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THE STRICT TOPOLOGY, SEPARABLE MEASURES,
AND PARACOMPACTNESS

RoBERT F. WHEELER

The theory of the strict topology 8 on C*(X) has re-
cently been extended to a completely regular setting by
Sentilles. Here it is shown that equality of the separable
and c-additive Baire measures on X is a sufficient condition
for (C*(X), B) to be a strong Mackey space. As a con-
sequence, the Conway-LeCam Theorem for paracompact spaces
is extended to the completely regular case. A locally convex
topology 8. on C*(X) is considered; j. is strong Mackey, and
the dual space is the space of separable measures. Results
of Dudley, Granirer, and Leger and Soury on convergence in
the space of measures are unified and extended in this

context.

The topology of a completely regular Hausdorff space X can be
recovered from the family of its continuous metric images. In this
paper an analogous idea is developed: that theorems about convergence
of functions and measures on metric spaces can be used (via an in-
ductive limit procedure) to obtain results in a completely regular
setting. The principal consequences are the determination of a suf-
ficient condition for equality of the Mackey and strict topologies on
C*(X), and a unification and extension of known results on conver-
gence in the space of Baire measures on X.

The concepts introduced here arise from the theory of the strict
topology for completely regular spaces due to Dennis Sentilles [17].
He considers locally convex topologies B, B, and B, on C*(X) which
extend the strict topology of Buck [2] in the locally compact setting
and also relate to the theory of measures on topological spaces
developed in, for example, Varadarajan [18]. In this paper the em-
phasis is on continuous maps from X to metric spaces Y and the
induced maps on (C*(Y), B) to C*(X). This leads to introduction of
an inductive limit topology g, on C*(X), intermediate between 8 and
B

The topology B, has a number of significant properties. In
particular, (C*(X), g.) is always a strong Mackey space. Using the
notion of partition of unity, it is then shown that g = g, when X
is paracompact; hence the Conway-LeCam Theorem [4,12] extends
to the completely regular setting. Moreover, the dual space of
(C*(X), B, can be represented as M (X), the space of separable
measures introduced by Dudley [5], or as the space of linear func-
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tionals on C*(X) whose restrictions to bounded equicontinuous sets
are continuous in the pointwise topology, a notion considered by
Leger and Soury [13]. Results of these authors and Granirer [9] on
convergence in the space of measures are interpreted and extended
in this context, emerging as consequences of results in the duality
theory of locally convex spaces.

1. Definitions and preliminary results. All spaces X are
henceforth assumed to be completely regular and Hausdorff, except
that pseudometrics d on a space X will be considered. In this case
d-closed, d-separable, ete. refer to properties of the pseudometric space
(X, d). The space of real-valued bounded continuous functions on X
is denoted by C*(X). A partition of unity (POU) on X is a sub-
family (f,) of C*(X) such that 0 < f, < 1ve, 3f, = 1, and {: f.(x) # 0}
is a locally finite family of subsets of X. A POU (f,) is subordinate
to an open cover (U,) of X if {x: f.(x) > 0} U,VY,. There is a POU
subordinate to any open cover of a paracompact space (in particular,
a metric space).

Basic references for the duality theory of topological vector spaces
and topological measure theory are [16] and [18], respectively. A
zero-set in X is a set of the form f~*(0), where f € C*(X). A cozero-
set is the complement of a zero-set. The Baire sets are the least o-
algebra containing the zero-sets, and we deal primarily with Baire
measures: see [18] for the definitions of M(X), M,(X), M.(X), and
M,(X). If Ac M(X), then A" = {u*: pe A}, and A~ = {¢~: pe A}.
If pe M(X), then the support of p is

N{Z: Z a zero-set, |¢1|(Z) = |¢|(X)}.
Similarly, if Ac M(X), then the (uniform) support of A is

N{Z: 1| (Z) = |p|(X)VreA}.

A 7-additive measure on a metric space has separable support.

If A is a directed set and (f.).cs a family in C*(X), then f, ] 0
if (f.) converges monotonically pointwise to 0; similarly we have such
notations as Z, | @ and f.11.

The symbol LCS means locally convex Hausdorff topological
vector space. If E, F are linear spaces in duality, then the weak
and Mackey topologies on E with respect to F’ are denoted, as usual,
by o(E, F) and 7(E, F). A subset A of a topological space X is
relatively countably compact if every sequence in A has a cluster
point in X. We will say, following Conway [4] that a LCS is a
strong Mackey space if every relatively weak*-countably compact
subset of the dual space is equicontinuous.
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Topologies Gy, B, and B, on C*(X) which yield M, M, and M,
respectively, as dual spaces, are introduced by Sentilles [17]; inde-
pendently, Fremlin, Garling, and Haydon [7] have considered topologies
T,, T., and T, which perform the same function. Happily, these
topologies are pairwise equivalent (i.e., 8= T, 8 = T., and B, = T,),
and we note several crucial results in this theory. A subset A of
M. is uniformly t-additive if, for any f,|0 in C*(X) and &> 0,
there is an index «, such that, for a = a,, | #(f.)| < €V e A; there
is, similarly, a notion of uniform oc-additivity.

