

μ{ψ[f{φ[D{e,l),5{{l-a{e))ld)]),z]} if 1/2 ^ α(e)^ 1,

d ^ 0 and 1 — a(e) ^ d ^ 1

\^<(e) if «(e) = 1 and d - 0 .

The function χ: ( ^ U £?w) x
has the property that for eeE0,

•(E\JfE')w is continuous, and

lie, z) - μ{f[f(Φ(e, p(e)), z]}

- μ{f[f(e), z]}

), z) .

Since W" is compact, (E[jfE
f)w x ^ has the identification topology

induced by the map μ x 1: ( ^ U Ĵ fe) x ^ - ^ ( ^ U / ^ O i r x W (see
Lemma 4 of [10]). Thus since χ(e, z) = χ(/(e), «) for ee EQ,χ induces
a map χ: (£7 U / -E")^ x W~-+(E [J f E')w* To complete the proof we need
only check that χ is a slicing function for (ξ \J/V)w We leave these
details to the reader. Also we have claimed that (ξ U / y, η) is a
fibered pair. To see this note that the slicing function χ when re-
stricted to E'w x IF is a slicing function for τ]ψ Thus the local lifting
functions defined by these slicing functions will be lifting functions
of pairs, and the Uniformization Theorem will give us a lifting func-
tion for ξ U / V whose restriction is a lifting function for η.

Before considering applications of Theorem (2.5), the natural
question arises as to whether or not the fiber homotopy type of the
fibrations we obtain depends only on the fiber homotopy class of the
attaching map. An affirmative answer is provided by the next theorem.

DEFINITION (2.6). We will say a pair of spaces (£, ξ0) over B is
a closed cofibration if we can define maps D: E x I—> E and a: E-* I
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satisfying the properties given in Lemma (2.2).

Lemma (2.2) then shows that a pair of fibrations (£, ξ0) is a closed
cofibration if and only if (E, Eo) is a closed cofibration.

THEOREM (2.7). Let (ζ, ξ0) be a closed cofibration. Then if

f ~ g- f o —* V> f U / V i>s fiber homotopy equivalent to ξ U gy*
Note that we do not assume ξ or ξ0 are fibrations. Also note that

all maps and homotopies involved in the proof of the theorem leave
Ύ] fixed. One could state this as a relative theorem, making the proper
definitions of relative fiber homotopies etc.

Proof. Let G: Eo x /->£" be a fiber homotopy with G(e, 0) = f(e),
G(e, 1) = g(e), and let D: E x / — E, a: E-> I be as in Definition (2.7).
Let μ:E{J E'-+E{JfE' and v: E U E' —• E U g E

r denote the identifica-
tion maps. We define h: E U E' -> E U9 E', and h': E U E'-+ E U/-E"
as follows:

(v[D(e, 2a(e))] if e e E and 0 ^ a(e) ^ 1/2

h(e) = \v[G(D(e, 1), 2 - 2α(β))] if e e E and 1/2 ^ α(e) ^ 1

(v(e) if eef,

^[D(e, 2α(e))] if e e E and 0 ^ a(e) ^ 1/2

λ'(e) = \μ[G(D(e, 1), 2α(β) - 1] if e e E and 1/2 ^ α(e) ^ 1

(μ{e) if e e f f .

^ and hf are continuous and induce fiber preserving maps h: E [j fE
f' —»

E{JgE' and hf: E{j gE
f —*E [j fE' respectively.

We define 5 : (£7 U E') x I-*E\jfE
f and ^ : (.# U -E") x I~> E\JgE'

which induce fiber preserving homotopies H:(E\JfE
f) x I-+E{jfE'

from the identity map to h'h and K:{E\JgE
f) x I-+E\JgE' from the

identity map to M' by the following formulas:

ί) =

/μ[D{D{e, 2a(e). t), 2α(D(e, 2α(β). ί)) ί)]

if e e E, 0 ^ α(β) ί ^ 1/2 and

0 ^ α(D(e, 2α(e) *)) t ^ 1/2

μ[G{D[D(e, 2α(e) t), 1], 2a(D(e, 2a(e) t)) t — 1]

if β G ί/, 0 ^ α(e) ί ^ 1/2 a n d

1/2 ^ α(Z)(β, 2a(e) -t^l

μ[G(D(e, 1), (2 - 2a(e)). ί))]

if β e £7 and 1/2 ^ α(β) ί ^ 1
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/ v[D{D{e, 2a{e). t), 2a(D(e, 2a(e) ί)) t)] if

e e E, 0 ̂  α(e) * ̂  1/2 and

0 ^ αφ(e, 2a(e) -t))-t<, 1/2

6 G £ ? , 0 ^ α(e) t ^ 1/2 and

1/2 ^ α(J5(e, 2a(e). ί)) ί ^ 1

, 1), /3(e, *))] if eeE and 1/2 ̂  α(e) t ^ 1

if eeE'.

