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THE STRICT TOPOLOGY, SEPARABLE MEASURES,
AND PARACOMPACTNESS

ROBERT F. WHEELER

The theory of the strict topology β on C*(X) has re-
cently been extended to a completely regular setting by
Sentilles. Here it is shown that equality of the separable
and τ-additive Baire measures on X is a sufficient condition
for (C*(X), β) to be a strong Mackey space. As a con-
sequence, the Conway-LeCam Theorem for paracompact spaces
is extended to the completely regular case. A locally convex
topology βe on C*(X) is considered; βe is strong Mackey, and
the dual space is the space of separable measures. Results
of Dudley, Granirer, and Leger and Soury on convergence in
the space of measures are unified and extended in this
context.

The topology of a completely regular Hausdorff space X can be
recovered from the family of its continuous metric images. In this
paper an analogous idea is developed: that theorems about convergence
of functions and measures on metric spaces can be used (via an in-
ductive limit procedure) to obtain results in a completely regular
setting. The principal consequences are the determination of a suf-
ficient condition for equality of the Mackey and strict topologies on
C*(X)f and a unification and extension of known results on conver-
gence in the space of Baire measures on X.

The concepts introduced here arise from the theory of the strict
topology for completely regular spaces due to Dennis Sentilles [17].
He considers locally convex topologies β09 β, and β1 on C*(X) which
extend the strict topology of Buck [2] in the locally compact setting
and also relate to the theory of measures on topological spaces
developed in, for example, Varadarajan [18]. In this paper the em-
phasis is on continuous maps from X to metric spaces Y and the
induced maps on (C*(F), β) to C*(X). This leads to introduction of
an inductive limit topology βe on C*(X), intermediate between β and

A.
The topology βe has a number of significant properties. In

particular, (C*(X), βe) is always a strong Mackey space. Using the
notion of partition of unity, it is then shown that β — βe when X
is paracompact; hence the Conway-LeCam Theorem [4, 12] extends
to the completely regular setting. Moreover, the dual space of
(C*(X), βe) can be represented as MS{X), the space of separable
measures introduced by Dudley [5], or as the space of linear func-
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tionals on C*(X) whose restrictions to bounded equicontinuous sets
are continuous in the pointwise topology, a notion considered by
Leger and Soury [13]. Results of these authors and Granirer [9] on
convergence in the space of measures are interpreted and extended
in this context, emerging as consequences of results in the duality
theory of locally convex spaces.

1* Definitions and preliminary results• All spaces X are
henceforth assumed to be completely regular and Hausdorff, except
that pseudometrics don a space X will be considered. In this case
enclosed, (^-separable, etc. refer to properties of the pseudometric space
(X, d). The space of real-valued bounded continuous functions on X
is denoted by C*(X). A partition of unity (POU) on X is a sub-
family (Λ) of C*(X) such that 0 ̂  fa ^ Ivα, Σfa = 1, and {x: fa(x) Φ 0}
is a locally finite family of subsets of X. A POU (/«) is subordinate
to an open cover (Ua) of X if {xι fjx) > 0} c UaVa. There is a POU
subordinate to any open cover of a paracompact space (in particular,
a metric space).

Basic references for the duality theory of topological vector spaces
and topological measure theory are [16] and [18], respectively. A
zero-set in X is a set of the form /"^(O), where / e C*(X) A cozero-
set is the complement of a zero-set. The Baire sets are the least σ-
algebra containing the zero-sets, and we deal primarily with Baire
measures: see [18] for the definitions of M(X), Mσ{X), Mτ{X), and
Mt(X). If AczM(X), then A+ = {μ+: μeA}, and A~ = {μ~:μeA}.
If μeM(X), then the support of μ is

Π {Z: Z a zero-set, \μ\(Z) = \μ\ (X)} .

Similarly, if AaM(X), then the (uniform) support of A is

n{Z:\μ\(Z) = \μ\(X)VμeA}.

A r-additive measure on a metric space has separable support.
If A is a directed set and (fa)aeA a family in C*(X), then fa \ 0

if (fa) converges monotonically pointwise to 0; similarly we have such
notations as Za \ 0 and fa \ 1.