ProrosiTION 1.1 [7,17] (a). (C*(X), B) is a strong Mackey
space, and the families of relatively weak™*-countably compact and
uniformly o-additive subsets of M,(X) coincide. Moreover, if
AcC M (X), then A has either of these properties if and only if At
and A~ do. (b) If AcMA(X), then A is uniformly c-additive if and
only if A* and A~ are uwiformly t-additive. Also 8= B if and
only +f M, = M,, and, in this case, B is strong Mackey.

Any continuous map @: X — Y induces a map T: C*(Y) — C*(X)
defined by T(f) =fo@. Then T is B, — By B— B and B, — B
continuous [14]; the adjoint T*: M(X) — M(Y) is weak*-continuous
and preserves M,, M., and M,. Finally, & is the topology on C*(X)
of pointwise convergence on X.

2. Metric spaces. The work of Fremlin, Garling, and Haydon
[7] has established that (C*(X), B, is a strong Mackey space when-
ever X is complete metric. In this case, 8 = 8, and so the following
theorem, whose proof relies on their basic technique, is a stronger
result.

THEOREM 2.1. If X 1is a metric space, then (C*(X),B) is a
strong Mackey space.

Proof. Let d be a metric for X, and let A be a relatively
weak*-countably compact subset of M.(X). We establish first that
for any ¢ > 0 and 6 > 0, there is a finite subset Y of X such that
[ (X\N(Y,d) <¢ (here N(Y,0) = {xecX: dw, Y)<5}). If this
fails for some particular ¢ and d, we construct sequences of measures
(¢,) in A and finite subsets (Y,) of X such that

1 Y= 0;

@ [ (X\N (Ui<n Y5, 0)) >

@) Y.< X\N(Ui<n Y5, 0);

(4 |#. | (N(Y,,0/4) > eVn.
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Indeed there exists ¢, e A with [, |(X) > ¢, and it is an im-
mediate consequence of z-additivity, applied to the family of open
0/4-spheres, that Y; can be chosen so that (3) and (4) are valid. If
!; and Y; have been chosen for 7 < m, then, by hypothesis, some
U, € A satisfies (2). Applying z-additivity of |g,| to the family of
open d/4-spheres centered at points of X\N (U;<. Y3, 0), we obtain Y,
satisfying (3) and (4). Thus, by induction, (¢, and (Y,) are com-
pletely defined.

Let G, = {x: d(z, Y,) < 6/3}, H, = N(Y,, 6/4). Since |z, | (H,) > &,
it is easy to see that there is an f, ¢ C*(X) with

Il =1, ful X\G. =0,

and Hf”d”” > &. Define T: «~— C*(X) as follows: for each

a=(y)yes~, T =a,f, .

(that T'(«) is continuous follows from the fact that d(G,, G,) = 9/3 for
m # n).

Now T is o(s/=,s") — o(C*, M.) continuous (direct verification),
hence the adjoint T*: M.(X) — <* is o(M., C*) — a(s*, #~) continuous.
Thus T*(A) is relatively weakly countably compact in «!, and so is
relatively norm compact. But if e, is the nth unit vector in /', then
| T*ttu(e,) | = | ptu(fu) | > &, and this contradiction establishes the truth
of the original claim.

Hence for each m and = there is a finite subset F,,, of X with
1| (X\N(F,,,, 1/2") < (m - 2")'vpre A. If S is the closure of

oo

U N NF.a 1/27)
then S is separable and |p¢|(X\S) = 0 vpre A.

For each e A, let 5 denote the restriction to the Baire (=Borel)
subsets of S. If (u,) is a sequence in A with a weak*-cluster point
€ M.(X), then || (X\S) = 0 [18, p. 183]. Moreover, every member
of C*(S) extends to a member of C*(X), and it follows easily that
(¢2,)s clusters to (#)s in M.(S). Thus, A, = {¢s: pte A} is relatively
weak*-countably compact in M.(S). But S is Lindelof, hence M, (S) =
M.(S) [18, p. 175], so that A, is B-equicontinuous and therefore uni-
formly r-additive in M.(S), by 1.1b. Thus, if f,] 0 in C*(X), and
9« = f«|S, then for each ¢ > 0 there is an index «, such that, for

az=a, H Sap ( = H g.dps| <evpeA. Hence A is uniformly z-
X S
additive, and therefore is B-equicontinuous.