β(e, t) = min {4α(e) £ — 2a(e) t2 — t, 1} in the preceding definition of K.

3* Applications*

Given ξ = (E, p, B),η = (£", p', B) and f:ζ->y we will denote
by /i7 = (M/, q, B) the space over B with total space the mapping
cylinder of /, and q the map induced by pf and p: E x I—> J5 where
p(e? £) z= p(e). The following theorem is an immediate corollary to
Theorem (2.5).

THEOREM (3.1). Let B be a paracompact, locally compact space
with the property that (B x B, ΔB) is a closed cofibration. Then if
ξ and Ύ] are fibrations over B, and if f: ζ —+η is a fiber preserving
map, μf is a fibration.

The notion of strong fiber homotopy equivalence (due to P. Tulley)
is studied and used extensively by P. Tulley in [9] and S. Langston
in [6].

DEFINITION (3-2). Two fibrations ξ - (E, p, B), and η = (£", p\ B)
have the same strong fiber homotopy type denoted ζ~sη if there is
a fibration Γ = (E*, p*, B x /) with ΓBX{0} = ξ and ΓBX{1} = rj.

In [6] Langston proved that fiber homotopy equivalence is the
same as strong fiber homotopy equivalence when E and Er are separable
metric ANR's. In [9] Tulley proved that if / : ζ —> η is a fiber homo-
topy equivalence of fibrations, and if μf is a fibration then ξ ~SΎJ. The
result in [9] however, assumed E was compact to show μf is a fibra-
tion. By Theorem (3.1) and Theorem 11 in [9] we then have the
following result.

THEOREM (3.3). If B is paracompact, locally compact and
(B x B, ΔB) a closed cofibration, then for any two fibrations ξ and
Ύ], ξ ~ y if and only if ξ ~sy].
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In [6] Langston used the relationship between strong fiber homo-
topy equivalence and fiber homotopy equivalence to consider the pro-
blem of extending a fibration.

DEFINITION (3.4). If A c B and ζ = (E, p, A) is a fibration, then
a fibration η is an extension of ζ if rjA = ξ.

Langston in [6] proved that if (B, A) is a finite CW pair, and if
two fibrations ξ and ξ' over A with ANR total spaces are fiber homo-
topy equivalent, then £ can be extended to B if and only if £' extends
to B. The next theorem will generalize this result. We prove a
lemma first to give a better statement of the theorem.

LEMMA (3.5). // (X, A) and (X x X, AX) are closed cofibrations,
A metric, then (A x A, A A) is a closed cofibration.

Proof. Let D: X x /—* X, φ: X—> I be associated with the pair
(X, A) and D: X x X x I — X x X, φ: X x X — I with the pair
(X x X, AX) as in Lemma (2.1). Let V = ^ ( 0 , 1 ] c X and r: V-> A
be the retraction r(x) = D(a?, 1). Let Ϊ7 - ^ ( 0 , 1 ) c X x X, and define
σ: TJ—+X1 as in Lemma (2.3) using D and φ.

Let TF be a relatively open set in A x A with the property that
σ~ι{V) f] Ax AZ^W^WDAA. (W = closure of W.) We then have
σ(x, y)(t) e V for all (x, y) e W. Choose a: A x A—> I such that a~l(l) =

and a(A x A — W) — 0. We define D:AxAxI-^AxA and
1 x A —* I as follows:

(a?, y) iΐ (x, y) e A x A - W

(rσ(x, y)(a(x, y) t), rσ(x, y)(ί - a(x, y) -1))

D(x, y,t) = -{ if 0 ^ α(a?, y) ^ 1/2 and (a?, y) e W

(rσ(x, 2/) (1/2 ί), w(α;, j/)(l - 1/2 . t))

if 1/2 ̂  α(α?, y) ^ 1 and (α?, y) e W ,

0 if 0 g α(a?, y) ^ 1/2
^(», 2/) - 2(χ^ ^ _ 1 . f 1 / 2 ^ a ^ y ) ^ l m

Using D and φ, Lemma (2.1) shows t h a t (A x A, A A) is a closed
cofibration.

THEOREM (3.6). Let B be a metric space such that (B x B, AB)
is a cofibration, and A a locally compact subset of B with (B, A) a
cofibration. Then if ζ and rj are fiber homotopy equivalent fibrations
over A, ξ can be extended to B if and only if η extends to B.