The symbol LCS means locally convex Hausdorff topological
vector space. If E, F are linear spaces in duality, then the weak
and Mackey topologies on E with respect to F are denoted, as usual,
by σ(E, F) and τ(E, F). A subset A of a topological space X is
relatively countably compact if every sequence in A has a cluster
point in X. We will say, following Conway [4] that a LCS is a
strong Mackey space if every relatively weak*-countably compact
subset of the dual space is equicontinuous.
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Topologies β0, β, and β1 on C*(X) which yield Mt9 Mτ, and Mo9

respectively, as dual spaces, are introduced by Sentilles [17]; inde-
pendently, Fremlin, Garling, and Haydon [7] have considered topologies
Tt, Tτ, and Tσ which perform the same function. Happily, these
topologies are pairwise equivalent (i.e., β0 — Tt, β — Tτ, and ft == Ta),
and we note several crucial results in this theory. A subset A of
Mτ is uniformly z-additive if, for any fa J 0 in C*(X) and ε > 0,
there is an index aQ such that, for a ;> a0, \ μ(fa) | < e Vμ e A; there
is, similarly, a notion of uniform σ-additivity.

PROPOSITION 1.1 [7,17] (a). (C*(X), ft) is a strong Mackey
space, and the families of relatively weak*-countably compact and
uniformly σ-additive subsets of Mσ(X) coincide. Moreover, if
AdMσ{X), then A has either of these properties if and only if A+

and A~ do. (b) If A(zMτ{X), then A is uniformly τ-additive if and
only if A+ and A~ are uniformly τ-additive. Also /3 = ft if and
only if Mτ — Mσ, and, in this case, β is strong Mackey.

Any continuous map φ\ X—> Y induces a map T: C*(Y) —* C*(X)
defined by T(f) =f<χp. Then T is β0 - β0, β - β, and ft - ft
continuous [14]; the adjoint T*: M(X) —> M(Y) is weak*-continuous
and preserves Mσ, Mτ, and Mt. Finally, & is the topology on C*(X)
of pointwise convergence on X.

2. Metric spaces* The work of Fremlin, Garling, and Haydon
[7] has established that (C*(X), β0) is a strong Mackey space when-
ever X is complete metric. In this case, β = β0, and so the following
theorem, whose proof relies on their basic technique, is a stronger
result.

THEOREM 2.1. If X is a metric space, then (C*(X), β) is a
strong Mackey space.

Proof. Let d be a metric for X, and let A be a relatively
weak*-countably compact subset of Mτ(X). We establish first that
for any ε > 0 and δ > 0, there is a finite subset 7 of I such that
I μ I (X\N(Y, δ)) ^ ε (here N(Y, δ) = {x e X: d(x, Y) ̂  δ}). If this
fails for some particular ε and δ, we construct sequences of measures
(μn) in A and finite subsets (Yn) of X such that

(1) Yo=0;

(2) \μΛ\(X\N(\J«nYi,δ))>ε;
(3) YnczX\N(\Ji<nYi,δ);
(4) \μn\(N(Yn,δ/4))>εVn.
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Indeed there exists μιeA with | μι \ (X) > ε, and it is an im-
mediate consequence of τ-additivity, applied to the family of open
δ/4-spheres, that Yx can be chosen so that (3) and (4) are valid. If
fii and Yi have been chosen for i < n, then, by hypothesis, some
μneA satisfies (2). Applying r-additivity of \μn\ to the family of
open δ/4-spheres centered at points of X\N(\Ji<n Yiy δ), we obtain Yn

satisfying (3) and (4). Thus, by induction, (μn) and (Yn) are com-
pletely defined.

Let Gn = {x: d(x, Yn) < δ/3}, Hn = N(Yn, S/4). Since | μn \ (Hn) > ε,
it is easy to see that there is an fneC*(X) with

and > ε. Define T: s°° -+C*(X) as follows: for each

a = (O e s~, T(a) = ΣaJn .

(that T(a) is continuous follows from the fact that d(Gm, Gn) ^ δ/S for
m Φ n).

Now T is σ{/°°, sι) — σ(C*, Mτ) continuous (direct verification),
hence the adjoint T*: Mτ(X) — Z1 is σ(Mτ, C*) - σ{/\ /°°) continuous.
Thus T*(A) is relatively weakly countably compact in s1, and so is
relatively norm compact. But if en is the wth unit vector in z1, then
I T*μn(en) I = I μn(fn) \ > ε, and this contradiction establishes the truth
of the original claim.