COROLLARY 2.2. A relatively weak*-countably compact set of -
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additive measures on o metric space has a uniformly separable sup-
port.

It is well-known that M:(X) is weak*-metrizable if (and only if)
X is metrizable. This fails for M.(X) (unless X is finite), but a
crucial property of metric spaces, formalized in the notion of an
angelic space [15], can still be recovered for the entire space of
measures.

COROLLARY 2.3. If X 1s a metric space, then (MAX), w*) is an
angelic space.

Proof. According to [15], it suffices to show that if 4 is a
relatively weak*-countably compact subset of M.(X), then its weak*-
closure A is weak*-compact and consists precisely of the limits of
sequences in A. The first assertion is clear, since A is B-equicon-
tinuous (2.1). For the second, note that A" and A~ are uniformly
z-additive (1.1b); hence they are relatively weak*-compact in M (X).

Let (¢,) be a net in A with pa&*p. Then there are measures g,

and p, in MF(X) and a subnet (Pas) with ‘uiﬂﬁ#l, ll;{ﬁqﬁ#z. Let
d be a metric for (M- (X), w*) and choose \, = @; with

deer,, 1) < lm, d{gg, t) < 1/n.

Since necessarily ¢ = ft, — ft, it follows that y; Z, 2. This completes
the proof.

Applying [15, Theorem 0.5], if X is metric, then any subspace
of M.(X), endowed with any locally convex topology finer than the
weak*-topology, is angelic.

3. Approximating completely regular spaces by metric spaces.
If X is a completely regular Hausdorff space, let <& denote the
family of all bounded continuous pseudometrics (BCPM’s) on X. If
d e =, then the relation: & ~ y if and only if d(z, y) = 0 is an equiv-
alence relation on X, and the collection of equivalence classes % is
made into a metric space X, by defining d(Z, ¥) = d(», y). Then the
natural map 7,;: X — X, defined by 7,(x) = T is continuous and induces
maps T,;: C*(X) — C*(X), T} M(X)— M(X,).

Let & (or &(X), if confusion might arise) denote the family of
uniformly bounded equicontinuous subsets of C*(X). Since arguments
involving ¢ and partitions of unity (POU) play a prominent role in
the remainder of this paper, we record a number of elementary re-
sults for purposes of reference and in an effort to standardize notation.
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ProposITION 3.1 (a). If Ee€é&(X), then
d(@, y) = sup {| f(x) — f(y) |: fe B}

is a BCPM on X. If feE, then f(%) = f(%) is a well-defined member
of C*(X,), and E, = {f: fe E}c&(X,). Also T, is a homeomorphism
of E; onto E (each being endowed with the appropriate pointwise
topology), and T,(f) =f. (b) If (9.) is a POU on X, for some
de =z, then (Ty(9.) is @ POU on X. (€) If (fo)acs i @ POU on X,
then d(z,y) = X | fox) — fu(y) e If F ={FCA:F finite}, and,
for each Fe F, 4y = S{fiaecF}, I'y = 3{f.:acF}, then

{yp: Fe 7 }1eé(X),
L =ypnl0in CHX), I'sT1 in C*(X,), and Ty(I'z) = ¥p.

DErFINITION 8.2. The topology B, is the finest locally convex
topology on C*(X) such that T,: (C*(X,), B) — C*(X) is continuous
vde o

The existence of such a topology, and a description of its zero-
neighborhood base, are well-known [16, p. 79].

PROPOSITION 3.3. B = B, = B

Proof. Each T;: (C*(Xp), B) — (C*(X), B) is continuous [14], and
s0 B8 =< B.. Since B, is Mackey, it now suffices to show that any g,-
continuous linear functional @ is a member of M,. If (f,)eC*(X)
and || f,]| — 0, then E = {f,} is a member of & and gives rise to a
BCPM d (as in 3.1). Then @ o T, e (C*(X)), B) = M.(X,) c M(X,), so
that @(f,) = (@ o T)(f,) — 0. Thus @ e M(X), and a similar argu-
ment applied to f, ]| 0 in C*(X) shows that @ is o-additive.

Evidently if & e M(X), then @ is p,continuous if and only if
@oTy= THDP)e M(X,)Vde 2. Let MyX) denote the space of g,-
continuous linear functionals; in § 4 it will be proved that My coin-
cides with the space of separable measures introduced by Dudley [5]
and the space MX considered by Leger and Soury [13, p.379].

ProposiTION 3.4. (C*(X), B.) is a strong Mackey space.

Proof. In view of the definition of B,, and 2.1, this follows im-
mediately from standard duality arguments.