Proof, ζ = {E, p, A) and η = (E\ pf, A) are strongly fiber homo-
topy equivalent by Theorem (3.3), therefore there is a fibration Γ =
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(E*, p*, A x I) with ΓAX{0} = f and ΓΛX{1) = η. If ξ has an extension
I = (E9 p, B), consider the space over B x {0} U A x I

Since (A x /, A x {0}) and (5 x {0}, A x {0}) are closed cofibrations,
Theorem (4.2) of [1] applies, and ξ \J Γ is a fibration Let
r: B x ί ^ 5 x ( 0 } u A x I he a retraction. Then r*(f U Γ), the pull-
back of f U Γ by r, is a fibration, and the desired extension of η is
given by r*(ξ U Γ)BX{1).

REMARK. Note that the extension of η given by this theorem is
fiber homotopy equivalent to the extension of f that we started with.

We now apply Theorem (3.6) and Theorem (4.2) of [1] to prove
a stronger form of Dold's pasting lemma. (See §6.4, of [2].)

THEOREM (3.7). Let X be a metric space of the form X = Xt (j X2

with Xι Π X2 locally compact, and (X{, Xι Π X2) o,nd (Xt x Xi9 ΔX%)
cofibrations i — 1, 2. Then if ξ1 — (El9 plf Xλ) and ζ2 — (E2, p2, X2) are
fibrations such that ίχ l Πχ 2 ^ Ά1f]χ2> there is a fibration rj — (E, p, Xι U X2)
with ηXι = ί1 and TJXCL - ζ\

Proof. ί!Ylnx2 ~ ζ\^x2 and ξXlnx2 extends to ί2 over X2, therefore
by Theorem (3.6), there is an extension ζ - (E, p, X2) of ξXlΠχ2 to X2

which is fiber homotopy equivalent to ζ2. We now let

7}=(E\jEl9pU pl9 X, U X2) .

η is fibration by Theorem (4.2) of [1] and ηZl = ί1, Ύ)x% ~ ξ2 by con-
struction.

As a final application of Theorem (2.5) we consider the problem
of attaching a disk bundle to a fibration by a fiber preserving map
on the associated sphere boundle. Ibisch in [5] studied this problem
for weak fibrations i.e. triples with the weak covering homotopy pro-
perty. If ξ is a disk bundle over B, B as in Theorem (2.5), it is clear
that at least locally, the total space of the associated sphere bundle
ξ0 is a closed cofibration in the total space of ξ Therefore given a
fibration η over B and a fiber preserving map / : ξ0 —> η, we can apply
Theorem (2.5) locally to get ξ \3frj is a fibration.

REMARK. Using Theorem 2 of [3] one can show in fact that the
inclusion of the total space of ξ0 in the total space of <f is a closed
cofibration.

By a different method we can eliminate the condition (B x B, AB)
is a closed cofibration. Let
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ξ = (Ex U E2, p, B), ζι = (Elf plf B), e = (E2, p2, B)

and

ξ° - ( ^ n # 2 , po, B) = ( # 0 , j>0,5)

with ^ =

LEMMA (3.8) // (Ei9 Eo) i = 1, 2 are cϋosed cofibrations and f°, ί1, <f
are fibratίons, then ξ is a fibration.

Proof. Choose a lifting function λ0 for ζ°. By Lemma (2.4) we
can find lifting functions λ<: β^ —• S/ i = 1, 2, for £2 whose restrictions
to ΩPQ are λ0. A lifting function for f is then defined by

\\(e,ω) if (e,ω)eΩPιX(e, oή = \
(X2(e,ω) if (e,ω)eΩP2.

Now let f = (E, p, B) be a disk bundle with £ = (E, p, B) the bound-
ary sphere bundle, and η = (E\ p', B) a fibration

THEOREM (3.9). Let B be a paracompact, locally compact space
and fm.ξ—+η Then ζ U/ fj is a fibration.

Proof. Consider the mapping cylinder μf = (Mf, q, B). Given
δ0 e B, we can choose a neighborhood W of b0 with compact closure,
so that ξ is trivial over W. Eψ is then compact, therefore we can
apply. Theorem (8) in [9] to prove μf is a fibration over W. μfy ξ,
and ί is thus a fibration by the Uniformization Theorem. Letting
|| || denote the norm induced by a Riemannian metric on f, we define
EidEUfE' as follows:

E2 = {eeE\\\e\\^l/2}.

Then (El9 q \ E19 B),(E2, q \ E2i B) and (Eί ΠE^qlE.f] E2, B) are fiberwise
homeomorphic to μf9 ξ, and ξ respectively and are thus fibrations.
(Ei9 E1ΓΊ E2) is a closed cofibration i = 1, 2. Therefore Lemma (3.8)
applies, and ί U/^ is a fibration.
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