Hence for each m and n there is a finite subset Fm>n of X with
1 μ I (X\N(Fn,n, 1/2W)) ̂  (m 2")"1 VJM eA. If S is the closure of

U ή N(FM, l/2 ) ,
m = l % = l

then S is separable and | μ \ (X\S) = 0 VμeA.
For each μ e A, let μs denote the restriction to the Baire (=Borel)

subsets of S. If (μn) is a sequence in A with a weak*-cluster point
μ0 e MT(X), then | μ0 \ (X\S) = 0 [18, p. 183]. Moreover, every member
of C*(S) extends to a member of C*(X), and it follows easily that
(μn)s clusters to (μo)s in Mτ(S). Thus, Ax = {μs: μeA} is relatively
weak*-countably compact in MT(S). But S is Lindelof, hence Mσ(S) —
MT(S) [18, p. 175], so that A1 is /3-equieontinuous and therefore uni-
formly τ-additive in MT(S), by 1.1b. Thus, if fa \ 0 in C*(X), and
«̂ = fa 1 >̂ then for each ε > 0 there is an index α0 such that, for

If If
oί^θίϋ, \\ fadμ = \ ^αdj«5 < eyμeA. Hence A is uniformly τ-

I JJE" I Jθ-

additive, and therefore is /3-equicontinuous.
COROLLARY 2.2. A relatively weak*-countably compact set of τ-
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additive measures on a metric space has a uniformly separable sup-
port.

It is well-known that M;~(X) is weak*-metrizable if (and only if)
X is metrizable. This fails for Mτ(X) (unless X is finite), but a
crucial property of metric spaces, formalized in the notion of an
angelic space [15], can still be recovered for the entire space of
measures.

COROLLARY 2.3. // X is a metric space, then (MZ(X), w*) is an
angelic space.

Proof. According to [15], it suffices to show that if A is a
relatively weak*-countably compact subset of Mτ(X), then its weak*-
closure A is weak*-compact and consists precisely of the limits of
sequences in A. The first assertion is clear, since A is /3-equicon-
tinuous (2.1). For the second, note that A+ and A" are uniformly
τ-additive (1.1b); hence they are relatively weak*-compact in M?(X).

Let (μa) be a net in A with μa —> μ. Then there are measures μt

and μ2 in Mϊ(X) and a subnet (μaβ) with μiβ —> μ19 μ~β —> μ2. Let

d be a metric for (MJ(X), W*) and choose Xn — aβn with

d(μtn, μd < Vn, d(μτn, μ2)

w*
Since necessarily μ = μγ — μ2, it follows that μλn —> μ. This completes
the proof.

Applying [15, Theorem 0.5], if X is metric, then any subspace
of Mτ(X), endowed with any locally convex topology finer than the
weak*-topology, is angelic.

3* Approximating completely regular spaces by metric spaces*
If X is a completely regular Hausdorff space, let £? denote the
family of all bounded continuous pseudometrics (BCPM's) on X. If
d e £&, then the relation: x ~ y if and only if d(x, y) = 0 is an equiv-
alence relation on X, and the collection of equivalence classes x is
made into a metric space Xd by defining d(x, y) = d(x, y). Then the
natural map πd: X—+ Xd defined by πd{%) — ̂  is continuous and induces
maps Td:C*(Xd)-+C*(X), Tf: M(X)-> M(Xd).

Let ξ (or f(X), if confusion might arise) denote the family of
uniformly bounded equicontinuous subsets of C*(X). Since arguments
involving ζ and partitions of unity (POU) play a prominent role in
the remainder of this paper, we record a number of elementary re-
sults for purposes of reference and in an effort to standardize notation.
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PROPOSITION 3,1 (a). If Eeξ(X), then

d(x, y) = sup {| f(x) - f{y) |: fe E)

is a BCPM on X. If feE, then f(x) = f(x) is a well-defined member
of C*(Xd), and Ed = {/: fe E) eξ(Xd). Also Td is a homeomorphism
of Ed onto E (each being endowed with the appropriate pointwise
topology), and Td(f) = f. (b) If (ga) is a POU on Xd, for some
dejgr, then (Td(ga)) is a POU on X. (c) If (fa)aeA is a POU on X,
then d(x, y) = Σ \fa(x) - fa(y) \ejgr. If jr={Fa A: F finite}, and,
for each Fe J^7 ψF = Σ {fa: a e F}, ΓF = Σ {fa: a e F}, then

{fF:Fejr}eξ(X),

(1 - f F) I 0 in C*(X), ΓF t 1 in C*(Xd), and Td(ΓF) = ψF.

DEFINITION 3.2. The topology βe is the finest locally convex
topology on C*(X) such that Td: (C*(Xd), β) -»C*(X) is continuous

The existence of such a topology, and a description of its zero-
neighborhood base, are well-known [16, p. 79].

PROPOSITION 3.3. β ^ βe <£ βx.

Proof. Each Td: (C*(Xd), β) -> (C*(X), β) is continuous [14], and
so β ^ βe. Since βt is Mackey, it now suffices to show that any βe-
continuous linear functional Φ is a member of Mσ. If (/») e C*(X)
and ||/«||"-*0, then E = {fn} is a member of ξ and gives rise to a
BCPM d (as in 3.1), Then Φ o Td e {C*(Xd), β)' = Mz(Xd) c M{Xd), so
that Φ(fn) = (Φo Γd)(Λ)->0. Thus ΦeM(X), and a similar argu-
ment applied to fn [ 0 in C*(X) shows that Φ is σ-additive.