We now show (in several steps) that whenever X is paracompact,
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B = B.; hence p is strong Mackey.

LeMMA 3.5. If pe M(X), then the following are equivalent: (1)
te My(X); (2) p* and p~e My(X); 3) | ¢] € My(X).

Proof. Since Tj: My(X)— M.(X,) is a positive linear map, it is
easy to see that (8) implies (2). Clearly (2) implies (1) and (3).
Thus it suffices to show that if pe M (X), then ¢ e M (X). Note
that (T;w)* = TF(e") in general.

Fix de 2, and let (Z,)., be a net of zero-sets in X,; with Z, | .
Let (9.).cz be a POU on the metric space X, such that g¢.|Z, = 0v,,
and let f, = T4(9.) = g.° T,V&, with & and r, defined as in 3.1.

Now g = p~ — p~ is the Jordan decomposition of x, and there is
a Baire set Ac X such that p*(B) = (AN B) for every Baire set
B. Given ¢ > 0, there is a zero-set Z and a cozero-set U with
ZcAc U and | ¢|(U\Z) < ¢/2 [18, p. 164]. Choose he C*(X), with
0Zhs1L, B X\U=0, h{|Z=1. Then for any @ e C*(X),

w@) = | pap=| ohdp— | ohdp+| odpspen +e-iiell.

In particular, if @, = 1 — 45, then gt (py) < p(Pr-h) + &
Now {®,: Fe &} is a member of & (3.1c), hence so is

{(Preh: Fe F}.

Let d(x,y) = sup {{Pr(x) « h(x) — Px(y) - h(y)|: Fe F} be the cor-
responding member of &, and denote the image of » under =, by Z.
Then j,(%) = ®@z(x) - h(x) is a well-defined member of C*(X,), and
T3(dr) = Pr-h. Since jr | 0 and Tjipe M(X,), t(Pr-h) = Tip@s) — 0.
Thus for some finite subset F, of H, F D F, implies p(®,-h) < ¢, so
that p*(py) < 2e.

Let F, = {«a,, ---, «,}; then

2e > (1= 3 o) = Tr ()1 = 3 7) > Te (A 4,) -

It now follows that Tj(#*)(Z,)— 0, hence T;p*eM.(X,), and so
(since de & was arbitrary) gt e MJ(X). This completes the proof.

LEMMA 3.6. The topology B, coincides with the topology of umi-
form convergence on weak*-compact subsets of Mg (X).

Proof. In view of 3.4, the topology of uniform convergence on
weak*-compact subsets of My (X) is coarser than 5, To prove the
converse, it suffices to show that if A is relatively weak*-countably
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compact in M (X), then A+ has the same property in My (X). Now
A is relatively weak*-countably compact in M, (X), hence B,-equicon-
tinuous (1.1a). Thus A* is B-equicontinuous and so if (x,) is any
sequence in A, then (g¢}) has a weak*-cluster point \ in M;(X). We
show that » e M (X).

Now each p; € Mg(X), by 3.5; hence if d € &7, then

Tr(ue) e M7 (X,) .
Let D, be a closed separable subset of X; such that
T#p(X\D,) = 0.

Then S =-clU;., D, is separable, and Tju;(X,\S) = 0vn. Now

N e MH(X) is a weak*-cluster point of (T;)), and so TMX,\S) = 0.

Since T\ is concentrated on a separable subspace of X, it is
r-additive. Thus ) e M (X), completing the proof.

ProrosiTION 3.7. If X is completely regular, then the following
are equivalent: (1) 8= By (2) MA(X) = My(X); (8) MA(X) = Ms(X).
In this case, (C*(X), B) is a strong Mackey space.

Proof. It is shown in [17] and [18] that each of 3.5 and 3.6
remains true if g, is replaced by g and My is replaced by M.. The
proof now follows immediately.

Now we can establish the promised generalization of the Conway-
LeCam Theorem.

ProrosiTiON 3.8. If X 1is paracompact, then (C*(X), B) is a
strong Mackey space.

Proof. Let pe My (X). If Z,| @, let U, = X\Z,, and let (f.)
be a POU subordinate to (U,). Define d, (f.), and (I";) as in 3.1(c);
then TjpeM.(X,;) and 1 — I'p) | 0 in C*(X,), so Tjpu(l — I'y)—0.
Given ¢ > 0, choose F, = {«,, ---, @,} such that

pl— 3 {feaeF)) = Tl — I'n) <c.

It follows that p(Ni. Z.,) < ¢, and so pe M7(X). An application of
3.7 completes the proof.

COROLLARY 3.9. If X s paracompact, them every relatively
weak*-countably compact subset of M.(X) has uniformly Lindelof
support.