Evidently if ΦeM(X), then Φ is /3,-continuous if and only if
Φ o Td = Tf(Φ) e Mτ(Xd)Vd e Sf. Let MS(X) denote the space of βe-
continuous linear functional; in § 4 it will be proved that Ms coin-
cides with the space of separable measures introduced by Dudley [5]
and the space MX considered by Leger and Soury [13, p. 379].

PROPOSITION 3.4. (C*(X), βe) is a strong Mackey space.

Proof. In view of the definition of βe, and 2.1, this follows im-
mediately from standard duality arguments.

We now show (in several steps) that whenever X is paracompact,
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β — βe; hence β is strong Mackey.

LEMMA 3.5. // μe Mσ(X), then the following are equivalent: (1)
μeMs(X); (2) μ+ and μ~ e MS(X); (3) \μ\eMs(X).

Proof. Since Td: MS(X)—+Mτ(Xd) is a positive linear map, it is
easy to see that (3) implies (2). Clearly (2) implies (1) and (3).
Thus it suffices to show that if μeMs(X), then μ+eMs(X). Note
that {T£μ)+ Φ Tf(μ+) in general.

Fix d G <%r, and let (Za)aeA be a net of zero-sets in Xd with Za [ 0 .
Let (ga)aeH be a POU on the metric space Xd such that #a | Za = 0Vα,
and let /« = Γd(flrα) — ga° πdva, with ^ * and ψ> defined as in 3.1.

Now μ = μ+ — μ~ is the Jordan decomposition of μ, and there is
a Baire set A c X such that μ+(B) = μ(A Π 5 ) for every Baire set
J5. Given ε > 0, there is a zero-set Z and a cozero-set U with
2 c i c [ / and |μ | ( ϊ7\Z) < ε/2 [18, p. 164]. Choose ΛeC*(X), with
0 ^ Λ ̂  1, λ I X\C7 = 0, h\Z=l. Then for any φ e C*(X),

μ+(φ) = φdμ = \ p M / i - \ φhdμ + \ ψdμ ^ μ(ψ-h) + e \\φ
JA JX }u\Z }A\Z

In particular, if φF = 1 — ψ^, then μ+(φF) ^ μ(<PF ti) + ε

Now {<pF: J P G ^ } is a member of £ (3.1c), hence so is

Let d^x, y) = sup {| φF(x) h(x) — φF{y) h(y) |: f e / Ί be the cor-
responding member of ^ , and denote the image of x under πdl by x.
Then jF(x) = φF(x) h(x) is a well-defined member of C*(Xdl), and
T^OV) - 9V&. Since i^ 1 0 and T^μ e Mv(Xd), μ(φF-h) = T&(jF) -> 0.
Thus for some finite subset Fo of H, FZDF0 implies μ(φF h) < ε, so
that μ+(φF) < 2ε.

Let Fo = {aly -- ,α:Λ}; then

2ε > /

It now follows that T^(μ+)(Za) -> 0, hence T?μ+e Mτ(Xd), and so
(since de& was arbitrary) /^+eΛf/(X). This completes the proof.

LEMMA 3.6. Tftβ topology βe coincides with the topology of uni-
form convergence on weak*-compact subsets of M£{X).

Proof. In view of 3.4, the topology of uniform convergence on
weak*-compact subsets of Ms(X) is coarser than βe. To prove the
converse, it suffices to show that if A is relatively weak*-countably



294 ROBERT F. WHEELER

compact in MS(X), then A+ has the same property in M£(X). Now
A is relatively weak*-countably compact in Mσ(X), hence /3i-equieon-
tinuous (1.1a). Thus A+ is βrequicontinuous and so if (μn) is any
sequence in A, then (μl) has a weak*-cluster point λ in M+(X). We
show that λ e l s

+ ( l ) .
Now each μieM^(X), by 3.5; hence if de^, then

T}{μ+) e ik

Let Dn be a closed separable subset of Xd such that

Td*μ:(Xn\Dn) = 0 .

Then Si = cl U«=i #» is separable, and T^μi(Xd\S) = OVn. Now
Td* λ G M/(X) is a weak*-cluster point of (Tfμϊ), and so T^X(Xd\S) = 0.

Since Γd*λ is concentrated on a separable subspace of Xd, it is
τ-additive. Thus XeM^(X), completing the proof.

PROPOSITION 3.7. If X is completely regular, then the following
are equivalent: (1) β = /3e; (2) Mr(X) = MS(X); (3) M+(X) = M£(X).
In this case, (C*(X), β) is a strong Mackey space.