Proof. If A is relatively weak*-countably compact in M.(X),
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then A is uniformly z-additive, hence so are A* and A~. Thus we
may as well assume that A ¢ MH(X). Let

C=N{Z:pZ=pXvreci},

and let (U,)... be an open cover of C. For each & choose an open
subset V, of X with V,NC = U,, and let V, = X\C, A, = AU {«a,}.
Then (V,)se4, is an open cover of X; choose a POU (f.)sc4, Subordinate
to it, and define d and (fu)..., as in 3.1(c).

Now TjA is relatively weak*-countably compact in M7 (X,) and
so there is a closed separable subset B of X, such that p(X\7;'B) =
T X,\B) = 0 vee A (2.2). Since 7;'B is a zero-set in X, we have
Cc n7'B by definition of C. Let (x,) be a sequence in C such that
(Z,) is dense in 7,(C), and let A, = {@e A;: f.(z,) > 0 for some n}.
Then A, is countable, and «,¢ 4,. If peC and f,(p) = 0 Vae A,
then d(p, Z,) = d(D, £,) = Sues, | fu(0) — ful®@,) | = 1 Va, contradicting
denseness of (Z,). Thus Cc U {V. ac 4}, and so C = U {U.: a € A4,}.
This completes the proof.

4. Characterizations of 3, and its dual. In order to relate g,
and M to the work of Dudley [5], Granirer [9], and Leger and Soury
[13], we obtain some alternate descriptions of these spaces.

ProrosITION 4.1. If pe M/(X), then the following are equivalent:
1) e My(X); (2) [5] For each BCPM d on X, there is a d-separable
d-zero set Z; with |p|(X\Z,) = 0; () [13] The restriction of p to
each member of & is FP-continuous; (4) If (f.) 1s equicontinuous and
S l 0, then #(fa) — 0.

Proof. (1)—(2): If de=, then Tj(pl) eM(X;), from 3.5.
Hence there is a closed separable subset D of X, with

Ty (1 N(XA\D) = 0,

and Z; = w7'D is the desired set. (2) — (1): For any fixed d, 7,(Z,)
is a closed separable subset of X, on which T;(|¢]) is concentrated;
thus Tj(Jp)) e M.(X,) and so | 1] € My(X). Now apply 3.5. (1) — (3):
Let Ecé&, and let (f,) be a net in E which is pointwise convergent
to f,e E. We may assume that E is convex and circled. Let g, =
(fu — f0)/2, and let h,(x) = sup { g:(z) |: » = a}. Applying the equicon-
tinuity of E, we have each h, continuous, {h,} €&, and h,] 0. Let
d(x, y) = sup {|h(®) — Rh(y) |}, and use 8.1(a) to form (®,) in C*(X))
with T,(®.) = h, and @, | 0. Then since T;(|¢]) e M.(X,),

pl(he) = (T3 | 1£))(Pa) — O .
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But |#(9.)| <[] (he), and so p(fo) — p(f). (8) — (4): Obvious.
(4) — (1): First we show that p* and p~ have the stated property.
Indeed, for any &> 0, we can use the argument of 3.5 to find
heC*(X), 0= h =<1, with *(f) = p(f - h) +¢-]| f|| VfeC*X). If
(f.) is equicontinuous and f,| 0, then (f,-%) has the same proper-
ties. Fixing a,, we have p*(fo) = p(furh) + ¢+ || fo,|] for a = a,, and
it follows that p*(f,) — 0. Thus we may assume that g is positive.
If dez and Z,| @ in X, let (g9.) be a POU on X, subordinate to
the cover (X\Z,). Then (f.) = (T.i9.) is a POU on X (3.1(b)), and the
equicontinuous net (1 — ) (notation as in 3.1) satisfies (1 — +rz) | 0.
Thus p(l — ;) — 0, and it follows that T;p e M.(X,).

We note that the classes (2), (3), and (4) must share the property
of (1) which is expressed by 3.5.

ProprosiTiON 4.2. The topology B. is the finest locally convex
topology on C*(X) which coincides with the pointwise topology F
when restricted to uniformly bounded equicontinuous sets.

Proof. The existence of a topology .7~ satisfying condition of
the theorem, and a description of its zero-neighborhood base, are
well-known [3, 8]. To show that B, < .7, it suffices (by 3.6) to
show that if A is a weak*-compact subset of M (X), Ecé&, and (f,)
is a net in K which is pointwise convergent to fe E, then u(f,) — u(f)
uniformly with respect to pe A. Since, for each de =z, T}A is
weak*-compact and therefore uniformly r-additive in MF(X,) (by 2.1),
the result follows from simple modifications of the proof that (1) — (3)
in 4.1.

Conversely, if ¢ is a Z-continuous linear functional on C*(X),
then the restriction of g to each member of & is “P-continuous. It
follows, upon considering sequences (f,) with || f.||— 0 or f, ] 0, that
pre M (X); hence pe My(X), by 4.1. Since B, is Mackey, we must
have 9~ < B,. Thus . and g, coincide.

COROLLARY 4.3(a). If X 1is paracompact, then B is the finest
locally convex topology which coincides with 7 on uwiformly bound-
ed equicontinuous sets; (b) If X 1is paracompact locally compact or
complete metric, then B, has the same property.

Proof. If X is paracompact, then 8 = B8, was proved in 3.7 and
3.8. The spaces mentioned in (b) satisfy B, = 8.

If X is locally compact, then the g-totally bounded, relatively
B-compact, and uniformly bounded equicontinuous subsets of C*(X)
coincide. Thus the first part of (b) was essentially obtained by Collins
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and Dorroh [3, Theorem 6.4], and now emerges as bearing an unanti-
cipated relation to the Mackey problem.

Let 7(&) denote the topology on M(X) of uniform convergence on
members of &. The second part of the next theorem is proved in
[13], but we include an argument for the sake of completeness.

PROPOSITION 4.4 (a). My(X) is weak*-sequentially complete; (b)
(M(X), ©(&) is a complete locally convex space whose dual is C*(X).

Proof. (a) It is known [18] that M (X) is weak*-sequentially
complete, hence we need only show that My(X) is weak*-sequentially
closed in M,(X). But this is an immediate consequence of characteri-
zation (2) of 4.1 and [18, p. 183].

(b) The o(C*, My)-closed convex circled hull of any member of
& is in &, and consequently is o(C*, Ms)-compact since, from 4.2 and
standard results, it is B,-compact. Thus (M(X), z(8)) = C*(X) by
the Mackey-Arens Theorem. Moreover, since &2 =< o (C*, M) < G,
the other assertion follows from the characterization (3) of 4.1 and
Grothendieck’s Completeness Theorem.

If L(X) denotes the linear span of the point masses in M(X),
then L(X) is weak*-dense, hence 7(§)-dense in My(X). This shows
that (My(X), (£)) is the completion of (L(X), z(§)).

5. Convergence in the space of measures. In this section we
extend several known results on convergence of measures and answer
a question posed on p. 393 of [13]:

(a) Do the weak*-topology and 7(¢) coincide on

{re M (X): p(X) = 1} (= QX, in the terminology of [13]) .

Dudley [5] showed that:

by If /J,Lu-)—*»# in M(X), then (¢,) converges to ¢ uniformly on
members of & (i.e., in the topology z(¢)).

Granirer [9] introduced the space of measures DM, and showed
(Theorems 1 and 2, and Remark 4, p. 15) that:

(¢) Every member of & is relatively o(C*, DM,)-compact and

(d) The weak*-topology and the topology <(§) coincide on
DM;(X).

Our results are:

ProPOSITION 5.1. M.c DM,c MyC M,.

PROPOSITION 5.2. The finest locally convex topology on C*(X) for
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which members of & are relatively compact is T(C*, My).

PROPOSITION 5.3. The weak*-topology coincides with () on M3 (X)
and on relatively weak*-countably compact subsets of My(X).

Proof of 5.1. We refer to [9] for the definitions of a D-space
and the space of measures DM, (X). It suffices to show that

Mic DM; c My,

since each of these cones generates the corresponding space of
measures.

If pe M (X), then it is known [11, p. 338] that ¢ has an exten-
sion to a nonnegative countably-additive Borel measure v satisfying
(1) vB = inf {v0: 0 open, BC 0} for any Borel set B; and (2) if (F,) is
a net of closed sets with ¥, | @, then vF,— 0. Let

C=N{F: F closed, vF = vX};

then vC = vX. If U is any nonempty open subset of C, then U =
VNC where V is open in X, and vU = vV > 0. Thus C satisfies
the countable chain condition, hence is a D-space [9], and, for any
Baire set B with Cc B, uB=vB = vC = vX = #X. Thus

reDMH(X) .

If pe DM, (X), let S be a D-subspace of X with #*S = p¢X. Fix
de =2, and let P = 7,(S)cX,;. If ¢ is a BCPM on P, then eo (7, X 7,)
is a BCPM on S, and it follows that P is a D-space. If B is a Baire
set in X, and Pc B, then 7n7'B is a Baire set in X containing S, so
that (Tjyp)(B) = p(#7'B) = pX = TFm(X,). Thus T}pre DM (X)),
which coincides with M*(X,) since X, is metric [9, p. 19]; hence
¢ e Mg (X).