Proof. It is shown in [17] and [18] that each of 3.5 and 3.6
remains true if βe is replaced by β and Ms is replaced by Mτ. The
proof now follows immediately.

Now we can establish the promised generalization of the Conway-
LeCam Theorem.

PROPOSITION 3.8. // X is paracompact, then (C*(X), β) is a
strong Mackey space.

Proof. Let μeM^(X). If Za[0, let_Ua = X\Za, and let (fa)
be a POU subordinate to (Ua). Define d, (/«), and (ΓF) as in 3.1(c);
then Ttμ e Mr(Xd) and (1 -ΓF)[0 in C*(Xd), so Tfμ(l - ΓF) -+ 0.
Given ε > 0, choose Fo = {<xl9 •••,«„} such t h a t

μ(l - Σ {fa: a e Fo}) = T!μ{l - ΓF) < ε .

It follows that μ(Γ)?=i Za.) < ε, and so μ e M+(X). An application of
3.7 completes the proof.

COROLLARY 3.9. If X is paracompact, then every relatively
weak*-countably compact subset of MT(X) has uniformly Lindelof
support.

Proof. If A is relatively weak*-countably compact in Mτ(X),
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then A is uniformly τ-additive, hence so are A+ and A". Thus we
may as well assume that A c M+(X). Let

C= Γϊ{Z: μZ= μX VμeA} ,

and let (Ua)aeA be an open cover of C. For each a choose an open
subset Va of X with Vaf)C = Ua, and let Vao = X\C, A, = A\J {aQ}.
Then (VajaeA, is an open cover of X; choose a POU {fa)aeAι subordinate
to it, and define d and (fa)aeAl as in 3.1(c).

Now T*A is relatively weak*-countably compact in M+(Xd) and
so there is a closed separable subset B of Xd such that μ{X\πjιB) =
T£μ{Xd\B) = 0 VμeA (2.2). Since nd'B is a zero-set in X, we have
C c πj 1 J3 by definition of C. Let (a?w) be a sequence in C such that
(xn) is dense in πd(C), and let A2 = {α e 4;/«(»„)> 0 for some n).
Then A2 is countable, and a0gA2. If p e C and /α(p) = 0 VaeA2,
then rf(p, xn) = d(p9 xn) ^ Σ«e^2 \fa(p) - Λ(» ) I = 1 V%, contradicting
denseness of (ά?Λ). Thus C c (J {F«: α: e A2}, and so C = \J {Ua: aeA2).
This completes the proof.

4* Characterizations of βe and its dual* In order to relate βe

and Ms to the work of Dudley [5], Granirer [9], and Leger and Soury
[13], we obtain some alternate descriptions of these spaces.

PROPOSITION 4.1. If μe Mσ{X), then the following are equivalent:
(1) μeMs(X); (2) [5] For each BCPM d on X, there is a d-separable
d-zero set Zd with | μ \ (X\Zd) = 0; (3) [13] The restriction of μ to
each member of ξ is ^-continuous; (4) If (fa) is equicontinuous and
fa I 0, then μ(fa) — 0.

Proof. (1) —(2): If de^r, then Tϊ(\μ |) e Mr(Xd), from 3.5.
Hence there is a closed separable subset D of Xd with

Td*(\μ\)(Xd\D) = 0,

and Zd — πd

λD is the desired set. (2)—*(1): For any fixed d, πd(Zd)
is a closed separable subset of Xd on which T^(\μ\) is concentrated;
thus T}(\μ\)eMr(Xd) and so \μ\eMs(X). Now apply 3.5. (1) —(3):
Let Eeξ, and let (/„) be a net in E which is pointwise convergent
to /0 G JE7. We may assume that E is convex and circled. Let ga =
(fa — /o)/2, and let ha(x) = sup {| gλ(x) |: λ ^ α}. Applying the equicon-
tinuity of E, we have each ha continuous, {ha} e ξ, and ha \ O Let
d{x,y) = sup{|/£α(» - Λα(i/) |}, and use 3.1(a) to form (φa) in C*(Xd)
with Td(^α) = λβ and φa \ 0. Then since Γ*(| μ\)e Mτ(Xd),

μ\(ha)= (T*\μ\)(φa)-*0.
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But \μ(ga)\^\μ\(ha), and so μ(fa)-+μ(f0). (3)->(4): Obvious.
(4) —> (1): First we show that μ+ and μ~ have the stated property.
Indeed, for any ε > 0, we can use the argument of 3.5 to find
fteC*(X), O ^ Λ ^ l , with μ+(f) ^ μ(f. h) + ε . | | / | | V/eC*(I) . If
(fa) is equicontinuous and fa J 0, then (fa h) has the same proper-
ties. Fixing a0, we have μ+(fa) ^ μ(fa h) + ε | | / α J | for a ^ α0, and
it follows that μ+(fa) —* 0. Thus we may assume that μ is positive.
If d € ̂  and Zα J 0 in Xd, let (&,) be a POU on Xd subordinate to
the cover (X\Za). Then (fa) = (Tdga) is a POU on X (3.1(b)), and the
equicontinuous net (1 — ψF) (notation as in 3.1) satisfies (1 — ψF) j 0.
Thus μ(l - ψ>)-*0, and it follows that Td*μ e Mτ(Xd).

We note that the classes (2), (3), and (4) must share the property
of (1) which is expressed by 3.5.

PROPOSITION 4.2. The topology βe is the finest locally convex
topology on C*(X) which coincides with the pointwise topology &
when restricted to uniformly hounded equicontinuous sets.

Proof. The existence of a topology Jf satisfying condition of
the theorem, and a description of its zero-neighborhood base, are
well-known [3, 8]. To show that βe ^ ^ 7 it suffices (by 3.6) to
show that if A is a weak*-compact subset of M<f(X), Eeξ, and (fa)
is a net in E which is pointwise convergent to feE, then μ(fa) —* μ(f)
uniformly with respect to μeA. Since, for each de&, T£A is
weak*-compact and therefore uniformly τ-additive in M+(Xd) (by 2.1),
the result follows from simple modifications of the proof that (1) —> (3)
in 4.1.

Conversely, if μ is a ^continuous linear functional on C*(X),
then the restriction of μ to each member of ξ is ^-continuous. It
follows, upon considering sequences (fn) with | | / Λ | | —*0 or f% \ 0, that
μeMσ(X); hence μeMs(X), by 4.1. Since βe is Mackey, we must
have S~ ^ ββ. Thus άΓ and βe coincide.

COROLLARY 4.3(a). // X is paracompact, then β is the finest
locally convex topology which coincides with & on uniformly hound-
ed equicontinuous sets; (b) // X is paracompact locally compact or
complete metric, then β0 has the same property.

Proof. If X is paracompact, then β = βe was proved in 3.7 and
3.8. The spaces mentioned in (b) satisfy βQ — β-

If X is locally compact, then the /3-totally bounded, relatively
/3-compact, and uniformly bounded equicontinuous subsets of C*(X)
coincide. Thus the first part of (b) was essentially obtained by Collins
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and Dorroh [3, Theorem 6,4], and now emerges as bearing an unanti-
cipated relation to the Mackey problem.

Let τ(ζ) denote the topology on M(X) of uniform convergence on
members of ξ. The second part of the next theorem is proved in
[13], but we include an argument for the sake of completeness.

PROPOSITION 4.4 (a). MS(X) is weak*-sequentially complete; (b)
(MS(X), τ(ζ)) is a complete locally convex space whose dual is C*(X).

Proof, (a) It is known [18] that Mσ{X) is weak*-sequentially
complete, hence we need only show that MS{X) is weak*-sequentially
closed in Mσ(X). But this is an immediate consequence of characteri-
zation (2) of 4.1 and [18, p. 183].

(b) The CF(C*, Λf5)-closed convex circled hull of any member of
ζ is in ξ, and consequently is σ(C*, Λfs)-compact since, from 4.2 and
standard results, it is /3e-compact. Thus (MS(X), τ(ξ))' = C*(X) by
the Mackey-Arens Theorem. Moreover, since & ^ #"(£*, Ms) ^ βe,
the other assertion follows from the characterization (3) of 4.1 and
Grothendieck's Completeness Theorem.

If L{X) denotes the linear span of the point masses in M{X),
then L{X) is weak*-dense, hence r(f)-dense in MS{X). This shows
that (MS(X), τ(ξ)) is the completion of (L(X),τ(ζ)).

5. Convergence in the space of measures* In this section we
extend several known results on convergence of measures and answer
a question posed on p. 393 of [13]:

(a) Do the weak*-topology and τ(ζ) coincide on

{μeM£(X): μ(X) = 1} (= QX, in the terminology of [13]) .

Dudley [5] showed that:

(b) If μn—*μ in MS(X), then (μn) converges to μ uniformly on
members of ξ (i.e., in the topology τ(ξ)).

Granirer [9] introduced the space of measures DMσ and showed
(Theorems 1 and 2, and Remark 4, p. 15) that:

(c) Every member of ξ is relatively σ(C*, DMσ)-compact and
(d) The weak*-topology and the topology τ(ξ) coincide on

DMi{X).
Our results are:

PROPOSITION 5.1. Mτ c DMσ c Ms c Mσ.