Granirer observes that DM/(X) = M,(X) if and only if X is a
D-space; hence there are models for set theory in which

DM, = My = M,

(and B, = B) for any space X. But unless it can be proved that
real-valued measurable cardinals do not exist, 8, and B, must be
considered as distinct entities. Roughly speaking, a principal moti-
vation for introducing g, is the hope of isolating the cardinality dif-
ficulties in the relation between B, and B,, so that the equality of B
and B, can be investigated without reference to them.

Proof of 5.2. It is well-known that members of ¢ are relatively
F-compact. Thus B, is the finest locally convex topology with this
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property, from 4.2, and g, = z(C*, M), from 3.4.

Proof of 5.3. If E is any locally convex space, and A is any
equicontinuous subset of the dual E’, then the weak*-topology and
the topology of uniform convergence on totally bounded subsets of E
coincide when restricted to A. Let E = (C*(X), B.), so that E’' =
My(X). Since every relatively weak*-countably compact subset of
My(X) is B,-equicontinuous (3.4), and every member of & is relatively
B.-compact (5.2), hence pg,-totally bounded, the second half of the
proposition is immediate.

Turning to the assertion about MJ(X), let us first establish
that, for X a metric space, the weak*-topology and 7(£) coincide on
MF(X) (this is a special case of Granirer’s result (d), but an easy
direct proof is possible). Now if g, and My are replaced by B and
M. in the previous paragraph, it follows that ¢(M,, C*) and 7(§) coin-
cide on weak*-compact subsets of M. But z(¢) is finer than o(I,
C*), and (MF, o(M., C*)) is metrizable, hence a k-space [6, p. 248].
It follows that (%) = o(M., C*) on M7 (X).

Returning to the general case, suppose yau—ﬂ:p in M§X),
and let Eeé&(X). Constructing d and E,; as in 38.1(a), we have

Td*pa?—*» TFp in M*(X,), and so (Tjp,) converges to Ty uniformly
on E, from the previous paragraph. This is equivalent to saying
that (z,) converges to g uniformly on E. Hence d(Ms, C*) and 7(§)
coincide on MJ(X).

There is a natural embedding j: X — M(X), and a copy of the
Stone-Cech compactification BX can be constructed in M*(X): it is
simply the set of {0, 1}-valued Baire measures in M(X), with the
relative weak*-topology. Moreover, if we identify 8X with this space,
then BX N M,(X) = vX, the Hewitt realcompactification of X, and
BX N M(X) = j(X).

Let Z/(¢) be the uniformity on M (X) of uniform convergence on
members of & then the uniform topology is of course z(§). It is easy
to show that the relative % (&) uniformity on j(X) coincides with the
finest compatible uniformity on X, often called the fine uniformity.
The completion of X with the fine uniformity is called the universal
completion of X and denoted 6X; in [1] it is shown that X can be
realized (topologically) as a subspace of 3X. Now we give an alter-
nate characterization of 6X.

COROLLARY 5.4. The space BX N MyX) of {0,1l}-valued Baire
measures in My(X), with the relative weak*-topology and Z/(§)-
uniformity, is homeomorphic and uniformly isomorphic to 0X.
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Proof. Since gX is weak*-closed in M(X), XN My(X) is weak*-
closed, hence 7(¢)-closed, in My(X), and therefore is Z/(&)-complete,
from 4.4(b). Also o(Mg, C*) and 7(§) coincide on M (X) (5.3), so
that j(X) is 7(¢)-dense in BX N My(X). The result now follows im-
mediately.

Ideas similar to those expressed by 5.4 and preceding remarks
(with the exception of the consequences of 5.3) are considered, at
least implicitly, in [13].

6. Totally bounded sets and convergent sequences. If X is
locally compact, then pB-totally bounded sets are relatively g-compact,
and coincide with the members of & Since &P <R =<pB=pH, We
have seen that members of & are relatively B, and B-compact in
general, even relatively g,-compact if X is a D-space. Unfortunately,
the converse fails.

ExAMPLE 6.1. A space X with g,= 8= 8, = B, such that C*(X)
contains a G,-null sequence which is not equicontinuous. Let N
denote the positive integers with the discrete topology, let p be a
point of AN\N, and let X = N U{p}. As pointed out by Varadarajan
[18, p. 227], X satisfies Prohorov’s Theorem: every weak*-compact
subset of M7 (X) is uniformly tight. Since X is o-compact, M, (X) =
M,(X), and so X is B-simple, in the terminology of [14]: B, = B = B..
Now compact subsets of X are finite, so if f, is the characteristic
function of {n}, then (f,) is B,-convergent to 0, but obviously not
equicontinuous at p.

A space X is a kj-space if the continuity of a real-valued func-
tion on X is implied by its continuity when restricted to compact
subsets of X. Every k-space is a kg-space, but the converse is not
true. It is konwn [17] that when X is a kg-space, B, is complete
and B and B, are sequentially complete.

PRrOPOSITION 6.2. If X s a kg-space, then the following classes
of subsets of C*(X) coincide: (1) & (2) relatively B-compact; (3) B-
totally bounded; (4) relatively Bs-compact; (5) By-totally bounded.

Proof. We have already noted that (1) — (2), and clearly (2) —
8) — (5) — (4), the last implication following from g,-completeness.
Any relatively g,-compact set is uniformly bounded and relatively
compact in the compact-open topology, hence the implication (4) — (1)
is an immediate consequence of Ascoli’s Theorem [10, p. 234].
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Sentilles has introduced B and B*, the finest locally convex
topologies on C*(X) with the same convergent sequences as G, and
B, respectively, and inquired as to the relationship between B and

B.

COROLLARY 6.3. If X is a kg-space, then B, and B have the same
convergent sequences, and B < B* = pF < L. If also X is a D-
space, then B,, B, and B, have the same convergent sequences.

Proof. Obviously g8 < g%, and g™ < B = B, was established in
[17]. Moreover, 87 = B+ = B = B, follows from 6.2. Thus if X is
a D-space, B, = B,, and the second assertion follows.

7. An open question. Theorems 3.4 and 3.7 show that the
measure-theoretic condition My = M? is sufficient for (C*(X), B) to
be a strong Mackey space; this unifies the classes of paracompact
spaces and measure-compact spaces (spaces for which M, = M,). As
a consequence of 5.4, a space X for which My = M admits a com-
plete uniform structure (this is the analogue of the known result
that a measure-compact space is realcompact). This raises the ques-
tion of a possible converse: if (C*(X), B) is a Mackey space, must X
admit a complete uniform structure?

Added in proof. Since submitting this article the author has
learned that some of his results on the space of separable measures
have also been obtained, independently and using different techniques,
by Michel Réme (C. R. Acad. Sci. Paris 274 (1972), 1631-1634, 1817-
1820) and Richard Haydon (“On compactness in spaces of measures and
measure-compact spaces,” preprint).

REFERENCES

1. H. Buchwalter and R. Pupier, Caractérisation topologique de la complétion universel-
le d’un espace topologique completement régulier, C. R. Acad. Sc. Paris, 268 (1969),
1534-1536.

2. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan
Math. J., 5 (1958), 95-104.

3. H. S. Collins and J. R. Dorroh, Remarks on certain function spaces, Math. Ann.,
176 (1968), 157-168.

4. J. B. Conway, The strict topology and compactness in the space of measures, Trans.
Amer. Math. Soc., 126 (1967), 474-486.

5. R. M. Dudley, Convergence of Baire measures, Studia Math., 27 (1966), 251-268.
6. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.

7. D. H. Fremlin, D. J. H. Garling, and R. G. Haydon, Bounded measures on topological
spaces, Proc. London Math. Soc., (8) 25 (1972), 115-136.

8. D. J. H. Garling, A generalized form of inductive-limit topology for vector spaces,
Proc. London Math. Soc., 14 (1964), 1-28.



302 ROBERT F. WHEELER

9. E. Granirer, On Baire measures on D-topological spaces, Fund. Math., 60 (1967),
1-22.

10. J. L. Kelley, General Topology, Van Nostrand, 1955.

11. R. B. Kirk, Locally compact, B-compact spaces, Nederl. Akad. Wetensch. Proc.
Ser., A 72 (1969), 333-344.

12. L. LeCam, Convergence in Distribution of Stochastic Processes, Univ. California
Publ. Statisties, 1958.

13. C. Leger and P. Soury, Le convexe topologique des probabilités sur um espace
topologique, J. Math. Pures et Appl. 50 (1971), 363-425.

14. S. E. Mosiman and R. F. Wheeler, The strict topology in a completely regular
setting: relations to topological measure theory, Canad. J. Math., 24 (1972), 873-890.
15. J. D. Pryce, A device of R. J. Whitley’s applied to pointwise compactness in spaces
of continuous functions, Proc. London Math. Soc., 23 (1971), 532-546.

16. A. P. Robertson and W. J. Robertson, Topological Vector Spaces, Cambridge U.
Press, 1966.

17. F. D. Sentilles, Bounded continuous functions on a completely regular space,
Trans. Amer. Math. Soc., 168 (1972), 311-336.

18. V. S. Varadarajan, Measures on topological spases, Amer. Math. Soc. Translations,
(2) 48 (1965), 161-228.

Received April 12, 1972.

NORTHERN ILLINOIS UNIVERSITY