PROPOSITION 5.2. The finest locally convex topology on C*(X) for
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which members of ξ are relatively compact is τ(C*9 Ms).

PROPOSITION 5 3. The weak*-topology coincides with τ(ξ) on M<t(X)
and on relatively weak*-countably compact subsets of MS(X).

Proof of 5.1. We refer to [9] for the definitions of a D-space
and the space of measures DMσ(X). It suffices to show that

Mτ

+ c DMσ

+ c AT+ ,

since each of these cones generates the corresponding space of
measures.

If μeMτ

+(X), then it is known [11, p. 338] that μ has an exten-
sion to a nonnegative countably-additive Borel measure v satisfying
(1) vB = inf {vθ: 0 open, Ba 0} for any Borel set B; and (2) if (Fa) is
a net of closed sets with Fa J 0 , then vFa -* 0. Let

C = Γl {F: F closed, vF = vX)

then vC = vX. If U is any nonempty open subset of C, then U —
VΓ\C where V is open in X, and vU = vV > 0. Thus C satisfies
the countable chain condition, hence is a Z)-space [9], and, for any
Baire set B with CaB, μB = vB ^ vC = vX = μX. Thus

If μ eDMσ

+(X), let S be a D-subspace of X with μ*S = ^ X Fix
d G ^ , and let P = πd(S)c:Xd. If e is a BCPM on P, then eo(τrdχτr<i)
is a BCPM on S, and it follows that P is a D-space. If JB is a Baire
set in Xd and PaB, then TΓ^-B is a Baire set in X containing S, so
that (Tίμ)(B) = μfcΉ) = μX = T£μ{Xd). Thus Tfμ e DMσ

+(Xd),
which coincides with Mτ

+(Xd) since Xd is metric [9, p. 19]; hence
μeMs

+(X).
Granirer observes that DMσ(X) = Λfσ(X) if and only if X is a

D-space; hence there are models for set theory in which

DMa = Ms = Mσ

(and βe = /SO for any space X. But unless it can be proved that
real-valued measurable cardinals do not exist, βe and β1 must be
considered as distinct entities. Roughly speaking, a principal moti-
vation for introducing βe is the hope of isolating the cardinality dif-
ficulties in the relation between βe and βί9 so that the equality of β
and βe can be investigated without reference to them.

Proof of 5.2. It is well-known that members of ζ are relatively
^-compact. Thus βe is the finest locally convex topology with this
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property, from 4.2, and βe — r(C*, Ms), from 3.4.

Proof of 5.3. If E is any locally convex space, and A is any
equicontinuous subset of the dual E'', then the weak*-topology and
the topology of uniform convergence on totally bounded subsets of E
coincide when restricted to A. Let E = (C*(X), βe), so that £" =
MS(X). Since every relatively weak*-countably compact subset of
MS(X) is /3e-equicontinuous (3.4), and every member of ξ is relatively
/9e-compact (5.2), hence ^-totally bounded, the second half of the
proposition is immediate.

Turning to the assertion about M^(X)9 let us first establish
that, for X a metric space, the weak*-topology and τ(ξ) coincide on
M+(X) (this is a special case of Granirer's result (d), but an easy
direct proof is possible). Now if βe and Ms are replaced by β and
Mτ in the previous paragraph, it follows that σ(Mτ, C*) and τ(ξ) coin-
cide on weak*-compact subsets of Mr

+. But τ(ξ) is finer than σ(Mτ,
C*), and (Mτ

+, σ(Mv, C*)) is metrizable, hence a λ -spaee [6, p. 248].
It follows that τ(ζ) = σ(Mτ, C*) on Mτ

+(X).

Returning to the general case, suppose μa-^μ in Ms(X),
and let Eeζ(X). Constructing d and Ed as in 3.1(a), we have

Td*μa-> Tίμ in Mτ

+(Xd), and so (Tfμa) converges to T2μ uniformly
on Ed, from the previous paragraph. This is equivalent to saying
that (μa) converges to μ uniformly on E. Hence σ(Ms, C*) and τ(ξ)
coincide on M£(X).

There is a natural embedding j : X-+M(X), and a copy of the
Stone-Cech compactification βX can be constructed in M+(X): it is
simply the set of {0, l}-valued Baire measures in M(X), with the
relative weak*-topology. Moreover, if we identify βX with this space,
then βX Π Mσ(X) = vX, the Hewitt realcompactification of X, and
βXΠMr(X)=j(X).

Let ^( f ) be the uniformity on MS(X) of uniform convergence on
members of ξ; then the uniform topology is of course τ(ζ). It is easy
to show that the relative ^(ξ) uniformity on j(X) coincides with the
finest compatible uniformity on X, often called the fine uniformity.
The completion of X with the fine uniformity is called the universal
completion of X and denoted ΘX\ in [1] it is shown that ΘX can be
realized (topologically) as a subspace of βX. Now we give an alter-
nate characterization of ΘX.

COROLLARY 5.4. The space βX Π MS(X) of {0, l}-valued Baire
measures in MS(X), with the relative weak*-topology and
uniformity, is homeomorphic and uniformly isomorphic to ΘX.
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Proof. Since βX is weak*-closed in M(X), βXΠMs(X) is weak*-
closed, hence τ(ζ)-closed, in MS(X), and therefore is ^(ξ)-complete,
from 4.4(b). Also σ(Ms,C*) and τ(f) coincide on M^(X) (5.3), so
that j(X) is r(f)-dense in βX Π MS{X). The result now follows im-
mediately.

Ideas similar to those expressed by 5.4 and preceding remarks
(with the exception of the consequences of 5.3) are considered, at
least implicitly, in [13].

6* Totally bounded sets and convergent sequences • If X is
locally compact, then /3-totally bounded sets are relatively /S-compact,
and coincide with the members of ζ. Since & <£ β0 <£ β ^ ββ, we
have seen that members of ξ are relatively β0 and /3-compact in
general, even relatively ^-compact if X is a D-space. Unfortunately,
the converse fails.

EXAMPLE 6.1. A space X with βQ = β = βe = βι such that C*(X)
contains a /ίi-null sequence which is not equicontinuous. Let N
denote the positive integers with the discrete topology, let p be a
point of βN\N, and let X— N{j{p}. As pointed out by Varadarajan
[18, p. 227], X satisfies Prohorov's Theorem: every weak*-compact
subset of Mt

+(X) is uniformly tight. Since X is σ-compact, Mσ(X) —
Mt(X), and so X is ^-simple, in the terminology of [14]: /30 = β = βi
Now compact subsets of X are finite, so if fn is the characteristic
function of {n}, then (fn) is /So-convergent to 0, but obviously not
equicontinuous at p.

A space X is a A -̂space if the continuity of a real-valued func-
tion on X is implied by its continuity when restricted to compact
subsets of X. Every &-space is a fc^-space, but the converse is not
true. It is konwn [17] that when X is a JfcΛ-space, β0 is complete
and β and βι are sequentially complete.

PROPOSITION 6.2. If X is a kR-space, then the following classes
of subsets of C*(X) coincide: (1) ξ; (2) relatively β-compact; (3) /3-
totally bounded; (4) relatively β^-compact; (5) βQ-totally bounded.

Proof. We have already noted that (1) —> (2), and clearly (2) —>
(3) —> (5) —> (4), the last implication following from /30-completeness.
Any relatively /30-compact set is uniformly bounded and relatively
compact in the compact-open topology, hence the implication (4) —* (1)
is an immediate consequence of Ascoli's Theorem [10, p. 234].
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Sentilles has introduced /30

+ and β+, the finest locally convex
topologies on C*(X) with the same convergent sequences as βQ and
β, respectively, and inquired as to the relationship between βt and
β

COROLLARY 6.3. If X is a kB-space, then β0 and β have the same
convergent sequences, and β ^ β+ = /So

+ ̂  βi If dlso X is a D-
space, then βQ, β, and βL have the same convergent sequences.

Proof. Obviously β ^ β+, and β+ ^ βt = & was established in
[17]. Moreover, β0

+ = β+ = βt ^ βe follows from 6.2. Thus if X is
a Z>-space, βe = β19 and the second assertion follows.

7 An open question* Theorems 3.4 and 3.7 show that the
measure-theoretic condition Λf/ = MΓ

+ is sufficient for (C*(X), /3) to
be a strong Mackey space; this unifies the classes of paracompact
spaces and measure-compact spaces (spaces for which Mσ = Mτ). As
a consequence of 5.4, a space X for which Λf/ = ΛfΓ

+ admits a com-
plete uniform structure (this is the analogue of the known result
that a measure-compact space is realcompact). This raises the ques-
tion of a possible converse: if (C*(X), β) is a Mackey space, must X
admit a complete uniform structure?

Added in proof. Since submitting this article the author has
learned that some of his results on the space of separable measures
have also been obtained, independently and using different techniques,
by Michel Rome (C. R. Acad. Sci. Paris 274 (1972), 1631-1634, 1817-
1820) and Richard Haydon ("On compactness in spaces of measures and
measure-compact spaces," preprint).
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